Abstracts of Contributions

Workshop

Intercorporeality in Sports

Convenors:
Christian Meyer and Ulrich v. Wedelstaedt (Bielefeld, GER)

September 10 - 11, 2013

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Collective Bodies and 'Umgangsleiber'. Team Building in Sports</td>
<td>Thomas Alkemeyer & Kristina Brümmer, Oldenburg</td>
</tr>
<tr>
<td>6</td>
<td>Distance Running as a Joint Accomplishment: an ethnomethodological view</td>
<td>John Hockey, Gloucestershire & Jacquelyn Allen-Collinson, Lincoln</td>
</tr>
<tr>
<td>9</td>
<td>Between a rock and a hard place: an ethnomethodological study of rock climbing members’ communicative and related sensory practices</td>
<td>K. Neil Jenkings, Newcastle</td>
</tr>
<tr>
<td>15</td>
<td>The Intercorporeal Manufacturing of Ballet Bodies in Training</td>
<td>Sophie Merit Müller, Mainz</td>
</tr>
<tr>
<td>18</td>
<td>Teaching Bodies: Visual and somatic communication in Martial Arts</td>
<td>Larissa Schindler, Mainz</td>
</tr>
<tr>
<td>21</td>
<td>Modification of actions by sound</td>
<td>Gerd Schmitz & Alfred Effenberg, Hannover</td>
</tr>
<tr>
<td>23</td>
<td>Forming Bodies? Producing Embodied Knowledge as Coordinated Communication in Trampoline Jumping</td>
<td>Ajit Singh, Bielefeld</td>
</tr>
<tr>
<td>27</td>
<td>Visual and motor components of superior action prediction abilities in sport</td>
<td>Cosimo Urgesi, Udine</td>
</tr>
<tr>
<td>32</td>
<td>Controlling others: Rugby referee talk on the field</td>
<td>Elaine W. Vine, Wellington</td>
</tr>
<tr>
<td>36</td>
<td>Seeing of and Seeing in. Embodied visual practices of lifestyle sport athletes and the limits of ethnomethodological studies of bodily routines</td>
<td>Niklas Woermann, Odense</td>
</tr>
<tr>
<td>47</td>
<td>Kinesthetic Gestalts: The merging of moving bodies in handball and boxing</td>
<td>Christian Meyer & Ulrich v. Wedelstaedt, Bielefeld</td>
</tr>
</tbody>
</table>
“Collective Bodies and ‘Umgangsleiber’. Team Building in Sports“

1. Introduction

Sport practices as team sports and sport acrobatics, which build on the interactions of different co-actors, are paradigmatic examples of practices of team-building. Training sessions have as their main objective the production of collective competences and co-operation structures. From a praxeological perspective, team sport and sport acrobatics – our presentation will focus on the latter – constitute forms of social practice characterized by corporeality, uncertainty and an omnipresence of the possibility of failure (Alkemeyer 2012). That is why the successful execution of these kinds of social practice depends on practical abilities of coordinating single actions, of realizing and correcting mistakes instantaneously, as well as of anticipation and self-organization. These abilities are not only cognitive competences, but also – and foremost – competences of a socialized, educated and attuned body that with reference to Wittgenstein and Gebauer (2009) we label as ‘Umgangskörper’ and ‘Umgangsleiber’. We will come back to these terms and their analytic distinction later on.

2. Sports and the body form a praxeological perspective

The abilities and dispositions of these trained bodies (Körper)/lived bodies (Leiber) are always directed towards the tasks and normative expectations of the collective practice in which they are actualized and required. From a praxeological perspective, team sports and the figures of sport acrobatics constitute supra-individual figurations brought forth in a continuous process of mutually initiating and limiting actions (Elias 1970; Elias/Dunning 2003). These figurations span all individual actions and produce their own orders as well as their embodied agents. They can neither be traced back to pre-existent structures nor to the intentions and motives of pre-practically given subjects.

One praxeological premise consists in the de-centering of the subject. Much less attention, however, is given to the necessity of de-centering the body: On the one hand, the body still seems to be considered as something pre-existent to its manipulation and formation; on the other hand, it is assumed that it is only in practices that the body comes to be formed and gains an intelligible shape. It remains unclear whether ‘the body’ is used as a ‘thin’ and purely formal term or as a ‘thick’ term which is meant to refer to the culturally specific reality of empirical bodies, or whether it is used as a label for some ‘raw material’ in Reckwitz’ (2006: 40) sense of an ‘organic substrate’ out of which empirical bodies come to be shaped in practices.

In order to avoid a creationistic conceptualization of practice, it has to be admitted that in practices something can only be shaped that is in one way or the other already given. Concerning the body, this implies the logical presupposition of elements that are there to accommodate in a given practice the observable social form of a body whose gestures and performances can be perceived and understood as appropriate by other participants. If these in one way or the other given elements come to be labeled by the term of the body, this implies the conceptualization of the body as a pre-practically existent and shaped entity, an entity of which it has to be assumed at the same time is not observable because bodies from a praxeological perspective only emerge in practices and are therefore only observable as socially formed bodies.

In order to avoid this aporia, we suggest not to term this given something ‘the body’ and hence suggest its pre-practical unity, but to rather conceptualize it in terms of irregular, undefined and undefinable dispositions which – as the medium of practices – are only observable and available in their practice-specific shapes. Yet, we are not so much interested in what these bodies are, but rather in how they are produced in training processes, and which importance they can be attributed for the (re-)production of agency with in a social practice. In this sense, we do not understand dispositions to be invisible psychic or incorporated structures.
which constitute the occult basis for specific performances, as implied by some of Bourdieu’s formulations (Bourdieu 1987). Instead, we would like to follow Gilbert Ryle (1969) and perceive of dispositions as potentials or repertoires that can be selectively activated within a given practice. In this view, dispositions allow for certain performances provided that they are activated, actualized or mobilized within the supra-individual, practical nexuses of doings. From this perspective, dispositions are not to be understood as abilities that determine particular activities in a causal manner and that can be precisely identified and labeled. Rather, they should be regarded as a diffuse bundle of heterogeneous and un-shaped abilities, skills, habits, inclinations, feelings and affects whose activation, actualization and concrete shaping is bound to certain practical situations, infrastructures and socio-material arrangements (e.g., of training sessions). As potentials and repertoires, they can come to be realized and performed within diverse kinds of practices and by different carriers. In these cases, dispositions step from the backstage to the front-stage, where – according to the demands of a given practice – they come to be interrelated and organized in such a way that they constitute a bodily order characteristic for this very practice.

Following Gunter Gebauer’s reconstruction of Wittgenstein’s anthropology, we label this kind of bodily order ‘Umgangskörper’. Umgangskörper are bodies, whose dispositions and movement repertoires have been shaped according to the demands of a certain social game. It is only in this shape that they emerge as intelligible bodies. Umgangskörper have been trained and attuned in such a way that they apply only those of their diverse dispositions that are required by a given practice and which are accepted as conforming to its rules and norms. The term Umgangskörper thus refers to a body whose parts, movements and dispositions have become interrelated and organized in such a way that its activities meet the practical and normative requirements of the very game that they come to be engaged in. In the Umgangskörper, parts of the body, movements, habits, feelings, inclinations and skills come to be directed towards the supra-individual intentionality or – as Theodore Schatzki (2002) says – teleoffective structure of a given social game. It is only in this orientation that they come to be integrated into a unity and that the Umgangskörper obtains a specific intelligibility and accountability: It is in its practical engagement that the Umgangskörper emerges as a meaningful, identifiable, understandable and describable entity. Hence, as much as the motives and intentions of acting subjects do not exist independently of the social practices that they refer to, bodies only obtain social existence in practice- or game-specific movements, postures and gestures. Subjects and bodies only exist as re-configurations or re-dispositions of certain repertoires of movements and dispositions pertinent to the intentions, motives and aims of a social practice.

3. Individual and collective Umgangskörper/Umgangsleiber in sport acrobatics – a training session

In the next step, we will use an empirical example from sport acrobatics to examine the gradual production of a collective Umgangskörper composed of different individual Umgangskörper. The case constitutes an example of the training of a stretched somersault which involves six human participants (one girl who has to perform the salto, four girls that throw the first one into the somersault and have to catch her after the performance of the somersault, and the trainer) as well as two non-human ones (a gym mat and a vault box). For the analysis of the corresponding video, we will focus on the one hand on how the individual body of the somersault-performing girl becomes attuned to the demands of the practice by bodily contact and touch as well as verbal instructions and corrections. On the other hand, we will focus on the practices of training that aim at the formation of a collective body of performance (kollektiver Vollzugskörper) out of the different individual bodies involved. We will pay particular attention to the interactions that take place between the girl performing the somersault and the trainer as well as to the interactions that take place between her and the other four girls, and that unfold as an intertwining of bodily and verbal elements, movements, empractical sayings (Bühler 1999), explicit reflections, etc.

Based on the analysis of the video, we would like to discuss the analytic differentiation of the concepts ‘Umgangskörper’ and ‘Umgangsleib’. Our suggestion to introduce the term of the Umgangsleib is based on the insight that the practices of training observed do not only mobilize and form parts of the body and movements. Rather, the practices of training also involve processes of reflexive communication and learning that require and actualize specific abilities to perceive, to feel and to sense. Within the recent debates about the sociology of the body, these abilities have been primarily labeled as ‘body knowledge’, designating a pre-reflexive and tacit knowledge of the body (Hirschauer 2008). The techniques (e.g., of explaining, demonstrating, repeating)
that we identify as parts of the practices of training in the video aim at the generation and explication of this very kind of ‘knowledge’.

