Zebrafinken

Dr. Sebastian Steinfartz

Research Projects

Molecular and behavioral aspects of speciation

We are using the fire salamander (Salamandra salamandra) in Germany and Europe as a system to investigate processes of adaptive differentiation that might lead to speciation under natural conditions. We have ecologically and genetically characterised a fire salamander population in the Kottenforst near Bonn in which salamanders that deposit their larvae in ponds have genetically diverged under sympatric conditions from salamanders that use streams as larval environments. We are now interested which mechanisms could have caused this split under sympatric conditions. In this context we focus on possible assortative mating between ecologically adapted salamander types by conducting mate choice experiments. In co-operations we furthermore investigate possible differences between olfactory cues that might be used by the salamanders for discrimination and analyse the composition of the MHC resistance genes for the different ecological/genetic types. The movement and dispersal patterns of adult salamanders in the Kottenforst is studied by a capture/recapture approach using pit tags and radio transmitter.

Salamander

Cooperation partners

Prof. Dr. Diethard Tautz, Max-Planck Institute for Evolutionary Biology

Prof. Fritz Trillmich, Department of Animal Behaviour, University of Bielefeld

Prof. Caroline Müller, Chemical Ecology, University of Bielefeld

Dr. Markus Weitere, Department of Limnology, University of Cologne

Dr. Susanne Hauswaldt, Zoological Institute, University of Braunschweig

Funding

German Research Community: Ta99/16-1 (finished), STE 1130/3-1 (finished), STE 1130/3-2 (active).

Volkswagen Foundation: I/83 230 (active).

 

Links

http://www.g-o.de/wissen-aktuell-7348-2007-11-06.html

 

Following related papers are available:

Reinhardt T, Steinfartz S, Paetzold A, Weitere M. 2013. Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidiesOecologia.(doi 10.1007/s00442-013-2592-0) pdf

Hendrix R, Hauswaldt S, Veith M, Steinfartz S. 2010. Strong correlation between cross-amplification success and genetic distance across all members of “True Salamanders” (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci.Molecular Ecology Resources. (doi: 10.1111/j.1755-0998.2010.02861.x) pdf

Caspers B A, Junge C, Weitere M, Steinfartz S. 2009.Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra). Frontiers in Zoology 6:13 (doi:10.1186/1742-9994-6-13).pdf

Schmidt BR, Schaub M, Steinfartz S. 2007. Apparent survival of the salamander Salamandra salamandra is low because of high migratory activity. Frontiers in Zoology 4:19 (doi:10.1186/1742-9994-4-19)pdf

Steinfartz S, Weitere M, Tautz D. 2007. Tracing the first step to speciation - ecological and genetic differentiation of a salamander population in a small forest. Molecular Ecology 16: 4550-4561 (doi: 10.1111/j.1365-294X.2007.03490.x) pdf

Schulte U, Kuesters D, Steinfartz S. 2007. A PIT tag based analysis of annual movement patterns of adult fire salamanders (Salamandra salamandra) in a Middle European habitat. Amphibia-Reptilia28: 531-536.pdf

Steinfartz S, Stemshorn K, Kuesters D, Tautz D 2006. Patterns of multiple paternity within and between annual reproduction cycles of Salamandra salamandra under natural conditions. Journal of Zoology 268: 1-8.pdf

Weitere M, Tautz, D, Neumann D, Steinfartz S. 2004. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Molecular Ecology 13: 1665-1677.pdf

Von Feuersalamandern und neuen Arten 2003. DFG-Journal `forschung´, 2003 (1), pp. 16-18.pdf

The Fire salamander: source for new species. German Research 2/2003, pp. 14-16.pdf

Steinfartz S, Tautz D. 2002. Vor unserer Haustür entstehen neue Arten - Der Feursalamander als ein natürliches Modell der sympatrischen Artbildung. Praxis der Naturwissenschaften 7/51
Jg. 2002, 3-8.pdf

Auf Darwins Spuren. Bild der Wissenschaft Heft 6 (2002), p. 8 .pdf

Steinfartz S, Veith M, Tautz D. 2000. Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonization of Central Europe from distinct source populations of S. salamandra. Molecular Ecology, 9: 397-410.pdf

 

 

Conservation Genetics

Knowledge on population differentiation and gene flow should be the basis for a middle- or long-term effective and comprehensive concept of species conservation. We try to integrate the knowledge of population differentiation and geneflow for island populations of the endemic Galápagos marine iguanas (Amblyrhynchus cristatus) into an effective conservation program for this unique species. The main aim is to identify first conservation relevant units for this species on the basis of population differentiation and geneflow between distinct island populations. We are furthermore interested in how far short-term climatic changes as the El Nińo-Southern Oscillation (ENSO) have an impact on the population structure of marine iguanas.

Another project is the development of standardised molecular markers for endangered European amphibian species with a special emphasis on the German species. For each species it is intended to develop a set of microsatellite loci and to establish a highly variable mitochondrial gene marker (e.g. the Cytb gene or the control region, the so called D-loop). These loci can then be applied for specific projects on amphibian conservation. The obvious advantage of such standardised markers is that population structure and characteristics of a specific population (e. g. degree of heterozygosity, effective population size, etc.) can be compared between areas and even countries and will be therefore a valuable source of information for persons that are locally involved in amphibian conservation.

