Peptidomimetics

Multivalency Increases the Binding Strength of RGD Peptidomimetic-Paclitaxel Conjugates to Integrin \(\alpha_v\beta_3 \)

André Raposo Moreira Dias, [a] Arianna Pina, [a] Alberto Dal Corso, [a] Daniela Arosio, [b] Laura Belvisi, [a, b] Luca Pignataro, [a, b] Michele Caruso, [c] and Cesare Gennari* [a, b]

DOI: 10.1002/chem.201703093
Abstract: This work reports the synthesis of three multimeric RGD peptidomimetic-paclitaxel conjugates featuring a number of $\alpha_v\beta_3$ integrin ligands ranging from 2 to 4. These constructs were assembled by conjugation of the integrin $\alpha_v\beta_3$ ligand cyclo(DKP-RGD)-CH$_2$NH$_2$ with paclitaxel via a 2’-carbamate with a self-immmolative spacer, the lysosomally cleavable Val-Ala dipeptide linker, a multimeric scaffold, a triazole linkage, and finally a PEG spacer. Two monomeric conjugates were also synthesized as reference compounds. Remarkably, the new multimeric conjugates showed a binding affinity for the purified integrin $\alpha_v\beta_3$ receptor that increased with the number of integrin ligands (reaching a minimum IC$_{50}$ value of 1.2 nM for the trimeric), thus demonstrating that multivalency is an effective strategy to strengthen the ligand–target interactions.

Nature makes widespread use of multivalency to create strong yet reversible interactions. In multivalent interactions, several covalently linked ligands bind to clustered receptors, with multiple simultaneous molecular recognition interactions. As a result, bond reinforcement occurs and strong overall binding is achieved even when the individual interactions are weak. In the last decade, multimeric ligands of cancer-overexpressed receptors have been exploited for different kinds of tumor targeting, such as drug-targeting,[2] imaging,[3] and the use of ‘theranostic’ compounds.[4] In this context, multivalency can be envisaged as a way to improve the tumor-targeting performance of small molecule–drug conjugates (SMDCs), with the final goal of approaching the efficiency of the antibody–drug conjugates (ADCs).[5] Indeed, SMDCs possessing multivalent ligands are expected to display enhanced affinity and selectivity for the corresponding tumor receptors, thus promoting more effectively drug accumulation at the diseased tissue.

In recent years, much research effort has been devoted to the development of SMDCs targeting integrin $\alpha_v\beta_3$, a transmembrane heterodimeric receptor that is overexpressed on the cell surface of various tumor types (e.g., melanoma, glioblastoma, ovarian, prostatic, and breast cancer).[6] We entered this research field reporting a low-nanomolar $\alpha_v\beta_3$ integrin ligand (compound 1 in Figure 1) featuring the Arg-Gly-Asp (RGD) sequence (i.e., the binding epitope of the endogenous ligand for this integrin) connected to a trans-diketopiperazine (DKP) scaffold.[7] Remarkably, ligand 1 was found to be 33 times more selective for integrin $\alpha_v\beta_3$ with respect to integrin $\alpha_v\beta_5$ in competitive binding assays with biotinylated vitronectin (IC$_{50}$ = 4.5 ± 1.1 nM vs. 149 ± 25 nM).[8] Later on, the functionalized ligand cyclo(DKP-RGD)-CH$_2$NH$_2$ (compound 2 in Figure 1), featuring a primary amino group, was prepared.[9] The latter compound was conjugated to different payloads, such as the anticancer drug paclitaxel (PTX, compound 3 in Figure 1),[10] a pro-apoptotic SMAC (second mitochondria-derived activator of caspases) mimetic compound[11] and an antiangiogenic VEGFR-targeting decapentapeptide,[12] by means of ester and amide linkages. As a further step, to achieve selective release of PTX in the cancer cell environment, we synthesized conjugates of the cyclo(DKP-RGD)-CH$_2$NH$_2$ ligand 2 with paclitaxel (3) via a 2’-carbamate with a self-immmolative spacer and the lysosomally cleavable linkers (Val-Ala and Phe-Lys dipeptide sequences).[13] Notably, despite its remarkable size, the cyclo(DKP-RGD)-Val-Ala-PTX conjugate 4 (Figure 1) retained a very good affinity for the $\alpha_v\beta_3$ integrin receptor (IC$_{50}$ = 13.3 ± 3.6 nM in competitive binding assays with biotinylated vitronectin) and displayed fairly effective integrin targeting.[14a]