An Umgangskörper that is capable of performing intelligent actions is not only to be understood as a body whose movements have taken on a particular social form. It also should be understood as a body prepared for becoming engaged in a given practice – or more specifically: for becoming engaged in such a way that the practice will ideally succeed. As such, the Umgangskörper exceeds physical limitations: it extends into its environment and into the future: i.e., it integrates the ‘Mitwelt’ of the co-actors into its “space of muscle-sense” (‘Muskelgefühlsraum’; Wittgenstein) and has developed a feeling for its position in the time-space of collective practice. Furthermore, it is able to vary routinized body techniques according to the demands of different situations and to correct or adjust its movements in actu and in such a way that they match the actions of the co-actors. In other words: An Umgangskörper is a body that has the capacities to reflexively self-regulate and self-organize according to practice-specific and situational demands. We hence suggest to make an analytical distinction between this side of the Umgangskörper that is only to be observed in an indirect way and the observable side, labeling the former ‘Umgangsleib’. Inevitably, the term Umgangsleib invokes the traditions of philosophical anthropology and phenomenology. However, we distance ourselves from these positions in as much as they consider the lived body (Leib) the pre-practical, natural and universal foundation of the cultural and historical existence of mankind. By way of contrast, we use the term Umgangsleib to designate a specific, learnt and socially constructed modality of the Umgangskörper. This modality concerns the Umgangskörper in its phenomenologically graspable function as an embodied organ of practice-specific perceptions, orientations and capacities of self-organization. Understood as such an organ, its perceptions and senses are directed towards those attributes, parts and zones of the Mitwelt (i.e. co-actors, situations and the like) and of the own body which are (or are labeled and regarded as) relevant for acting within a given practice.

4. Conclusion

The term Umgangsleib could help to make observable and terminologically graspable those phenomena that – even though they are difficult to grasp and tend to be ignored by sociologists - are central for the co-constitutive processes of the practical emergence of social orders (or: figurations) and its embodied actors (or: subjects). The introduction of the term Umgangsleib promises the potential to correct the mentalism of traditional action theories as well as the reductionist understanding of the body, characteristic of those praxeological approaches that are indeed interested in the body, but mainly con-ceptualize it as a machine processing in a routine mode. The term Umgangsleib empha-sizes the fact that the abilities of a socialized Körper-Leib to perceive, understand, reflect and self-organize are as important for the capacities to play along in a given social practice as are habitualized body techniques and movement schemas. At the same time, the term brings into view that Umgangskörper do not only constitute recruitable instruments for practices, but that they are also capable of reflexive, flexible and creative actions in a game and hence consolidate the agency of a subject that is only produced in practices. By drawing attention to the fact that the trained and socialized senses of the Leib (Spürsinn) expand into the environment relevant for the execution of a practice, the term can contribute to a specification of the concept of intercorporeality. The trainer, for example, can only successfully instruct and correct the acrobats’ movements under the condition that he is capable of virtually taking part in their movements on the basis a practical knowledge or feeling (Alkemeyer 2011). Also the four girls who have to throw the fifth into the somersault and then catch her can only do so by virtually taking part in her movement. Human participants’ intercorporeality is thus not limited to situations of direct physical contact, but also involves a collectively shared feeling for the common movement in which all the participants participate in their very own ways. That said, the concept of the Umgangsleib might help to overcome a shortcoming of the term intercorporeality which is to take as a starting point for the conceptualization of practices and their spaces of shared attention isolated bodies. From our perspective, both concepts – that of the Umgangskörper on the one and that of the Umgangsleib on the other hand – have to take as their starting points common practice which rather than intercorporeality constitutes a supra-individual Körperlichkeit/Leiblichkeit that engage single (individual) dispositions as Umgangskörper/Umgangsleiber.

Contrary to the game-specifically shaped movements of the Umgangskörper, the practical abilities of the Umgangsleib to understand and sense are not directly observable. It is true that biomechanic and sensomotoric approaches claim to be able to make feedback loops between neural and muscular stimuli
measureable. Within ethnographic/praxeographic approaches, however, these abilities can only be assessed a posteriori via the corresponding activities. As in the case of dispositions in Ryle’s understanding, their existence has to be imputed in order to account for the intelligent actions of an Umgangskörper and to avoid the risk of falling back into behaviorism. Nevertheless, the terminological differentiation of Umgangskörper and Umgangsleib runs the risk of re-producing dualisms of outside and inside, material and immaterial, psychic and physical unless it is taken into account that the Umgangsleib constitutes a cultural-particular rather than a natural-universal entity.

Bibliography

Distance Running as a Joint Accomplishment: an ethnomethodological view

Whilst there exists a substantial literature focused upon abstract theorizations of sport, at present there is little ethnographic work within the sociology of sport on the mundane practices of actually 'doing' sport. In sum, the phenomenological ground of 'how' sport is accomplished remains largely uncharted territory for researchers (Allen-Collinson 2009, Haldrup & Larsen 2006, Hockey & Allen Collinson 2007, Sparkes 2009). This lacuna applies both to the phenomenology of the lived sporting body and to the embodied interaction that occurs between participants as they do sport. In order to address this lacuna, this presentation offers an in-depth analysis of how training together for the sport of distance running constitutes a joint accomplishment by us as distance runners. Here we focus specifically upon the sensory and interactional work, which, for us, are essential components in the experience of 'doing' running.

The theoretical foundation of the presentation lies in the social phenomenology of Alfred Schütz (1967), which focused upon how individuals sustain routine social life using a 'stock of knowledge at hand', in particular the mundane use of typifications, the common sense constructs that individuals use to order their social world on a moment to moment basis. In applying Schützian insights to the study of members’ methods for producing and reproducing everyday social order, Harold Garfinkel (1967) developed ethnomethodology, the study of members’ methods, their mundane practices for managing the social world. Adopting an ethnomethodological stance, our presentation portrays ‘how’ joint distance running training sessions are habitually accomplished.

The ethnographic data we present derive from a two-year collaborative autoethnographic/autophenomenographic research project, initially conceived as a research project on runners’ adaptation to athletic injury, and then broadened to examine the mundane and tacit knowledge held and practices undertaken by distance runners. The data were accumulated via participant observation and recorded in individual logs.

The presentation will sequentially examine and illustrate via data the interactional elements of the following themes: listening for the other, seeing the other, choosing running paths, taking the lead when running, and accomplishing training in public places. We conclude by pointing out the importance of mundane, embodied, and interactional practices that constitute the foundational elements of sport and which so far have generally been neglected analytically (Brekhus 1998). We also highlight the value of an ethnomethodological stance for engaging with the phenomenological ground of how sport actually gets done.

References

Allen-Collinson, J. (2009) Sporting embodiment: sports studies and the (continuing) promise of phenomenology, Qualitative Research in Sport and Exercise, 1 (3) 279-96.

Data to be presented – a selection (if not all) of the following.

A bit of a rough session for J. this evening. Lots of heat all day and the humidity just builds relentlessly, and lots of pollen too, so pretty tough conditions for distance running - particularly for someone with asthma. Up the slope by the tennis courts she was labouring hard, and I could hear her breathing much more heavily than normal when she usually just floats up quietly. By the time we got to the bottom of the park she was sucking in the oxygen desperately like she was racing, so I dropped the pace and she gave me a little smile and grateful nod. (Log 1)

Saturday morning and a well duff run for J. That good old Anglo Saxon F word erupted with passion every hundred metres or so. Still, it got him around 7 miles effectively enough, especially as he swore profusely about the cursed work leaving his legs dead for the running. We’re both exhausted from the overwork at the moment, fed up of how it leaves us with nothing for the running. I know well by now that it’s best for me at such junctures to leave him to his own devices, whilst I hang just behind his shoulder and let him set the pace. (Log 2)

When J is running well, he is usually very compact, very neat, very efficient; he doesn’t waste any energy in unnecessary movement. Conversely, when he’s struggling, not running well, the contrast is immediately apparent. This morning was our last session of the week. He was really tired and his left arm, which normally swings straight front to back, started to swing across his body, trying to propel him forward against the fatigue. That always happens when he gets knackered, I’ve noticed (and remarked on it) over the years; it’s like a red flag, because I know other ‘symptoms’ will usually follow: his stride length shortening, he begins to stumble and sway around, then I know I really do have to ease off the pace a bit. Today, though, I was exhausted too, it’s been a long hard haul at the office and chalk face, we need some chill-down time... (Log 2)

It’s noticeable how we move apart and come back together again. J has always been better than me at downhill running, she’s more agile, supple and sure footed. It reminded me today when we were out running on the hills - she will go away from me in terms of pace, and plunge down (somewhat recklessly at times; but then she hasn’t had so many fell-running injuries!) regardless of how rough the ground is. I’m slower, more cautious, considered, in terms of descending and I always try to choose a path as smooth as possible. So, at the bottom, she will usually run a little circle or run on the spot whilst looking at the view, so as to meet up with me again. (Log 1)

I am hyper conscious of J’s form on particular occasions. She can suffer from exercise-induced asthma, which is an absolute drag and means that pollen and pollution levels can impact on her running day to day. She can be having a good week of training generally, and then suddenly, for example if we’re running in a traffic-heavy area with lots of exhaust fumes, she’s having a really bad time. That happened today and she ‘came off the back’ all of a sudden – drifting well behind me. I think it was probably all the thick pollen through the fields. I was particularly aware of it when we hit any hills, even small ones, where I am normally stronger. Once I realised she was struggling, I eased the pace a bit, making sure she could still run fairly close behind. (Log 1)

Running the park route during the long winter nights mostly depends on enough light filtering over to our route from the floodlights of the nearby athletics stadium. Usually it’s fine when athletics training is scheduled, but occasionally for some unknown reason the lights are not on at the allotted hour or they go off suddenly. When that happens we are unexpectedly plunged into darkness. Usually we run side by side where the route around the park edge is barely lit by adjacent street lamps, the arcs of which provide just enough illumination for us to be able to make out a faint pathway over the grass. That’s fine unless the floodlights go out suddenly, and we find ourselves at the section where the local mini golf course begins, with its deep, potentially ankle-twisting/breaking holes. Without the lighting, and without the summer flags in place to warn the unwary runner, the holes can be distinctly hazardous. My myopic eyes are pretty poor in the gloom, even in the twilight, so as we approach the golf hazard zone, J. often grunts, ‘On me!’ - meaning he should take the lead for that particular section and I must follow ‘obediently’ in his wake. Inevitably, that sometimes leads to a few strides of discontent, dispute and jostling, more often than not ritualised, sometimes jocular, together with pointed comments about my (woefully short of) 20/20 vision! (Log 2)
A tarmac path leads to the narrow, dark, dank underpass and on either side there is soft ground, often muddy and slippery, and also quite steeply angled and rough, difficult to run on. Normally we both run on the path. Often, however, there are individuals, linked couples or small groups of people walking there, strung right across our path. The usual behaviour, observed over many years, is for people to keep walking towards us either singly or in group formation, so that we are then forced to stride on to the soft, slippery ground on either side of them. It’s not as if we are unseen, or come across these people unexpectedly, because we have monitored their eye contact regularly. It seems clear that they are doggedly determined to plod on regardless, and not cede space to us. So we are now well used to predicting their behaviour and therefore move on to the soft ground. Sometimes, though, we direct a quizzical look in their direction, just to challenge gently their presumptions! (Log 2)