Cooperation partners

Dr. Adalgisa Caccone, Yale University (Marine Iguanas)

Scott Glabermann, Yale University (Marine Iguanas)

Dipl. Biol. Monika Hachtel, Umweltstation Bonn

Dipl. Biol. Peter Schmidt, Umweltstation Bonn

Prof. Dr. Wolfgang Böhme, Museum König Bonn

Dr. Claudio Angelini, University of Rome „La Sapienza“

Dr. Susanne Hauswaldt, Zoological Institute, University of Braunschweig

Funding

German Research Community: STE 1130/2-1 (finished), STE 1130/2-2 (finished)

National Geographic: NGS 7589-04 (finished)

Young researchers seed grant from the University of Bielefeld

DAPTF seed grant 2006 for the development of microsatellite loci for Salamandrina perspicillata

Deutsche Bundesstiftung Umwelt (DBU)

Links

http://www.dfg.de/gepris/nachweise/260588.html

http://www.g-o.de/wissen-aktuell-7567-2007-12-20.html

 

Following related papers are available:

Vences M, Hauswaldt J S, Steinfartz S, Rupp O, Goesmann A, Künzel S, Orozco-terWengel P, Vieites D R, Nieto-Roman S, Haas S, Laugsch C, Gehara M, Bruchmann S, Pabijan M, Ludewig A-K, Rudert D, Angelini C, Borkin L J, Crochet P-A, Crottini A, Dubois A, Ficetolam G F, Galán P, Geniez P, Hachtel M, Jovanovic O, Litvinchuk S N, Lymberakis P, Ohler, Smirnov N A (in press). Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Molecular Phylogenetics and Evolution (http://dx.doi.org/10.1016/j.ympev.2013.04.014) pdf

MacLeod, A., Koch, V., García-Parra, C., Trillmich, F. and S. Steinfartz. 2012. New highly polymorphic microsatellite loci for the Galápagos marine iguana, Amblyrhynchus cristatus. Amphibia-Reptilia 33: 533–536 pdf

Hauswaldt, J.S., Pollok, A., Angelini, C. and S. Steinfartz. 2012. First microsatellite loci for spectacled salamanders (Salamandrina perspicillata and S. terdigitata) endemic to the Apennine peninsula. Conservation Genetic Resources 4(2): 399–402 (doi 10.1007/s12686-011-9559-4) pdf

Lanterbecq D, Glaberman S, Vitousek M, Steinfartz S, Wikelski M, Caccone A. 2010. Genetic differentiation between marine iguana breeding sites on the island of Santa Fé (Galápagos Archipelago). Journal of Heredity. (doi:10.1093/jhered/esq067) pdf

Drechsler A, Bock D, Ortmann D, Steinfartz S. 2010.Ortmann’s funnel trap - a highly efficient tool for monitoring amphibian species. Herpetology Notes, volume 3: 13-21.pdf

Steinfartz S, Glaberman S, Lanterbecq D, Russello M, Rosa S, Hanley TC, Marquez C, Snell HL, Snell HM, Gentile G, dell’Olmo G, Powell A, Caccone A. 2009. Progressive colonization and restricted gene flow shape island-dependent population structure in Galápagos marine iguanas (Amblyrhynchus cristatus). BMC Evolutionary Biology 9:297 (doi:10.1186/1471-2148-9-297).pdf

Bock D, Hennig V, Steinfartz S. 2009.The use of fish funnel traps for monitoring crested newts (Triturus cristatus) according to the Habitats Directive. Methoden der Feldherpetologie,  Hachtel M, Schlüpmann M, Thiesmeier B, Weddeling K(Hrsg.): ZeitschriftfürFeldherpetologieSupplement 15: 317–326.pdf

Hauswaldt JS, Fuessel J, Guenther J, Steinfartz S. 2008. Eight new tetranucleotide microsatellite loci for the agile frog (Rana dalmatina). Molecular Ecology Resources (doi: 10.1111/j.1755-0998.2008.02217.x).pdf

Steinfartz S, Glaberman S, Lanterbecq D, Marquez C, Rassmann K, Caccone A. 2007 Genetic impact of a severe El Nińo event on Galápagos marine iguanas.PLoS ONE 2(12): e1285. doi:10.1371/journal.pone.0001285.  pdf

Steinfartz S, Caccone A. 2006. A set of highly discriminating microsatellite loci for the Galápagos marine iguana Amblyrhynchus cristatus. Molecular Ecology Notes  6: 927-929. pdf

Steinfartz S, Küsters D, Tautz D 2004. Isolation and characterization of polymorphic tertanucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia: Caudata).Molecular Ecology Notes 4, 626-628. pdf

 

 

Evolution of behavior

Salamanders and newts belonging to the family of the Salamandridae harbor a broad variety of traits that are displayed during courtship. Most of these traits are specific for a certain clade or species. By mapping these traits on a phylogenetic tree it is possible to reconstruct the evolution of these traits. We have followed this approach for the genus Triturus which is indeed a polyphyletic species assemblage. We can show for Triturus that many courtship traits that have been so far assumed to be homologous have indeed evolved in parallel. In the future I seek for cooperations to explain how complex mating behaviors within the Salamandridae could have evolved in parallel.