Herein, we report our initial efforts to exploit multivalency for increasing the binding affinity of RGD ligands to integrin $\alpha_v\beta_3$. Thus, we set to synthesize a series of compounds (Figure 2) in which PTX is conjugated to one (compounds 5 and 6), two (compound 7), three (compound 8), and four cyclo(DKP-RGD) ligands (compound 9), respectively. In this con-

![Figure 1](image_url)

Figure 1. Molecular structures of the $\alpha_v\beta_3$ integrin ligand cyclo(DKP-RGD) 1, its functionalized analogue 2, the cytotoxic drug paclitaxel (PTX) 3, and the SMDC cyclo(DKP-RGD)-Val-Ala-PTX 4.

[a] A. Raposo Moreira Dias, A. Pina, Dr. A. Dal Corsa, Prof. L. Belvisi, Dr. L. Pignataro, Prof. C. Gennari
Università degli Studi di Milano, Dipartimento di Chimica
Via C. Golgi 19, 20133, Milan (Italy)
Fax: (+39) 02-5031-4072
E-mail: luca.pignataro@unimi.it
cesare.gennari@unimi.it

[b] Dr. D. Arosio, Prof. L. Belvisi, Prof. C. Gennari
CNR, Istituto di Scienze e Tecnologie Molecolari (ISTM)
Via C. Golgi 19, 20133, Milan (Italy)

[c] Dr. M. Caruso
Nerviano Medical Sciences, Viale Pasteur, 10
20014 Nerviano (Italy)

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/chem.201703093.

© 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
text, the new conjugates were designed to release PTX intracellularly by means of a self-immolative spacer (PABC-N,N'-dimethylethylenediamine) and a lysosomally cleavable dipeptide linker (Val-Ala), which connects PTX to a multivalent scaffold (Figure 2A). The latter, in turn, is linked to the cyclo[DKP-RGD] ligand(s) via triazole group(s) deriving from copper-catalyzed azide-alkyne cycloaddition (CuAAC “click” reaction). To connect the cyclo[DKP-RGD] ligands to the scaffolds, tetraethylene glycol (PEG-4) spacers were employed in order to make the conjugates more water-soluble and flexible, which is reported to facilitate the binding to the receptor (Figure 2A). The choice of short-sized PEG spacers was made with the aim of minimizing the formation of bulky loops that can interfere with binding.

With the exception of commercially available 4-pentynoic acid (10) and of the previously reported acid 11, the alkyn scaffolds used for the synthesis of conjugates 5–9 (Figure 3) are new compounds, whose synthesis and characterization are described in the Supporting Information. The synthesis of conjugates 5–9 was carried out according to a common synthetic strategy, shown in Scheme 1. The bis-protected compound 15, featuring the Val-Ala linker connected to the para-aminobenzyl carbamate (PABC)-N,N'-dimethylethylenediamine self-immolative spacer, was prepared according to a methodology reported by our group. Compound 15 was Fmoc-deprotected and the resulting crude free amine was coupled to scaffolds 10–14, affording the corresponding amides 16a–e in good yields (71–92%). Compounds 16a–e were treated with trifluoroacetic acid for Boc removal and then reacted with 2-(4-nitrophenoxycarbonyl)paclitaxel 17, affording carbamates 18a–e again in satisfying yields (66–93%).

Figure 2. A) General structure of the conjugates. B) Molecular structures of monomeric conjugates (5, 6). C) Molecular structures of multimeric conjugates (7–9).