Thinking about what happens when training, it’s become apparent that part of training together is being aware of what’s going on out there on the route. That awareness is for myself and also for J. We both have a litany of incidents when negative things have happened ‘out there’, so we monitor what is happening for each other. Sometimes she sees dodgy things developing faster than I do, and vice versa. I, for example, in my running time have had half a house brick dropped on my head from a railway bridge by a couple of under 10-year olds, been attacked by a young Doberman Pincher in a Nottingham park and been hit in the left ear by a heavy handbag swung by a female teenager - 19 miles into a 20 mile training session on a summer Saturday afternoon, crossing the George Street bridge in Newport! All occasions when I was not aware enough. J. has been grabbed at, lunged at, bitten by a dog that sneaked up behind her, hit accidentally but very hard with a cricket bat wielded by a young lad... That’s been hammered home, so there is now a perpetual surveillance by both of us, of what is approaching down the road... (Log 1)

On the park in the spring and golf is in ‘full swing’! Most of the time that’s fine as it’s families or adults participating. Sometimes though, like yesterday you get groups of teenagers playing. What they do, when the mood takes them, is to hit the ball directly at us or very near, often calling out ‘fore’ [meaning ‘watch out afore’] at the last minute and then breaking into collective sniggers if they detect any reaction at all from us, the more anxious we look, the better, it seems! So we watch, we monitor, we periodically look ahead when out training, particular along certain routes. It’s like a film unfolding, watching what’s building up; often you’ve seen the same scenario play in front of you countless times before, so you know what action is likely to occur... Whichever of us sees that kind of troublesome group first will then mutter: ‘idiots/dickheads to left/right/over there!’ , indicating to the other that it’s definitely advisable to follow a different trajectory. Avoidance is the usual favoured strategy as there is no point in confronting the kids if they start that kind of rubbish. Anyway, confrontation requires stopping the training and the momentum of the run, and also, more seriously, might mean being hit by a stingingly hard golf ball in the quads or somewhere even more vulnerable, with consequent time off training if the bruising is very severe. In sum: not worth the hassle! (Log 2)
K. Neil Jenkings, Newcastle

Between a rock and a hard place: an ethnomethodological study of rock climbing members’ communicative and related sensory practices

Whilst its origins may lie in romanticism and the quest for sublime experiences in wilderness and nature as both beautiful and dangerous, a romanticism still alive today, rock climbing constitutes serious recreational and sports activity. Rock climbing is the sub-cultural and locally specific and emergent experience of climbing as a practical sports activity where the focus is on individual and collaborative skill, fitness and cooperation with the aim of completion of increasingly difficult routes and grades up and across rock faces. This pushing oneself, and ones co-climber(s), to achieve ever more difficult and highly graded routes, often in frequently inclement and changeable environmental conditions, inevitably leads to occasions of difficulty, both anticipated and unanticipated, when one or more of the climbers are under intense pressure, indeed death and disability are not unknown. Different, climbing ‘games’ from bouldering, crag climbing, expedition to recent indoor synthetic rock climbing each have ‘rules’ and practices which mediate the activities and the communication practices which result in various types of pressures and intersubjective responses, both verbal and non-verbal.

The activity of rock climbing begins long before the climbers ascend the rock face, rock climbing as a planned activity with various logistical requirements. Climbing trips are ‘occasioned’ (Tolmie and Crabtree 2013) deciding where and what to climb is work in itself, how to get there, weather, getting equipment, time, and various forms distributed collaborative work. Plans of course get fine tuned once a trip is underway, they are negotiated into actual practice in situ through locally contingent organization. This is also true in planning to climb a route. When at the climbing venue much time is spent assessing the rock and assessing its potential affordances - good and bad. Frequently a guidebook is used to provide a description of the route and this may also provide information on potential ‘difficulties’ associated with the route. The climbers will use this information, and any other available sources, when looking at the route on the rock face and this includes feeling the rock itself prior to climbing, indeed frequently prior to the final decision to climb that particular route.

“Climbers feel the rock not just for to test for its solidity, but for the texture and ‘grain’ of the rock, so as to understand its affordance for ‘holds’ and when using ‘gear’ its ability to ‘take and hold’ climbing aids. Different types of rock, even of similar format shapes and angles, have different properties key to its climbing affordances.” (Jenkings 2013 p201)

Rock climbers engage intercorporeally with the rock, the rock provides information that the climbers use to assess their potential interaction with the rock, information which is also discussed with climbing partners. As Ken Liberman 2007 (p41) notes: “The environment is revealed in terms of the possibilities of the body’s “I can”; however, the agency here is not exclusively the human, it equally belongs to the earth. The landscape tells me where my legs can carry me, what is too far or too high.” Indeed he adds: “Climbers climb not to conquer mountains but to have the rocks speak to them.” (ibid p 42) What we are interested in is in the social manifestations of the intercorporeal interactions of rock climbers.

In rock climbing the ocular engagement with the environment, while important, is arguably secondary to the sense of touch, balance and various haptic practices especially once the ascent begins.

“When climbers climb they do not rely on sight alone, not even primarily, once on the rock climbers start to read the rock with their hands and feet. Assessing a hold by looking at it is not as good as actually placing your hands in it and ‘testing the hold’ via touch and even applying some body weight to it… So it is through the hands that the climber finds the route in the main, they literally feel their way up the rock reading the rock like Braille rather than a visual text.” (Jenkings 2013 p200-201)

This intercorporeal activity is not limited to the hands (and feet) on stone, the climber engages the surface rock through the use of specialist footwear, clothing, chalk on the hands, and often a whole battery of technical climbing aids such as ropes, nuts, pitons and camming devices and the guidebooks describing the route to be climbed. As Paul Barratt (2012), adding to the debate on the experience of places “not only as bodies but as complex assemblages” notes, “different roles and functions emerge and are negotiated between climber, crag and kit.” (p46) He argues that climbing is a sport activity where “networks of technologies subtly enact the climb through relations that are immanent to, and reinforced by, practice. The climb is an outdoor hybrid
assemblage comprised of the climber, objects and mundane technologies that enable the extension of human corporeal capacities” (p46)
These in combination with the immediate environment and ecology of the rock and their on-going phenomenal experiences provide many of the topics of the intersubjective collaboration and information communication, as ongoing accounts of their progress, at moments of intense pressure and immediately afterwards as informative accounts of moments of recently experienced difficulty to their co-climbers.

This paper, following Allen-Collinson and Hockey (2011) focuses not only on the ocular but forms of haptic sensory perception in sport, in this case as displayed and communicated by climbers in collaborative action. It takes an ethnomethodological based video-analytic ethnography approach, using video clips of rock climbers in collaborative action to describe their verbal and non-verbal communicative and intercorporeal practices at emergent moments of pressure and anticipation of pressure. The research is based upon participant and non-participant observation, interviews and video recordings of rock climbers at various climbing sites in the United Kingdom.

Bibliography

Barratt, Paul (2012), 'My magic cam': a more-than-representational account of the climbing assemblage. Area. 44:1, 46-53.

Data: The presentation will use the following and further similar data with video.

1. Transcript: Using a guidebook and ending up touching the rock.

<table>
<thead>
<tr>
<th>Time</th>
<th>Transcript</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:52</td>
<td>The grove itself up the green groove</td>
</tr>
<tr>
<td>00:56</td>
<td>Green grove [G keeps gaze on rock face]</td>
</tr>
<tr>
<td>1.26</td>
<td>Although its steep the continuation is severe (.)</td>
</tr>
<tr>
<td>1.32</td>
<td>‘walk like a dog’ is better than this one its got a steep finish (.)</td>
</tr>
<tr>
<td>1.32</td>
<td>There are holds up there at the end if you fancy</td>
</tr>
<tr>
<td>1.32</td>
<td>A groovy experience (0.2)</td>
</tr>
<tr>
<td>1.32</td>
<td>right</td>
</tr>
<tr>
<td>1.32</td>
<td>Er (.) “number nine (0.6) ‘everywhere’ (.) mild VS 4B” (0.2) goes up this er (.)</td>
</tr>
<tr>
<td>1.32</td>
<td>“climb the arête by the shallow groove on its left”, “on a ledge” (.)</td>
</tr>
<tr>
<td>1.38</td>
<td>So you go up this (0.4) {begins to point to wall – G moves backwards to align themselves with P – Key here is that the pointing activity of P is more complex with hand and finger flexations, i.e. more collaborative pointing than other general pointing}</td>
</tr>
<tr>
<td>1.38</td>
<td>Oh yeah (1.2) [P pulls finger in and hand down]</td>
</tr>
<tr>
<td>1.44</td>
<td>That’s the shallow groove</td>
</tr>
<tr>
<td>1.50</td>
<td>Doesn’t look easy like</td>
</tr>
<tr>
<td>1.56</td>
<td>Not much gear in that (.)</td>
</tr>
<tr>
<td>1.56</td>
<td>Might get a friend in the (0.2) corner there</td>
</tr>
<tr>
<td>1.56</td>
<td>Perhaps</td>
</tr>
<tr>
<td>1.56</td>
<td>? the rock, I mean you can see it there</td>
</tr>
<tr>
<td>1.56</td>
<td>Oh maybe maybe (.)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>23</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>G</td>
</tr>
<tr>
<td>29</td>
<td>P</td>
</tr>
<tr>
<td>30</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>P</td>
</tr>
<tr>
<td>35</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Transcript: Potential problems of water and reporting on the quality of a ‘hold’.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>D</td>
</tr>
</tbody>
</table>
| | | [D then wipes his hands on his trousers and looks at the rock and then using their right hand raise themselves into the standing position and looks at the ledge where they had previously put their hands. P inclines their body forward to look over D’s head at the rock which D is now inspecting. D glances up the rock to their left wipes their left hand on their clothes and puts hand in chalk bag before putting left hand back onto rock. During this P moved left and has leant over D and has put their hands on the rock at a point further up the ledge than D. D then lowers themselves onto the mat again. And remarking on the difficulty of the problem. P returns to their akimbo position while D, with left arm raised and hand on rock adjust themselves so as to put their feet on the rock face – while bottom remains on the ground. As soon as the feet are in place D begins a dynamic movement pulling on their left hand and pushing on their feet, bringing their body up and raising their right hand up over their head while inking to the left. P’s gaze follows the right hand. As D right hand gets a grip D drops his gaze to his feet while his right arm takes some of the strain of his body weight (his torso drops slightly). D then make stepping movements with is right foot then places left foot up and to the left while bringing right hand from underneath their body. As this happens P’s gaze follows to the left foot as they move closure to D’s body and their gaze move closer to D’s body and head. D’s hand moves up above their head (as does his gaze and P’s). D’s head then drops as he brings his right foot up. P’s arms move and his hands become positioned behind D’s torso. D’s right foot is placed higher up the rock, both their gazes are on the foot, and pulling on his arms D raises his left foot]
foot further up the rock, both their gazes move towards the rock nears D's right hand. D's head and body move upwards while P's gaze moves towards P left foot as he moves this to account for D's movement up and leftwards. P gaze moves back towards D's upper torso and D's left foot swings lower down and back onto the rock. D's left hand moves higher and onto the rock, P's gaze moves onto the left hand. D's head moves down and up as he moves his left hand again higher up the rock. P moves slightly backwards as D's body becomes more vertical. D's left hand take his body weight and his right foot comes off the rock, P's gaze moves towards the right foot then towards D's torso as D swings his torso 90 degrees hanging from one hand with left foot touching the rock, he swing back to the rock placing right hand and foot back on the rock. D then walks his right foot and then left foot towards the left up the rock, his body becoming more ‘crunched’ and then brings his right hand up to his left. P's gaze follows D's upper torso and hands, P's arms still in front of him in a 'ready' position. D the moves his body upwards and places his right hand slightly higher. P’s gaze drops to P's left and he steps back slightly and raises his gaze back to D as D lets his feet down the rock, looking at the footholds he is placing them in, he then places his left foot slightly higher up the rock before making a dynamic movement upwards with his left arm for a handhold. D then brings his right hand up to a parallel hold, swinging his right foot of the rock pulling himself upwards to look at the to of the rock to check for holds his body drops as he brings his left and right legs up under his body on the rock – P is still in a ‘ready’ or anticipatory stance, and only relaxes and takes his gaze away as D pulls himself safe onto the to of the rock.