Cooperation partners

Dr. Adalgisa Caccone, Yale University

Dr. J.W. Arnzten, National Natural History Museum – Naturalis, Leiden

Dr. Saverio Vicario, Bari University

 

Following related papers are available:

Caspers B A & Steinfartz S. 2011. Preference for the other sex: Olfactory sex recognition in terrestrial fire salamanders (Salamandra salamandra). Amphibia-Reptilia 32: 503–508 pdf 

Krause T E, Steinfartz S & Caspers B A. 2011. Poor Nutritional Conditions During the Early Larval Stage Reduce Risk-Taking Activities of Fire Salamander Larvae (Salamandra salamandra). Ethology117: 416–421 doi: 10.1111/j.1439-0310.2011.01886.x pdf

Schlegel PA, Steinfartz S, Bulog B. 2009 Non-visual physiology and magnetic orientation in the Blind Cave Salamander, Proteus anguinus (and some other cave-dwelling urodele species). Review and new results on light-sensitivity and non-visual orientation in subterranean urodeles. Animal Biology 59: 351-384.pdf

Steinfartz S, Vicario S,. Arntzen JW, Caccone A.2007 A Bayesian approach on molecules and behaviour:reconsidering evolutionary patterns in Triturus newts  (Amphibia: Salamandridae). Journal of Experimental Zoology, part B: Molecular and Developmental Evolution 308B: 139-162. pdf

Sparreboom M, Steinfartz S, Schultschik G. 2000. Courtship behaviour of Neurergus. Amphibia-Reptilia 21: 1-11. pdf

 

 

Phylogeny and systematics of salamanders

The phylogeny of a species or a group of species is an important component to analyse and understand underlying evolutionary processes of morphological or behavioral traits. In the ideal case the correct systematics of a species should reflect its true phylogeny. The systematics of a species is an important classification that is used for different biological disciplines as ecology, evolution and conservation of a species. I am using mainly molecular markers to derive phylogenetical implications within the Salamandridae. I then try to implement the phylogentic implications into a revised systematics and taxonomy of the respective species or group of species.

Co-operation partners

Professor Dr. Michael Veith, University of Trier

Dr. Lucio Bonato, University of Padua

Dr. Gunter Köhler, Senckenberg Museum

 

Following related papers are available:

Hauswaldt J S, Angelini C, Pollok A & Steinfartz S. 2011. Hybridization of two ancient salamander lineages: molecular evidence for endemic spectacled salamanders on the Apennine peninsula. Journal of Zoology.doi:10.1111/j.1469-7998.2011.00807.x pdf 

Veith M, Lipscher E, Öz M, Kiefer A, Baran I, Polymeni RM, Steinfartz S. 2008. Cracking the nut: geographical adjacency of sister taxa supports vicariance in a polytomic salamander clade in the absence of node support. Molecular Phylogenetics and Evolution 47: 916-931. (doi: 10.1016/j.ympev.2007.11.017) pdf

Steinfartz S, Vicario S,. Arntzen JW, Caccone A. 2007. A Bayesian approach on molecules and behaviour: reconsidering evolutionary patterns in Triturus newts  (Amphibia: Salamandridae). Journal of Experimental Zoology, part B: Molecular and Developmental Evolution 308B: 139-162. pdf

Koehler G, Steinfartz S. 2006. A new subspecies of the fire salamander, Salamandra salamandra (LINNAEUS, 1758) from the Tendi valley, Asturias, Spain. Salamandra 42: 13-20. pdf

Bonato L, Steinfartz S 2005. Evolution of the melanistic colour in the Alpine Salamander Salamandra atra. Italian Journal of Zoology 72: 253-260. pdf

Veith M, Steinfartz S. 2004. When non-monophyly results in taxonomic consequences – the case of Mertensiella within the Salamandridae (Amphibia: Urodela). Salamandra 40: 67-80. pdf

Steinfartz S, Hwang U W, Tautz D, Öz M, Veith M. 2002. Molecular phylogeny of the salamandrid genus Neurergus: evidence of an intrageneric switch of reproductive biology. Amphibia-Reptilia, 23: 419-431. pdf

Veith M, Steinfartz S, Zardoya R, Seitz A, Meyer A. 1998. A molecular phylogeny of 'true' salamanders (family Salamandridae) and the evolution of terrestriality of reproductive modes. Journal of Zoological Systematics and Evolutionary Research 36: 7-16. pdf

 

Zebrafinken

 



  deutsch
Sie befinden sich hier: Universität Bielefeld > Faculty of Biology > Department of Animal Behaviour > Sebastian Steinfartz >