Mass spectrometric investigation of homogeneous gas-phase reactions in combustion-generated exhaust gas

Jacqueline Horstmann

Physical Chemistry I, Faculty of Chemistry, Bielefeld University, Germany

In cooperation with: Steffen Schmitt, Lena Ruwe, Sabrina Schwarz, Franziska Sabath, Lubow Maier, Olaf Deutschmann and Katharina Kohse-Höinghaus

UNIVERSITÄT BIELEFELD

Faculty of Chemistry

Motivation	Experimental Procedure	Results and Discussion
 Combustion of fossil and/or renewable fuels remains to be global primary energy source Alternative and cleaner combustion processes needed (low temperature) More efficient catalysis to lower emission of harmful pollutants and greenhouse gases formed during combustion process Reduction of NO_x with NH₃ (selective catalytic reduction, SCR), commonly applied in diesel engines, now tested for begins of during combustion 	 Investigation in plug-flow reactor (PFR) experiments, at 700 - 1200 K, near atmospheric pressure <i>In-situ</i> chemical analysis with molecular-beam mass spectrometry (MBMS), simultaneous detection of most chemical compounds <u>Advantages:</u> Sensitive and universal technique Conditions close to exhaust-gas conditions accessible 	• Consumption of NH ₃ and NO and formation of N ₂ for all five gas mixtures

- \rightarrow Catalyst may be positioned closer to engine
- \rightarrow Necessary to understand reaction kinetics in exhaust system in detail
- $\rightarrow\,$ Systematic evaluation of combustion-generated exhaust streams is needed
- \rightarrow Effects of species like CH4, NO2, CO and C2H4 on

Experimental conditions:

- Starting from NH₃, NO, O₂, successive addition of NO₂, CH₄, CO, and C₂H₄
- Investigation of effects for each individual species to NH₃/NO reactivity

NH₃/NO reactivity under these conditions

Kinetic Modeling

 Numeric simulations performed in Cantera with 5 selected mechanisms, chosen because of their nitrogen subset and validated conditions

Mochaniem	Voar	Number of		
INECHAIII5III	Ital	Species	Reactions	
Konnov [3]	2009	129	1231	
Curran [4]	2017	44	251	
Glarborg [5]	2018	151	1395	
CRECK [6-9]	2014	484	19341	
GDF [10]	2016	123	934	

 MBMS generates one mass spectrum for each temperature point

 \rightarrow Decomposition of CH₄ starts with H-abstraction and generates CH₃ radicals

nearly 200 K (cf. GM2 and GM3)

- Further addition of CO and C₂H₄ doesn't show significant effects (cf. GM3, GM4 and GM5)
- Partial oxidation of CH₄ forms formaldehyde, CH₂O, a carcinogenic substance
- CH₂O could not be detected, but CHO as a proxy for CH₂O formation

- Good agreement of all simulations with experimental results for GM1
- Even addition of NO₂ and especially of CH₄ (cf. GM2 and GM3) results in wide differences
- → Only three mechanisms show good agreement with all experimental results
- \rightarrow These three mechanisms are not perfect and not identical

- For deeper insight into reaction behavior, reaction flow analyses were performed
- They point out differences in describing the reaction kinetics between the mechanisms

- Reduction of NO to N₂ and H₂O is much more complex than equation (1) makes it appear
- Many reactions and (reactive) intermediates included

Temperature-dependent mole fraction profile for each species

			GM1	GM2	GM3	GM4	GM5
_		Ar	0.939	0.939	0.937	0.934	0.936
nlet mole fraction		O ₂	0.06	0.06	0.06	0.06	0.06
		NH ₃	1000	1000	1000	1000	1000
	C	NO	1000	800	800	800	800
		NO_2	-	200	200	200	200
	udo	CH_4	-	-	3000	3000	3000
	0	C_2H_4	-	-	-	-	200
		CO	-	-	-	1000	-

References

[1] S. Schmitt, L. Ruwe, J. Horstmann, S. Schwarz, F. Sabath, L. Maier, O. Deutschmann, K. Kohse-Höinghaus, *PROCI*, **2019**, submitted.

[2] D.G. Goodwin, R.L. Speth, H.K. Moffat, B.W. Weber, *Cantera V. 2.5.0a3*, 2019.

[3] A.A. Konnov, *Combust. Flame*, 156, 2009.

[4] Y. Zhang, O. Mathieu, E.L. Petersen, G.Bourque, H.J. Curran, *Combust. Flame*, 182, 2017.

- [5] P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, *Prog. Energy Combust. Sci.*, 67, 2018.
- [6] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, et al., Combust. Flame, 156, 2009.
- [7] E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A.P. Kelley, C.K. Law, *Prog. Energy Combust. Sci.*, 38, 2012.
- [8] T. Faravelli, A. Frassoldati, E. Ranzi, *Combust. Flame*, 132, 2003.

A. Frassoldati, T. Faravelli, E.Ranzi, *Combust. Flame*, 135, **2003**.

[10] N. Lamoureux, H. El Merhubi, L. Pillier, S. de Persis, P. Desgroux, *Combust. Flame*, 163, 2016.