8 P What’s that hold like (0.4)

9 D Oh a bomber
Sophie Merit Müller, Mainz

The Intercorporeal Manufacturing of Ballet Bodies in Training

Ballet, though being an art form, can also be considered as a high performance sport: Based on movement, ballet is dependent on highly trained athletic bodies with specific, very complex abilities — bodies in a state of constant ‘able preparedness’ allowing them to serve as the ‘instrument’ of a dancer and ‘material’ for the choreographer to create artworks. But in order to be able to work, the body must be worked on. The required abilities need practice, in the double meaning of the word. Practical training is situated alongside the choreographic rehearsals, in the framework of ballet class. Here, bodies are intentionally integrated into and kept in the practice in concerted self-instrumentation. They are formed by and according to the requirements of the practice.

Practicing as ‘body building’ is a social practice that depends largely on intercorporeality. This phenomenological term has been established in the social sciences as a notion of interaction as a bodily affair and an a non-mentalistic understanding of intersubjectivity (Crossley 1995, Csordas 2008 u. a.). As intended by Merleau-Ponty (1968), it is taken as an argument against the Cartesian separation of body and mind and the attribution of social action to the latter. In other words, the point of inter-corpo-reality is that social reality is going on between bodies. From a practice theory standpoint, this is self-evident (Schmidt 2012 u. a.): Here, the social is situated in practices, in bundles of intertwined “bodily doings and sayings” (Schatzki 2002: 72).

Yet, in this framework, the term intercorporeality can still add new insights when taken as activity. Doing intercorporeality, I suggest, involves first and foremost relating (inter). Participants relate to each other in what they do. Second, in these activities the participants between which relations are established are identified and practically involved as separable, distinguishable bodies (corpo). Lastly, this relating is aimed at establishing an understanding of what is going on (reality) that is taken as ‘shared’ and therefore situated ‘between’ the ‘bodies’ by the participants.

Drawing on the case of ballet class, I will explore how ballet bodies are manufactured, introducing four different intercorporeal activities: Molding, mirroring, spacing and dancing. My data material derives from my ethnographic study on ballet training and is narratively constructed based on participation as a professional ballet apprentice, observation, video material as well as formal and informal interviews. Anybody having had the briefest contact with ballet training will be able to recall the strict spatial order and the synchronous movements performed in a serious, solemn manner accompanied by piano music. Practicing in ballet class is situated alongside the choreographic rehearsals. Here, not a dance piece is rehearsed to be performed on stage, but rather a set of exercises executed. Class is divided into two main parts: In ‘barre’, exercises are done holding on to bars installed at the walls or set up on stands. The second set of exercises, ‘center’, usually takes place after the ‘barre’ and is done in space, facing the mirror.

At the barre, lots of ‘molding’ takes place. During the execution of an exercise and especially while the dancers hold the requested final pose at the end of each exercise, trainer and dance students ‘mold’ the students’ bodies:

The trainer stands directly behind me. She asks me to ‘pull up’. I lift my chest, but apparently that is not correct, for the trainer says: No, don’t only stick your ribs out, be tall, elongate your back, here! She grabs my ribcage with both hands and pulls it upwards. Then she pushes my upper back slightly forward with one hand while she pushes against my upper abdominal area with the other. My spine bends forward a little. Aha, so that is how ‘pulling up’ is supposed to be…Then she firmly strokes upward over my front and taps my lower abdominals repeatedly. I contract there as firmly as possible. Again she lifts my ribcage with both hands. Then she feels down my lower spine with two fingers. Don’t collapse, elongate more! she requests and I attempt to bring my ribcage in the pulled-up position she moved it in. I can feel my back, my abdominals and my rib muscles working ferociously. I try to keep everything the way it is and focus on it to memorize this exact sensation.

The student body is a clay-like, malleable substance here that is worked on to achieve the ‘right’ form.

How do body parts of the trainer (e. g. a hand) function as prostheses for yet uneducated and therefore temporarily useless body parts of the dance student (e. g. back muscles)? How does demonstration of sensation patterns (often taken as something ‘inside’ the body) work?
'Mirroring' is a completely different affair. It can be observed best whenever the trainer is participating in an exercise. Especially in center exercises, the trainer often joins in with the students if a combination is still new or specific aspects are to be demonstrated.

Since it is the beginning of the semester and I have not been in class last week, I am glad that the trainer dances the combination along with us. After marking it, I kind of know what the movement succession is, but don't feel really confident. We all stand facing the mirror, the music is playing. I look at the trainer's mirror image in front of me. I see her begin a fifth port de bras. Okay, I know how that works! I perform the port de bras as well, no longer watching the trainer, but engaging my head and eye focus into the movement. Coming back front from the port de bras, I immediately focus on the trainer's mirror image again. What next? I see her performing a tendu to the back which I simultaneously perform as well. My body does what I see her doing: My spine twists, my left arm moves upwards while my right arm moves to the side, my back leg leaves the ground, I arch my back... Ah, okay, this is forth arabesque... I check my own mirror image. Something looks different from how the trainer does it, I can't figure it out. As I look back and forth between her and me in the mirror, I can see her studying my body. Then our eyes meet. Twist! she calls out to me, pull your right shoulder down and to the back!

Here, the student orients herself on the bodily lines of the trainer, reproducing them by means of mimikry, trying to feel out what is going on and what needs to be done. At the same time, the trainer observes the students, feeling out their way of moving, trying to figure out what is going on and what needs to be done. To recruit a student’s body, both of them take on the body of the other. To be scrutinized here are for example the mirror as key instrument and the eye as primary tool for this ‘body switch’, as well as time warping, movement clustering and comparing as techniques and variations of mirroring work.

‘Spacing’ is present all throughout class, but becomes most important when the dancers are supposed to travel across the studio:

For the chassé combination, we line up in the left corner at the back of the studio. The trainer asks us to form trios. Dinah has is already standing in the preparing position, Lynn as well, to the right of her and a bit to the back. I position myself to the left of both, directly in the corner, forming a triangle with them. We stand in soutenu, waiting. The music begins. I count silently. I sense my two partners tensing up. We are supposed to land from the first jump on one. Six, seven-and-, my muscles contract, Dinah is sinking deeper into her plié to prepare for the jump, an impulse is going through the three of us – off we are. Whoops, I am getting too close, my jumps seem to be bigger than Dinahs — I shift to the left quickly, I don’t want her to kick me by accident... with the next few steps, I get back in line and reduce the size of my jumps. We move across the diagonale, directly into the right corner next to the mirror. As we arrive, we all immediately break into a jog along the wall to the left corner at the back, making space for the next trio that comes up already. At the back, we position ourselves as a trio again, waiting in soutenu until the floor is clear for us.

How is the use of space in ballet governed, how is space conceived? A body is involved here as a moving object with a certain pathway (e. g. the diagonale) and a surrounding ‘movement box’ (potential range of the limbs) that moves with it. How are these pathways and boxes coordinated with each other according to certain principles like geometrical patterns or simultaneity? What kind of rules and understandings are required and applied here?

Additionally, there are situations in training where ‘dancing’ is demanded. Usually, this is preceded by a thorough practicing of the required body technique, movement succession and use of space.

Okay, now I need more presence from you, the trainer says. I can see that you are doing the movements correctly, but you are not dancing. Forget your technique for a moment. You look totally autistic, you are not there. Hm, she has a point: I have been focusing on staying pulled up and using my hip muscles the right way throughout the combination we just did. All right, this time I’ll put heart and soul into it. We start over. I take up the soft, fluent quality of the music, letting the tones move my arms. Don’t suffer, the trainer shouts, it’s solemn and strong, you are shining lights, seraphs! Think of Serenade! The look on my face changes, my movement becomes firmer, more expanded. It is like moving through cold honey, working against soft resistance, drawing out the lines to their very end... I tell a story even though I could never say what it is exactly. I dwell on the movement, making it mine. Project to the people on the gallery, the trainer says, if you just look straight ahead it’s boring! Play with the dynamics! My chest lifts ever so slightly, I imagine a theatre, direct everything to the glances from
above and far away, extending it beyond the actual walls and ceiling of the studio. When the music ends, the trainer gets up from her chair in front of the mirror (at which I have not looked even once this time, I realize). Much better, all of you, big difference, she says, now I can actually see something there.