Figure 3. Mono- and polyalkyne scaffolds used for the preparation of conjugates 5–9.
nally, alkyne 18a–b and polyalkynes 18c–e were subjected to CuAAC reaction with cyclo[DKP-RGD]-PEG-azide 19, prepared in two steps from cyclo[DKP-RGD]-CH$_2$NH$_2$ (2) as described in the Supporting Information. This reaction gave the target compounds 5–9 in good to excellent yields (62%–quantitative).

To assess the effect of ligand multipresentation on conjugates’ binding properties, (cyclo[DKP-RGD])$_n$-Val-Ala-PTX (n = 1–4) conjugates 5–9 were examined in vitro for their ability to inhibit biotinylated vitronectin binding to the purified $\alpha_\text{v}$$\beta_3$ receptor and were compared to the unconjugated ligand 1. The screening assays were performed by incubating the immobilized integrin receptors with solutions of the RGD-PTX conjugates at different concentrations (10$^{-12}$ to 10$^{-5}$ M) in the presence of biotinylated vitronectin (1 μg mL$^{-1}$) and measuring the concentration of bound vitronectin (Figure 4). The IC$_{50}$ values are listed in Table 1.

As can be observed in Table 1, conjugates 5 (entry 1) and 6 (entry 2), featuring only one cyclo[DKP-RGD] ligand moiety, displayed slightly reduced binding ability (3-fold and 6-fold increase of IC$_{50}$, respectively) compared to the free ligand 1 (entry 6). To our delight, when the number of cyclo[DKP-RGD]

![Figure 4](https://www.chemeurj.org/graphics/14413/1.png)

Figure 4. Inhibition of the binding of biotinylated vitronectin to $\alpha_\text{v}$$\beta_3$ integrin. A representative curve was selected for each compound. X-axis shows the concentration of the tested compounds 1, 5–9 in logarithmic scale; Y-axis shows the percentage of inhibition of the binding of biotinylated vitronectin in the presence of the tested compounds. Experimental data were fitted with the software, as described in the Supporting Information.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cpd</th>
<th>Structure</th>
<th>$\alpha_\text{v}$$\beta_3$ IC$_{50}$ [nM]</th>
<th>Rp/n[n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>cyclo[DKP-RGD]-Val-Ala-PTX (aliphatic scaffold)</td>
<td>14.8 ± 3.9</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>cyclo[DKP-RGD]-Val-Ala-PTX (aromatic scaffold)</td>
<td>27.3 ± 9.8</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>(cyclo[DKP-RGD])-Val-Ala-PTX</td>
<td>4.0 ± 0.1</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>(cyclo[DKP-RGD])-Val-Ala-PTX</td>
<td>1.2 ± 0.5</td>
<td>7.6</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>(cyclo[DKP-RGD])-Val-Ala-PTX</td>
<td>1.3 ± 0.3</td>
<td>5.3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>cyclo[DKP-RGD]</td>
<td>4.5 ± 0.1</td>
<td>-</td>
</tr>
</tbody>
</table>

[a] IC$_{50}$ values were calculated as the concentration of compound required for 50% inhibition of biotinylated vitronectin binding, as estimated by GraphPad Prism software. All values are the arithmetic mean ± the standard deviation (SD) of triplicate determinations. (b) The relative potency Rp is obtained by dividing the IC$_{50}$ of the monovalent reference 6 by the IC$_{50}$ of each multivalent conjugate. Rp/n values were calculated by dividing Rp of the multivalent conjugates by the valency (n) of each conjugate. [22]

![Scheme 1](https://www.chemeurj.org/graphics/14413/2.png)

