Department of Chemistry
Uni von A-Z
  Flagge  Deutsch
Universität Bielefeld > Department of Chemistry

Research profile of the Faculty of Chemistry

  1. Molecule-based Materials
    Aziz-Lange, Ghadwal, Glaser, Godt, Hellweg, Hoge, Kohse-Höinghaus, Mitzel
  2. Life Science Chemistry
    Dierks, Fischer v. Mollard, Gröger, Hellweg, Kottke, Lübke, Niemann, Sewald
  3. Gas Phase- und Atmospheric Chemistry
    Brockhinke, Eisfeld, Kohse-Höinghaus, Koop, Manthe, Mitzel
  4. Public Understanding of Science
    Dunker, Kohse-Höinghaus, Lück, Mitzel

Important subjects in the research area Molecule-based Materials are molecular magnets, biomimetic catalysts, cytostatic compounds, fluorinated compounds, organometallic compounds, silanes, spin probes an models for EPR-spectroscopy, microgels and microemulsions.

Protein crystallography is used and sulfatases, lysosomal hydrolases and membrane transport are studied in the research area Life Science Chemistry. An additional focus are bioorganic and biocatalytic topics in organic chemistry groups, which are also investigated by biochemistry groups within the Faculty of Chemistry.

Research topics in Gas Phase- und Atmospheric Chemistry are combustion, atmospheric aerosols and ice nucleation. The core facility „gas-electron diffraction and structure analysis of small molecules“ (GED@BI, N. Mitzel) is funded by the DFG and is unique within the EU.

The research area Public Understanding of Science focuses on research concerning instructions in chemistry during early childhood.

The Faculty of Chemistry is characterized by interdisciplinary research, which is typical for Bielefeld University. Researchers in the research area Molecule-based Materials cooperate with the department of Physics.

The research area Life Science Chemistry is strengthened by cooperation with the Faculty of Biology, the Faculty of Technology and the CeBiTec.
The „Center for Molecular Materials“ CM2 is an academic department with groups from chemistry and physics (coordinator B.Hoge), which aims at connections between technical know-how of industrial partners and basic research at the university.
In addition, each group is involved in national and international research cooperations.

Current work from our research groups 

Enols Are Common Intermediates in Hydrocarbon Oxidation
Models for chemical mechanisms of hydrocarbon oxidation rely on spectrometric identification of molecular structures in flames. Carbonyl (keto) compounds are well-established combustion intermediates. However, their less-stable enol tautomers, bearing OH groups adjacent to carbon-carbon double bonds, are not included in standard models. We observed substantial quantities of two-, three-, and four-carbon enols by photoionization mass spectrometry of flames burning representative compounds from modern fuel blends. Concentration profiles demonstrate that enol flame chemistry cannot be accounted for purely by keto-enol tautomerization. Currently accepted hydrocarbon oxidation mechanisms will likely require revision to explain the formation and reactivity of these unexpected compounds.
C.A. Taatjes, N. Hansen, A. McIlroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, T.A. Cool, J. Wang, P.R. Westmoreland, M.E. Law, T. Kasper, K. Kohse-Höinghaus, Science 308, 1887–1889, 2005.

Alle GDCh-Vorträge


Magicbullet European Training Network MAGICBULLET

Core Facility

FOR 945

Nanomagnete: von der Synthese über die Wechselwirkung mit Oberflächen zur Funktion