Through the bodily action, another matter is experienced here by the performer than the movement as task and the performer’s focus on the correct accomplishment — and is made accessible for others. What kind of procedures and techniques underly descriptions such as ‘presence’ or ‘projection’? How are facial expression and movement quality as doings involved in transforming movement into gesture?

In exploring these four ways of intercorporeal doings, it becomes apparent that the ‘body’ as a skin-encased unit with an inside and outside world is a descriptive term that is not sufficient for discovering how the ballet practice manufactures its bodies (Hirschauer 2004). In the activities scrutinized in this paper, it makes sense for the participants to apply this every day notion. Yet, practices and their activities cut across the entities involved; the definition of participating entities is a matter of perspective. How the complexity of bodily involvement in ‘intercorporeality’ can be unfolded praxeologically, is to be discussed.

Literature

Teaching Bodies: Visual and somatic communication in Martial Arts

Social interactions in sports, as many others, usually rely on explicit and implicit communication in order to transfer knowledge. With good reasons the first one is often the focus of sociological interest. The latter however may also give important insights into the processes and dynamics of communication as well as to questions of intercorporeality. Based on empirical data of an ethnographic investigation in a martial arts club, I will focus on phenomena of intercorporeality as a social interaction among bodies. The aim is to describe along empirical data how embodied knowledge is transferred mainly by visual and somatic communication and how these interlace with verbal communication. Due to the ethnographic investigation design, my paper is based on a participant observation of six months (followed by a contrast investigation in a dancing class). The empirical ‘corpus’ consists of different sorts of data: fieldnotes, video and audio tapes of the classes, conversations with field members and ‘documents’ of the field like books, homepages, manuals and didactic video tapes. (In the following I will use fragments of fieldnotes and hand-drawn sketches of video stills; yet in the presentation video clips might also be used.) Two questions are leading this contribution: 1. What kind of concepts can we develop for the practice of transferring embodied knowledge? 2. What kind of empirical material might be useful?

As a general note, didactic settings can be understood as ‘keyings’ in the sense of Erving Goffman’s (1974) frame-analysis that is: as a transformation of other (‘original’) practices (cf. Dinkelaker und Herrle 2010; Schindler 2011). A certain practice is then recognized by situation members as X-transferred-to-Y, e.g. as an instructive demonstration of a martial arts movement or of a mathematical proof. It explicates and transfers specific knowledge about X and is at the same time recognized as Y. This view facilitates to understand certain ‘contradictions’ within the practice of learning martial arts, as this practice – although it is often linked to the practice of fighting – in certain aspects is so different from fighting that – above all for outsiders – it is sometimes hardly recognizable as a transfer of fighting strategies.

Teaching and Learning Martial Arts

The embodied knowledge of the martial arts in the martial arts club of my study is imparted in two steps: At first the instructor demonstrates a (short) sequence of movements, subsequently the students try to repeat in pairs what they have seen in the demonstration. Meanwhile the instructor goes around and watches the students’ practicing (see fig. 1). Every now and then he interrupts them. Thereby changing the pair interaction to a triadic interaction he explicates elements of the sequence of movements once again or even demonstrates for the two of them certain parts. After he has been correcting this way for a while he goes back to the center of the room and starts the next demonstration for the whole class. Normally he picks up something he has seen in the students practicing. Thus his demonstrations appear to be spontaneous, i.e. inspired by the situational development of the very class.

Demonstrations are accomplished (inter alia) by a certain order of space and gaze. The instructor and a – spontaneously chosen, but usually experienced student – are located in the middle of a semicircle of students. Thus the situation has a clear focus, within which the instructor-student-pair performs observably a sequence of movements students should practice later. Although verbal hints accompany the demonstration, the interaction between the instructor and his audience is mainly based on visual communication.
What seems to be an easy practice at first glance, turns out to be problematic above all for new students. Normally they experience severe difficulty in practicing what they should have seen in the demonstration. It takes time to learn to see what is being displayed to them as this requires – as the study showed – that first of all the students develop a specific ‘visability’, that is the ability to see what is displayed to them. As Michael Polanyi (1966:5) mentioned, practical exercises rely on ‘the pupils intelligent co-operation for catching the meaning of the demonstration’. This co-operation, as we should add, is not only cognitive as the term ‘intelligent’ suggests, but is also somatic once we are interested in the transfer of embodied knowledge. One has to relate the displayed movements to one's own somatic experience and somatically re-live what is being displayed. In other words: demonstrations also rely on the body’s co-operation and ability to catch the practical meaning of the demonstration.

Figure 2: Throwing

This form of embodied learning becomes even more apparent in the practicing of the students. Although we certainly also find visual and verbal communication there, we additionally find what can be understood as 'somatic knowledge transfer': The students learn from the feedback they get from their partner’s body as they experience how it reacts to their own body’s movements. One learns, in a somatic knowledge transfer, primarily from the feedback your partner’s body gives you, as we can see in the following fragment:

We are practicing how to throw your partner. These movements consist in bringing the opponent's body out of balance in order to be able to move him to the ground (see fig. 2). In order to do that, one has to guide the partner’s body – similarly to the lead in couple dancing. In contrast to couple dancing one not only has to induce the partner to follow, but in principle one should learn how to overcome the partner’s physical resistance against being thrown. This requires a sophisticated and detailed coordination of moves that has to be practiced extensively before being successful. This particular evening my partner and I mainly practiced the beginning of a throw, meaning the first movements whereby you force the partner's body into a shared movement in order to break his balance and lift him onto your back. During this initial stage of the throw one easily ‘loses’ the partner's body, as it happened to me several times (see fig. 3).

Figure 3: Failing attempt to throw

Here we encounter somatic feedback as it is the partner’s body who communicates the failure of the movement. As well as this feedback by failure we receive somatic feedback if a partner modifies his own

2 In terms of Goffman’s Frame-Analysis practicing can be conceived as a keying of the form ‘utilitarian make-believe’, which liberates the practice from its usual consequences and risks: ‘Presumably muffing or failure can occur both economically and instructively’ (Goffman 1974:59). Note here already one central difference between fighting and its keying to an exercise, as fighting mainly consists in hurting the opponent. Similar to fighting however, the practicing of fighting movements is an intensive interaction between (at least) two bodies.
movements in order to facilitate the opponent's movement or if he touches a part of the body or moves it. Knowledge transfer however is not only conducted by interaction between two partners, but also by a logic that is inherent to motion sequences:

Konstantin, an experienced student, is late this evening and misses the demonstration. Thus I try to repeat it for him, but as a novice I have difficulties. I fail and correct my own movements so that he never sees the motion sequence as a whole. After a while he tries on his own and succeeds to reconstruct the sequence using my information and his own background knowledge. Subsequently he explains and demonstrates the movements to me.

Note that this episode is characterised by an interesting switch of the knowledge hierarchy, as knowledge, which the transferring person (or better her body) hardly possesses, is being transferred. The inner instructivity of practices thus becomes remarkably obvious. We may be able to conclude by drawing a parallel to a close: Knowing elements of the whole (be it a text or a motion sequence), one can – by use of appropriate background knowledge – supplement the missing elements. Similar to verbal interaction, single elements indicate possible sequence turns in somatic interactions. Elements of the movement connect to former elements and open up possible options for the following elements. These inherent connections facilitate knowledge transfer from the practice itself. This reveals that practices themselves contain instructions about their own accomplishments; it reveals an implicit normativity within practices.

Teaching Bodies and sociological questions

Considering the above presented fragments of empirical material, we can conclude that the embodied knowledge of the martial arts is taught by the instructor as he does observably what is considered to be a proper movement (in the sense of the practiced martial art). In the practicing sequences the students 'teach' each other in a mainly somatic way. It is the body of the instructor that displays knowledge, while the bodies of the students produce an embodied experience of the movements. It is bodies that teach bodies.

This raises a couple of questions: Within these practices of knowledge transfer we find certain aspects of intercorporeality. How far does this concept help? Where might be its strength and which might be limitations? Certainly here we can talk of embodied knowledge and somatic knowledge transfer. Can we also understand aspects of these practices as 'somatic communication'?

References

3 Of course we also find verbal and visual communication within the practicing sequences. However, the dominant manner is the somatic.
Modification of actions by sound

Perception and action are closely linked. A possible neurophysiological correlate was identified by Rizzolatti et al. (1996), who found that the so-called mirror neurons discharge when monkeys perform an action or watch another monkey perform the same action. It is supposed that when humans observe actions, the mirror-neuron-system is the gateway to the simulation of movements by the own motor repertoire and an important factor for interpersonal interactions. Methods that address the mirror-neuron-system, movement representations or internal models thus might affect interpersonal coordination.

It is reported that an internal model of arm movements, created or recalibrated by visuomotor adaptation, is susceptible to audiomotor adaptation and that audiomotor adaptation goes along with visuomotor aftereffects, suggesting that internal models are multisensory and can be accessed by auditory feedback (Schmitz, 2010). Auditory movement information can also modify perception of complex full-body movements (Effenberg & Schmitz, 2010): Subjects had to estimate velocity-differences of audio-visually presented swimmers with hand and leg trajectories mapped onto sound (kinematic sonification). Estimations of spatiotemporal differences were systematically biased by the global pitch of the sound sequences indicating a calibration of the overall percept by sonification.

Sounds of complex actions have more than just perceptual consequences. Kohler and colleagues (2002) found that natural sounds of actions activate mirror neurons, suggesting that amplification of natural sounds or generation of artificial movement sounds might also affect the mirror-neuron-system and/or the motor system. Inspired by this work and the theory of embodied perception we investigated whether skilled rowers are able to identify themselves among others just by listening to the auditory mapped time course of forces and movement amplitudes on an indoor rower (Schmitz & Effenberg, 2012). Although sounds were normalized, rowers were able to correctly and accurately interpret movement effects and identify themselves. Some authors interpret such findings as evidence for the activation of the motor system during movement perception (e.g. Loula et al., 2005). An fMRI-study provided direct evidence for the activation of the human mirror-neuron-system and parts of the motor-system by artificial auditory movement information (Schmitz et al., 2013): Subjects observed audio-visual presentations of the same swim-model as in Effenberg and Schmitz (2010). Perceptual performance was better when the auditory component of a breaststroke cycle was a meaningful sonification and not just a musical accord of similar frequencies. Enhanced performance was accompanied by the activation of a widespread brain network including parts of the mirror-neuron-system and key-players of the motor loop (e.g. Basal Ganglia). Since none of the subjects had experienced sonification in relation to his/her own movements before those effects cannot be explained by audiomotor expertise. Rather the type of biological information carried by the sound might have been the key element. Biological information might as well be provided by the rhythm of movement. Kornysheva (2011) found increased activation in the premotor cortex when subjects listened to rhythms that matched their preferred beat. The same area was active when subjects had to synchronize with a rhythm, suggesting that even artificial rhythms can activate the mirror-neuron-system.