Scheme 1. Synthesis of (cyclo[DKP-RGD])$_n$-Val-Ala-PTX (n = 1, 2, 3, or 4) conjugates 5–9. Reagents and conditions: a) 1) piperidine (5 equiv), DMF, RT, 2 h; 2) acids 10–14 (1.5 equiv), HATU (1.7 equiv), HOAt (1.7 equiv), iPr$_2$NEt (4 equiv), DMF, RT, overnight; b) 1) 1:2 TFA/CH$_2$Cl$_2$, 45 min; 2) 17 (1.5 equiv), iPr$_2$NEt (4 equiv), DMF, RT, overnight; c) 1) 1.5 equiv), CuSO$_4$·5H$_2$O (0.5 equiv), sodium ascorbate (0.6 equiv), 1:1 DMF/H$_2$O, 30 °C, overnight; d) 18c (1 equiv), 19 (3 equiv) CuSO$_4$·5H$_2$O (1 equiv), sodium ascorbate (1.2 equiv), 1:1 DMF/H$_2$O, 30 °C, overnight; e) 18d (1 equiv), 19 (3.6 equiv) CuSO$_4$·5H$_2$O (1.5 equiv), sodium ascorbate (1.8 equiv), 1:1 DMF/H$_2$O, 30 °C, overnight; f) 18e (1 equiv), 19 (4.8 equiv) CuSO$_4$·5H$_2$O (2 equiv), sodium ascorbate (2.4 equiv), 1:1 DMF/H$_2$O, 30 °C, overnight.
lignand moieties in the conjugates increases from 1 to 3, a clear trend of IC_{50} decrease can be observed (entries 1–2 → 3–4), to reach an IC_{50} lower than that of the free ligand 1 (entry 4 vs. entry 6). However, with the trimeric conjugate 8 a plateau is reached (entry 4, Rp/n = 7.6), and no further improvement is obtained when an additional cyclo(DKP-RGD) lignand is present (conjugate 9, entry 5, Rp/n = 5.3). These data demonstrate that multiple presentation of the integrin lignand leads to a significant improvement of the binding affinities, although this effect seems to be partially balanced by the increasing steric bulk.

In conclusion, five new conjugates (5–9), featuring a number of cyclo(DKP-RGD) α_{i}β_{j} integrin lignands ranging from 1 to 4 have been synthesized using a straightforward modular approach. Binding tests carried out with the purified receptor of integrin α_{i}β_{j} (displacement of biotinylated vitronectin) show that the IC_{50} decrease with increasing number of lignand moieties, down to a plateau reached with the trimeric conjugate 8 (IC_{50} = 12.2 nm, Rp/n = 7.6). These results demonstrate that multivalency is a valuable tool to enhance the integrin targeting performance of conjugates, and may represent a possible way to improve the in vivo tumor-targeting properties of RGD conjugates, which are often suboptimal. Moreover, it should be noted that the new lignands are also suitable for conjugation to different kinds of ‘smart’ linkers such as those amenable to extracellular cleavage (for example, by matrix metalloproteinases or elastases).

Experimental Section

Cyclo(DKP-RGD)-CH_{2}CNH_{2} (2).[9] Fmoc-Val-Ala-N-[4-[[[(N-Boc-N,N-dimethylthelylenediamine)carboxyloxy)methyl]phenyl] (15)[12] and 2-(4-nitrophenoxycarbonyl)paclitaxel (17),[12] were prepared according to literature procedures, and their analytical data were in agreement with those already published. The synthetic procedures for the preparations of compounds 5–9 and 11–14 are reported in the Supporting Information, along with the ^1H NMR and ^13C NMR spectra, the HPLC traces and HRMS spectra. The inhibition assays of biotinylated vitronectin binding to the α_{i}β_{j} receptor for compounds 1 and 5–9 are reported in the Supporting Information.

Acknowledgements

We thank the University of Milan for PhD fellowships (to A.P. and A.D.C.) and the European Commission (Marie Sklodowska-Curie ITN MAGICBULLET 642004) for a PhD fellowship (to A.R.M.D.) and financial support. We also gratefully acknowledge the Ministero dell’Universita e della Ricerca (PRIN 2015 project 20157WWSEH) for financial support.

Conflict of interest

The authors declare no conflict of interest.

Keywords: antimutator agents · click chemistry · integrins · multivalency · peptidomimetics

[13] For multivalent RGD conjugates targeting integrin αvβ3, see refs. [2a,b,d,f,g,i] and [3].

Manuscript received: July 5, 2017
Accepted manuscript online: August 17, 2017
Version of record online: September 6, 2017