Fakultät für Chemie
 
 
Hintergrundbild
Hintergrundbild
Uni von A-Z
  Flagge  English
Universität Bielefeld > Fakultät für Chemie
  

Forschungsprofil der Fakultät für Chemie

  1. Molekül-basierte Materialien
    Aziz-Lange, Ghadwal, Glaser, Godt, Hellweg, Hoge, Kohse-Höinghaus, Kühnle, Mitzel
  2. Life Science Chemistry
    Dierks, Fischer v. Mollard, Gröger, Hellweg, Kottke, Lübke, Niemann, Sewald
  3. Gasphasen- und Atmosphären-Chemie
    Brockhinke, Eisfeld, Kohse-Höinghaus, Koop, Manthe, Mitzel
  4. Public Understanding of Science
    Dunker, Kohse-Höinghaus, Lück, Mitzel

Große aktuelle Themenblöcke im Bereich Molekül-basierte Materialien sind molekulare Magneten, biomimetische Katalysatoren, Cytostatika, fluorierte Verbindungen, Organometallverbindungen, Silane, Spinsonden und Modelle für die EPR-Spektroskopie, Mikrogele und Mikroemulsionen.

Im Bereich von Life Science Chemistry wird Proteinkristallographie betrieben sowie Sulfatasen, lysosomale Hydrolasen und Membrantransport untersucht. Ein Schwerpunkt in diesem Bereich sind bioorganische und biokatalytische Themen in Gruppen der Organischen Chemie, die auch von biochemischen Gruppen in der Fakultät für Chemie bearbeitet werden.

Die Gasphasen- und Atmosphärenchemie befasst sich mit Verbrennungsprozessen, atmosphärischen Aerosolen und Eisbildung. Ein EU-weites Alleinstellungsmerkmal ist das von der DFG geförderte Gerätezentrum „Gas-Elektronenbeugung und Strukturaufklärung von kleinen Molekülen“ (GED@BI, N. Mitzel).

Der Bereich Public Understanding of Science widmet sich schwerpunktmäßig der Forschung zur Vermittlung von Chemie im frühen Kindesalter.

Wie die Universität Bielefeld insgesamt zeichnet sich auch die Fakultät für Chemie durch ausgeprägte Interdisziplinarität aus. Im Schwerpunkt Molekül-basierte Materialien bestehen intensive Kooperationen mit Physikern der Universität Bielefeld.

Der Themenbereich Life Science Chemistry wird gestärkt durch Zusammenarbeiten mit der Fakultät für Biologie, der Technischen Fakultät und dem CeBiTec.
Das „Centrum für Molekulare Materialien“ CM2 (Koordinator B. Hoge), eine wissenschaftliche Einrichtung mit Gruppen aus Chemie und Physik, wurde gegründet, um technisches Know-how industrieller Kooperationspartner mit aktuellen Erkenntnissen universitärer Grundlagenforschung zu verbinden.
Jede Arbeitsgruppe forscht zusätzlich in nationalen und internationalen Kooperationsprojekten.


Aus den Arbeitsgruppen 


47
Three-Fold Scholl-Type Cycloheptatriene Ring Formation around a Tribenzotriquinacene Core: Toward Warped Graphenes
An unprecedented 3-fold Scholl-type cycloheptatriene ring formation around a tribenzotriquinacene core is realized, producing a polyaromatic arene with a wizard hat-shaped structure. The presence of three 3,4-dimethoxyphenyl rings at the C-1, C-4 and C-8 positions of the tribenzotriquinacene skeleton is crucial to the success of this transformation.
H.-W. Ip, C.-F. Ng, H.-F. Chow and D. Kuck, J. Am. Chem. Soc. 2016, 138, 13778–13781. [DOI: 10.1021/jacs.6b05820]


18
The efrapeptin family of peptide antibiotics produced by the fungus Tolypocladium niveum, and the neo-efrapeptins from the fungus Geotrichum candidum are inhibitors of F1-ATPase with promising antitumor, antimalaria, and insecticidal activity. They are rich in Cα-dialkyl amino acids (Aib, Iva, Acc) and contain one β-alanine and several pipecolic acid residues. The C-terminus bears an unusual heterocyclic cationic cap. The efrapeptins C—G and three analogs of efrapeptin C were synthesized using α-azido carboxylic acids as masked amino acid derivatives. All compounds display inhibitory activity toward F1-ATPase. The solution conformation of the peptides was investigated with electronic CD spectroscopy, FT-IR spectroscopy, and VCD spectroscopy. All efrapeptins and efrapeptin analogs were shown to adopt helical conformations in solution. In the case of efrapeptin C VCD spectra proved that a 310-helix prevails. In addition, efrapeptin C was conformationally studied in detail with NMR and molecular modelling. Besides NOE distance restraints, residual dipolar couplings (RDC) observed upon partial alignment with stretched PDMS gels were used for the conformational analysis and confirmed the 310-helical conformation.
S. Weigelt, T. Huber, F. Hofmann, M. Jost, M. Ritzefeld, B. Luy, C. Freudenberger, Z. Majer, E. Vass, J.C. Greie, L. Panella, B. Kaptein, Q.B. Broxterman, H. Kessler, K. Altendorf, M. Hollósi, N. Sewald, Chem. Eur. J. 2012, 18, 478–487.


Alle GDCh-Vorträge

CM2


Magicbullet European Training Network MAGICBULLET


Core Facility



FOR 945

Nanomagnete: von der Synthese über die Wechselwirkung mit Oberflächen zur Funktion