Taken together, biological and rhythmic information seem to address a special mechanism in the human brain that activates the motor system and probably supports coordination with other persons. Thus we wondered whether a rhythm – extracted from real movements – is able to enhance coordination of persons engaged in complex interactions. The time course of ball- and ground-contacts of a skilled soccer player was embedded into a piece of music that was provided to opposing soccer teams. Team performance was evaluated by goals, number of passes, length of pass sequences and number of ball contacts of a person involved in a pass sequence. We found a significant better performance in teams whose members heard music with the same beat (synchronously, Z=0.12 ±0.46) than in teams whose members heard different beats (asynchronously, Z=-0.16 ±0.43, F(1,21)=7.33, p=0.013, η²p=0.26). Enhancement in synchronous teams was nearly similar to the decrement in asynchronous teams, suggesting that the biological rhythm selectively modified team performance.

We conclude that auditory movement information can be utilized to modify intra- as well as interpersonal coordination.
References

Ajit Singh, Bielefeld

Forming Bodies? Producing Embodied Knowledge as Coordinated Communication in Trampoline Jumping

1. Introduction

In competitive sports the body is usually considered as a treatable and manipulable desideratum which is formed to perfection in the course of a long termed training process. The sport-specific knowledge about embodied skills, performances and meanings of motion sequences is taught and instructed to an athlete by a coach under the condition of physical co-presence. In studies of coach-athlete-communication, however, the situational meaning of the body in interactions mostly gets out of sight. In this presentation this gap is addressed and explained by using the empirical example of trampoline jumping. At the case of the dyadic coach-athlete-constellation I argue that the context of sport is a specialized environment of embodied practices, which seems to be predestined for observing and analyzing processes, where the conscious use and the visibility of bodies are essential for communication. The visibility of each other also refers to the intentionality of bodies, which is relevant for the meaningful organization of social interactions and transferring embodied knowledge. Following this argument, the understanding of body in interactions is extended from a performing and expressing “object” to a sense making and perceiving “subject”. Thus, the question to keep in mind is the way in which the body is involved in the process of transferring knowledge and coordination of communicative activities?

2. Theoretical considerations

Already Husserl considered the physical dimension of perception, deeming the “leib” and not the body, (in the sense of object) as the origin of experience. Following this crucial argument, Merleau-Ponty described the body as the “anchor in the world” by extending the conception of “Leib” as the “self”. The “Leib” refers back to the perceiving, sensitive subject, which is embedded spatially and temporally in an intersubjectively shared life-world. More precisely, constituting the life world means to experience and to appropriate the world and to act corporeally in the world through the intentionality of one’s body in orientation to other bodies (Merleau-Ponty 1966). Schütz also points to the subjective perspective on the one hand, and to the social constitution of the life world on the other. Following this argument, life world is not only a construction of the subjective consciousness but also and especially one of social interactions. Thus, interactions organize the life-world, which is based on a common orientation to socially shared everyday knowledge. In this respect the life-world becomes both the fundamental place of sensual, bodily (“leiblich”) and of intersubjectively experiences.

Although Garfinkel (1967) strictly turn away from a subjective perspective (Schütz), as from a notion of body in the sense of “Leib” (Merleau-Ponty), he includes the body for the emergence of social order. However, his focus is less on the “actor’s action”, but rather on observable “embodied practices”. In this way he references both corporeal character of experience and the visibility of social actions. Following ethnomethodology, social interactions can be described as unique, sequentially organized and coordinated processes that are locally produced by the actors within a situational appropriateness of communicative actions. The shared knowledge and the expressed meanings of actors are made “accountable” through communicative acts of visually-perceptible, “embodied practices” on which further visualization-practices follow. (ebd. 1967) Thereby it is illustrated, firstly how actors produce “social facts”, and secondly how actors show each other, that they act in an intersubjectively shared reality.

However, if intersubjectivity is also based on shared knowledge or at least on the mutual acceptance of a shared stock of knowledge, it also sheds a different light on the meaning of embodied practices in interactions: Thus, knowledge will be created, transformed and embedded within corporeal, communicative actions, which are related to a situational order of the life world.

Returning back to an empirical interest on interactions in sports, it seems necessary to ask (1), how knowledge is produced and transferred (by verbalized and embodied actions?) in natural, local situations (training and competition)? This leads to the further question (2) on the account of the body for intersubjectivity and its concrete function for the negotiation of the interactional order between coaches and athletes.
3. Data

Using the empirical case of trampoline jumping, the presentation illustrates the process of transferring knowledge, by using video recorded data from the everyday training of youth athletes. Interaction between coaches and athletes will be shown, which focus on the communicative activities during exercises on the trampoline. These observed exercises typically can be characterized by three phases: The “definition of the task”, the “phase of jumping and flying” and the “discussing-phase”. During the first phase, the exercise setting is routinely created by consensus and shared knowledge. The second phase then, in particular the time-compressed jump and flight phase, is arranged as a complex interactional situation. In this phase the athlete has to focus not only on his body performance visible to the coach. Simultaneously to this “accounting practices”, he also has to orient himself in space and time and follow the sporadic verbal instructions of the coach. For the coach on the other hand, the challenge is to decipher and recognize visible "signs" on the athlete’s body and to capture the situation during the short flight phases, to provide synchronously small corrections to his form or necessary safety measures. The third phase closes the exercise sequence. Now it is not only the coach who gives brief corrections and suggestions to improve the athlete’s skills. By orchestrating embodied practices of demonstration, showing and verbal expressions from each actors view, both try to illustrate their subjective perception to constitute a common sense of the occurred actions.

4. Conclusion

Finally I suggest that the essential characteristics of the analyzed interactions in trampoline training are based on the coordinated interplay of multimodal signs (verbal, gesture) and embodied practices which are part of an embodied production of knowledge and intersubjectivity. The embodied knowledge of the athlete condenses in spatial and temporal actions of the exercise, by motion-specific arrangement and physical orientation to the environment. To the unprofessional gaze, however, wrong postures and performances are made recognizable in conjunction with the coach’s verbalized and corrective instructions, which are physically implemented and finally visualized by the athlete. In this way, the coach must ensure that the athlete’s body corresponds precisely to the trampoline, in order to keep control and “to become one with the trampoline”. However, this requires a form of corporal feeling and knowledge that is not directly teachable, but mediated over the detour of steady, sequentially-build practice and communication. Thus, the socially shared knowledge over the interrelation of space, time, the materiality of the trampoline and the involved bodies are relevant, too, for creating a pre-reflexive sense of corporeal understanding between coach and athlete.
Fragment: („Aktiv wegschmeißen“) 45:55- 47:11min

1 T: eins (.)
2 zwei (2.0)
3 eins (-)
4 zwei (.)
5 oben raus (--) [Mattenausrichtung]
6 <<h> hEPP> [Matte wird synchron aufs Trampolin geschoben]
7 A: (...)
8 (3.0) [Athletin landet]
9 T: (...) aktiv weg zu schmeißen

10 A: (...) ja wenn ich die aktiv einfach wegschmeiße(.)
11 ich hab trotzdem zu wenig platz# [klatscht in die hände]

12 T: aktiv wegschmeißen#\[(...)]wegschmeißen und (schulter)
13 wieder !AUF!richten#\[(...)]momentan schmeißt du nur die beine
14 weg\[(...)]und schulter aufrichten nur\[(...)] das kann aber NUR kommen
15 weil du die beine weggeschmissen hast
16 A: aber ich mach ja absichtlich so#\[.]

17 ich mach so# beim aufmachen
18 T: <<p> was warum denn?>
19 A: ja weil (klatscht auf die matte)(.)
20 ich zu wenig(klatscht 2x)platz zum tuch hab
T: (das(…))

A: kuck mal wenn ich so mache als wenn ich so mache(--)(lacht)

T: moni wenn (…)

A: ja aber aber ich

T: du kommst ja nicht mal ansatzweise zu kurz

A: ich komm ja grad so wenn ich so (.)

ich hab ja vorhin so wirklich gedreht

T: (…) ((schüttel leicht den kopf))

A: gut dann mach ichs jetzt mal (.)

((…))und dann mach ichs so (.)

dann flieg ich aber aufs gesicht (-)

T: pff nEI:N (.)

tust du nICHT ((lacht)) [und zieht die Matte vom Trampolin]

A: ((…))ja?

T: ja

A: dann mach ich jetzt mal richtig auf

T: danke

(2.0)
Visual and motor components of superior action prediction abilities in sport

Introduction

The ability to form anticipatory representations of on-going actions is crucial for effective interactions in dynamic environments. Previous studies have shown that we use previous motor experience with similar actions for predicting the future of on-going actions, and thus building internal anticipatory models of even briefly perceived actions (Friston et al., 2011; Gazzola & Keysers, 2009; Avenanti & Urgesi, 2011; Wilson & Knoblich, 2005). A significant example of the need for anticipatory representations of on-going actions is in the case of sports. Athletes in time-demanding sports have to plan their actions based on the future of perceived movements executed by their opponents in the minimum amount of time; thus, an accurate prediction of the outcome of observed actions is deemed as necessary for successful performance. Indeed, previous research with elite athletes has shown that they own a unique ability to predict the future of opponents’ actions. For example, in various sports it has been found that both expert athletes and observers are able to provide earlier and more accurate predictions of the outcome of sport actions, compared to novices; however, while expert observers, such as coaches, base their predictions on the initial ball trajectory, elite athletes rely more on the perceived body kinematics of their opponents (Abernethy et al., 2008; Aglioti et al., 2008; Urgesi et al., 2012). Furthermore, these athletes’ superior perceptual abilities are associated with differential activations in the motor cortex (Aglioti et al., 2008; Tomeo et al., 2012) and in body-related visual areas (Abreu et al., 2012) during observation of domain-specific actions. Thus, achieving excellence in sport implies not only superior motor performance but also the ability to read the body kinematics and predict others’ actions ahead of their realization. Such superior perceptual abilities of elite athletes rely on the fine-tuning of specific anticipatory motor simulation mechanisms2. While these findings provide indications about the involvement of both visual and motor representations in the experts’ superior abilities for predicting the fate of observed actions, no study has so far provided causative evidence about their relative functional roles. Furthermore, little is known on how the experts’ motor system deals with deceptive behaviours, in which the opponent actors try to mislead or “fool” an observer into making an incorrect judgment (Jackson et al., 2006; Ripoll et al., 1995; Sebanz & Shiffrar, 2009; Tomeo et al., 2012). Combining psychophysics and single-pulse and repetitive Transcranial Magnetic Stimulation (TMS) we sought to examine the impact of motor and perceptual expertise on the ability to predict congruent and incongruent body actions in soccer.

Methods

We asked expert kickers, goalkeepers, and novices to predict the direction of penalty kicks observed in a movie. The kicks were front-viewed as from the goalkeeper’s perspective. Half of the movies were congruent kicks, in which the model shot directly to the left or to the right, while the other half were incongruent kicks, in which the initial running phase was incongruent with the foot-ball contact and initial ball trajectory so that the model seems to fake to kick to one direction and then kicks to the other. Movie presentation could be interrupted before or after the beginning of the ball trajectory and participants were required to press as fast and accurately as possible one of two keys corresponding to left and right kicks (Fig. 1).
actions (Fadiga et al., 2005), while fixating a white cross served as baseline condition. Motor evoked potentials (MEPs) were recorded from leg (gastrocnemius, GA, and tibialis anterior, TA) and forearm (extensor carpi ulnaris, ECU) muscles, which are involved in the actual execution of kicking or saving the ball. In a second experiment, we applied repetitive transcranial magnetic stimulation (rTMS) over the superior temporal sulcus (STS) and the dorsal premotor cortex (PMd).

Results

The expert kickers and goalkeepers were more accurate than novices in predicting the outcome of the kicks when the movie showed only the player’s body movements. Crucially, however, the kickers were more susceptible, with respect to goalkeepers and novices, to incongruent body kinematics, likely because of their automatic tendency to respond on the basis of the initial running phase. In contrast, goalkeepers were more resistant to bluffing body movements, likely as a consequence of their training to respond on the basis of the ball trajectory. Both expert players (kickers and goalkeepers) and novices presented an increase of corticospinal excitability during observation of the kick actions as compared to baseline (Fig. 2). Congruent and incongruent actions engendered a comparable facilitation of kickers’ lower-limb motor representation, but their neurophysiological response was correlated with their greater susceptibility to be fooled. Indeed, the greater their motor facilitation during observation of incongruent kicks, the lower their accuracy in predicting the actual outcome of the ball. Moreover, as compared to congruent actions motor facilitation for incongruent actions was lower among goalkeepers and higher among novices. Crucially, such differential motor facilitation to congruent and incongruent kicks only occurred for the MEPs recorded from lower, but not upper limb muscles. These results showed that responding to fooling actions requires updation of simulative motor representations of others’ actions and is facilitated by visual rather than by motor expertise.
Figure 2. Mean (± S.E.M.) normalized amplitude change of the motor-evoked potentials (MEPs) recorded in the kicker, goalkeeper, and novice groups in Experiment 2. MEPs were simultaneously recorded from two lower limb muscles, namely the gastrocnemius medial (GAM; upper graphs) and the tibialis anterior (TA; middle graphs), and from an upper limb muscle, namely the extensor carpi ulnaris (ECU; lower graphs). Transcranial magnetic stimulation (TMS) pulses were delivered after 1,233 ms and 1,300 ms from video-clip onset. MEPs amplitude changes are expressed as T-scores difference between each observation condition and the baseline, fixation cross condition. Asterisks (*) indicate significant pairwise comparisons (P < 0.05) between the normalized MEPs amplitude change of each group during observation of congruent vs. incongruent actions (or at 1,233 vs. 1,300 ms TMS delays).

The results of the second experiment provided causative evidence about the complementary role of motor and visual action representation in the superior action prediction abilities of expert athletes. Indeed, interferential stimulation over STS disrupted performance in both experts and novices, especially in those with greater visual expertise (i.e., goalkeepers). Conversely, interferential stimulation over PMd impaired performance only in expert players (i.e., kickers and goalkeepers) who exhibit strong motor expertise into facing domain-specific actions in soccer games. This occurred, however, especially for those kick movies with incongruent body
kinematics, thus revealing that using motor representations to read the body kinematics of others’ movements and predict their outcome is dependent on motor expertise.

Figure 3. Accuracy data in the action prediction task during rTMS of STS, PMd or Sham. Error bars denote standard errors.

Conclusions

The present results show that motor and visual expertise may exert a differential contribution to the development of the experts’ abilities to predict the outcome of deceptive behaviors on the basis of the body kinematics and suggest that these differential abilities are reflected by different patterns of motor activation during action observation. The results clearly indicated that both experts and non-experts under specific circumstances can predict the actual outcome of familiar or unfamiliar actions and that the inclusion of incongruent body kinematics dramatically affects their performance. Most importantly though, experts and non-experts seem to use different neural mechanisms in this task, as it was illustrated by the different effects of suppressing the visual and motor nodes of the action observation network. While both experts and novices can access to visual action representations in STS, only experts are equipped and use internal motor representations to predicts others’ behavior. This suggests that we need to embody others’ actions in order to anticipate their future behavior, but also indicates that in some circumstances, for example when facing with deceptive intentions, we need to flexibly inhibit such embodied representations to favor a more abstract aspect of social perception based on visual models of others’ actions.
References

Tomeo E, Cesari P, Aglioti SM, Urgesi C. Fooling the kickers but not the goalkeepers: Behavioural and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, advance online (2012).

Elaine W. Vine, Wellington

Controlling others: Rugby referee talk on the field

Professional sport is very visible in many societies, and while there is a considerable literature on some social aspects of professional sport, and recently more interest in language and sport (e.g., Meân and Halone, 2010, focusing on media and identities in sport), one group of participants has attracted little research attention from a sociolinguistic perspective. These are the match officials who take responsibility for controlling the enactment of professional sport on the field.

This study uses discourse analysis (analysing patterns of language use, including how people use language to get things done) and critical discourse analysis (analysing how social power is produced and reproduced through language use) to focus on an activity which is not usually seen as a linguistic one: refereeing rugby union matches. The study investigates how one group of officials, referees in rugby union, use talk and other action (e.g. whistle, body movement, gesture) in controlling professional matches, i.e. ‘doing refereeing’ on the field.

The data are video-recordings (for television) of professional rugby union matches from a competition which involves New Zealand, Australian and South African teams and referees. The soundtrack is taken from microphones worn by the match referees.

Analysis presented in this paper shows how on-field match referees engage in complex activity which involves talk, whistle, hand gesture and body position to control player activity on the field, all while they are also engaged in energetic physical activity: keeping up with the play. This paper focuses on episodes where referees attempt to control player activity where players have engaged in physical altercations – which are not allowed by the laws of rugby.

Rugby is a sport which involves frequent, intentional heavy body contact, but physical (and verbal) altercations are proscribed. An example from the video data is presented here. Snapshot 1 (from video data of a sequence of play, see below) shows several players involved in body contact during play. The player (White 11) indicated with a red arrow is pointing to something that is going on in that play on the ground. He is directing his gaze not at the play but at the referee.

The referee then blows a firm extended blast on his whistle and extends his right arm upwards, which signals that he is awarding a penalty in favour of the White team. He explains his decision verbally: “holding on one blue”, and with gesture: grasping his hands together and pulling them towards his chest. He then extends his right arm upwards again. He has penalized player Blue 1 for ‘holding on’, i.e. not releasing the ball when he is on the ground and has been challenged by opposing players who are on their feet.

In Snapshot 2, the referee still has his right arm extended upwards and he is moving towards the players on the ground, who are disentangling themselves and beginning to move away. However, player White 11 is not moving away, and he is now directing his gaze not at the referee but at the players getting up from the ground.
In Snapshot 3, player White 11 is directing his gaze at player Blue 12. Note that Blue 12 is not the player that the referee has penalized for infringing the laws of rugby – that was Blue 1. Player White 11 is beginning to move towards Blue 12 and is speaking to him, though what he says is not audible through the referee’s microphone. Player Blue 12 is beginning to turn his head towards player White 11.

In Snapshot 4, player White 11 pushes B12 in the chest with his left arm. Player Blue 12 raises his left arm towards White 11 but does not touch him. The referee is still moving towards them.
In Snapshot 5, the referee is now close to the two players. He says “hey hey hey hey”, and he lowers his right arm and spreads his arms wide. The referee says “way way way” and Player Blue 12 is already turning and walking away. Player White 11 begins to bend down.

In Snapshot 6, player White 11 has picked up the ball, has turned and is walking past the referee on the referee’s right. The referee has lowered his left arm, and leaves his right arm extended towards player White 11, though with elbow bent and palm facing downwards. The referee says to player White 11 “just calm down eh” and player White 11 touches the referee on his left arm with his right hand as he moves past him.
In this brief sequence, we have seen that the referee does not orient to the intentional heavy body contact during play as problematic and in need of his attention. What he does orient to in the first instance, by awarding a penalty, is illegal retention of the ball by a player (Blue 1). Player White 11, on the other hand, is orienting to something that player Blue 12 is doing in the player activity on the ground and he looks to the referee to deal with that. When the referee orients to a different aspect of the play, player White 11 follows up with player Blue 12. The referee steps in quickly both verbally and with body movement and gesture to defuse the situation between the two players. Note that the physical action that the referee proscribes is a gentle push. It is not the strength of the body contact that is at issue here.

The paper concludes with comment on how on-field talk and action by referees (and players) mediates the culture, including producing and reproducing social power, of playing professional rugby union.

Reference
Niklas Woermann, Odense

Seeing of and Seeing in. Embodied visual practices of lifestyle sport athletes and the limits of ethnomethodological studies of bodily routines

Short abstract

Based on material from a five-year ethnographic study of the German-speaking freeskiing scene I examine collaborative bodily practices of seeing that lie at the core of this adrenaline-drenched action-sport. Using ethnomethodological studies of vision as a case to question the status of corporeality in ethnomethodology, I find that a detailed look at the local accomplishment of embodied visual practices does reconfirm EM’s core assumptions, but also unveils an overtly narrow focus of the existing literature on situations of immediate co-presence. Showing that this focus is neither theoretically nor empirically warranted opens the door towards a broader application of an ethnomethodological informed understanding of locally accomplished social order onto social practices, bodily routines, and embodied visual perception.

Extended abstract

Due to the pragmatic intertwining of vision and movement noted by both phenomenology (Merleau-Ponty 2002; Protevi 1998) and neuroscience (Goodale and Milner 2009; Jacob and Jeannerod 2003; O’Regan and Noë 2001), ‘seeing like a freerider’ is not only an indispensable prerequisite to successfully preparing, undertaking, and last not least surviving dangerous athletic stunts like jumping down 30 feet rocks in wild terrain, performing multiple backflips on skis, or skiing backwards at high speeds between sharp rocks on avalanche-prone slopes. Moreover, performing accountably skillful freeskiing means to make a certain way of ‘stylish’ skiing visible over the course of sliding down the mountain and jumping over obstacles. It is this style that is being judged on freeskiing contests, that freeskiers look for in freeski images and videos, and that provides them with joy, belonging, status, and sometimes money (Woermann 2012). For such forms of sociality to take place, however, style must not only be performed, it must also be (performatively) seen by knowledgeable others – it is only the pairing of making-visible and seeing style that can lead to the ‘Durkheimian thing’ (Garfinkel 2002; Greiffenhagen and Sharrock 2009; Lynch 2009) that is freeskiing’s style to become manifest and be carried forth. The freeskiers’ body, in other words, must be one that enables and expresses two sets of visual social practices that are but two sides of the same coin: ways of showing and ways of seeing.

My contribution zooms in on a particular seeing practice from within the universe of freeskiing, namely what freeskiers call ‘reading a face.’ I will unfold a detailed portrait of this accomplishment on the basis of an analysis of a video sequence to show that, in contrast to the idea that seeing is an individual, isolated and mute doing, freeskiers cooperatively work out something they call a line – a route down a mountain face that is worth (and ‘safe’) skiing down. This first part of my text thus stands testament to the epistemic nature of embodied interaction that has been well documented in ethnomethodological or conversation analytic studies of vision (Goodwin and Goodwin 1996; Goodwin 2003; Goodwin 2000a; Goodwin 2000b). But since the epistemic object in question happens to be an action (or an affordance for action), namely skiing down a line, I believe that this case dares us to flip the coin over and see what is on the other side. The need to do so arises from the duality of what freeskiers call Seeing of a Line and Seeing in a Line, or the fact that the freeskiers’ way of seeing a line in a mountain face is inevitably tied to the seeing undertaken by a rider in the midst of riding down.

While the immediate co-dependency of both sides of the coin – of the two sets of visual practices jointly enabling the intelligibility of ‘social things’ like a movement style – is easy to recognize, most of the empirical work in visual sociology at large and ethnomethodological or conversation analysis in particular has remained restricted to looking at only one side: it has studied the visual practices constituting the seeing of action, but hardly those intertwined into seeing in action. EM and CA studies of vision, I argue, have carefully refrained from discussing any practices of seeing that take place outside of immediate face-to-face interaction. While they have done so for theoretical reasons given by the framework of ethnomethodology, I aim to show that a close reading of said theoretical foundation does not actually warrant such strict frugality when it comes to the non-immediate co-presence that is given in much of everyday social life. Both empirically and theoretically, I argue, present EM/CA studies of vision and embodiment built on an implicit assumption that their theoretical a-
priori and empirical findings hold beyond the relatively narrow scope they have been applied to. Making this evident thus dares us to glimpse at the other side of the coin without letting go of what we already learned from EM, and thus without submitting to individualism or mentalism.

References

My analysis will be based on a short excerpt of a video clip which focus on two short consecutive segments of an interaction which together take no longer than ten seconds. I will show in exemplary detail just how two freeride manage to collaboratively figure out precisely what it is that is to been seen as being a suitable line of descent within the vista of a mountain slope. Illustrating my analysis on the basis of several video stills, this particular case of socially seeing a line will help me to sketch out some general considerations about the nature of socially situated seeing. The two freeriders Tom and Steffi are sitting in the chairlift that takes them up towards the next run. While sitting, the north face of the Krimml extends right in front of them. They have already completed a run, and now they are planning the next through the powder that is still untouched. Steffi declares that Tom knows this area much better; therefore she will be choosing a route close to his. Subsequently, Tom begins an extended explanation of the options for skiing the Krimml’s face offers, detailing the one he seems intent to take. Both riders are sitting in the lift chair looking at the mountain keeping their torsos still, while Tom is stretching out his right arm (towards the face and into the field of vision of the two) and accompanying his words with lively gestures. The conversation between the riders was recorded while sitting next to the two in the lift, so that in the still images, Steffi can be seen in the front, whereas Tom is hardly visible apart from his arm stretched-out towards the mountain side in front of both. I subdivided the video into logically coherent parts. A still from the beginning and the end of each part is shown, plus an overlay of the frames in between to illustrate the exact movement of the hand and arm.
<table>
<thead>
<tr>
<th>Frame / Sec.</th>
<th>Movement of hand and arm</th>
<th>Spoken words</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-11 / 0.00 – 0.44</td>
<td>Hand centered in front of the face, opened to the left. Then moved to the upper right by moving the whole arm.</td>
<td>Tom: “Now to the right...” („Jetzt rechts...“)</td>
</tr>
</tbody>
</table>
Forms a 'hump'.

"... and over thi(.)-"

(„... und über die(.)-„)

Points downwards by moving “... this lip...”

the whole arm, the fingertips

aiming down.

(„...diese Lip...“)
Pauses in the air, spreading “... into the out index and middle finger. bo:::wl…”

(... in die Bowl rein:...”)

Pauses shortly. Prolonging the last syllable while pondering “in:::” („rein:::”)
The fingers ‘step back into “Hhh.” (heuribly line’: raises the arm sharply draws breath) and the hand closes slightly to form a ‘claw’.
On the outstretched arm, the hand moves sharply down and back up again, the middle finger stretched out pointing.

“... and then the lip quasi points to the crest.”

(„...und dann zeigt die Lippe ja quasi so auf die Kuppe.“)
185-221 / 7.4 – 8.84

Waits.

Steffi: “Mh:m.”
The hand moves upwards, stretching out sideways, then down the couloir.

Tom: “Well, and then down the couloir.”

(„Ja und in der Rinne dann herunter.“)
Kinesthetic Gestalts: The merging of moving bodies in handball and boxing

Our paper refers to the concept of kinesthetic gestalts (Bewegungsgestalten) as it has been coined by a group of psychologists in the early 1930th in Leipzig at attempts at describing the merging of moving bodies in handball and boxing. This group was loosely associated with gestalt psychology, but criticized this concept as overly focused upon the individual and their perception. The concept of bewegungsgestalt in contrast was created to emphasize the kinesthetic and bodily as well as social and well-coordinated dimensions of activities. This is the perspective that we intend to throw on the phenomenon of sports activities. In doing so, we aim at identifying the means by which the fusion (as well as the dissolution) of bodies and materials into a common gestalt are achieved and an intercorporeal choreography results.

Thus, our paper does not intend to identify theoretical, abstract or generalized ideas on the matter of kinesthetic gestalts in sports. It rather aims at providing a systematization of phenomena that derives from empirical analysis of sports interaction. In doing so, it takes into account differences in the composition of kinesthetic gestalts in regard to two dimensions: the number of persons at a scene and the form of the gestalt itself. The first is a rather obvious matter: the coordination of only two people, for example, represents a different challenge than when a whole team is involved. In both cases, however, specific measures are undertaken by the co-participants to ensure their mutual relatedness. The second aspect, i.e. the form, or better: mode of the gestalt, is a dimension that at first glance appears rather abstract. However, it is indisputable that throughout the different situations in sports, the co-participants also engage in different forms of identical or complementary cooperation, antagonism, or hierarchy. For example, they play in the same team, fight with one another, or are subordinate under the commands of the referees. Although these are popular categories regularly applied in the everyday observation of sports, their production and maintaining involve a tremendous amount of work of the participants.

Thus, our paper looks into diverse situations as they occur in different types of sports (boxing and handball), which lead to the formation of a variety of kinesthetic gestalts. It aims at reconstructing the work that is done by the participants to make a social situation a tough fight, a fair competition, a successful attacking move or a well attuned team play. In order to reconstruct the multimodal organization and coordination of the individual contributions of each of the participants, we analyze videorecordings sequentially.

One example of the kind of a cooperative multimodal organization of a situation that constitutes a well orchestrated bewegungsgestalt is the early beginning of a boxing fight. As visible in screenshot 2, the referee performs a symmetrical hand gesture to call both boxers towards him for the greeting ritual. When the blue boxer (who still got his mouthguard inserted during the referee’s initial hand gesture) approaches too fastly (4), the referee stops him (5) in order to achieve a synchronization with the activities of the red boxer and the verbal introduction of the fight by the stadium announcer. After symmetrizing his gesture once more relative to the red boxer by lifting his hand towards him (even if the boxer is already in a waiting position [6]), he lowers his arms again (7). Both boxers relax their muscles (7) until the referee calls them once again simultaneously to come up in front of him and touch gloves (8-11), thereby adjusting the speed of his gestures to the speed of the boxers’ movements. While the stadium announcer auditably introduces all co-participants of the fight, the referee – virtually on a second level of the same activity – uses the same moments to display the symmetrization of the opponents in relation of himself and to also display and practically accomplish their antagonism which is to symbolized by their bodily activities among themselves as well as for the public.
Transcript: Getting started

1

RR = Ringrichter (referee); R = red boxer; TR = Trainer (coach), red; B = blue boxer; TB = Trainer (coach), blue

2

3

4 RR = Ringrichter (referee); R = red boxer; TR = Trainer (coach), red; B = blue boxer; TB = Trainer (coach), blue
Thus, the referee achieves a choreography of the boxers’ bodies through his own complex gestures which are adjusted in regard to their positioning and speed to the movements of the boxers not unlikely the activities of the conductor of an orchestra. Through these movements, the referee is able to achieve the symmetricization of the boxers towards himself as a starting point of the fight. This beginning of course includes an important gesture towards the spectators, the scoring judges, coaches, boxers, and also—reflexively—the referee himself: all persons involved are thereby assured that they can expect an unbiased and balanced judging by the referee during the course of the fight. By applying these multimodal methods, the participants involved perform a joint kinesthetic gestalt that—in the course of its doing—delivers an accountability towards both outside observers and inside participants.

This is, however, only one example of the different kinesthetic gestalts that we will present in our paper.