M. RYCHLOWSKA, G. MCKEOWN, I. SNEDDON, & W. CURRAN

Social and acoustic determinants of perceived laughter intensity

BACKGROUND

PERCEPTUAL INTENSITY ≠ SOUND PRESSURE

- We investigate human judgments of laughter intensity
- Humans are natural "experts" in laughter
- Human judgments of laughter intensity predict judgments of humor (McKeown & Curran, 2015)
- After controlling for perceived intensity and in absence of contextual information laughs produced in different contexts look equally genuine to observers (Curran et al., 2018)

BUT WHAT IS PERCEPTUAL INTENSITY?

PARADIGM & METHODS

• We recorded groups of participants playing enjoyable games, N = 60

- We engineered three types of situations conducive to laughter
- 30 sequences extracted based on specific criteria

- Can we predict human judgments of intensity based on laughter acoustics?
- Do laughs produced in different social situations systematically vary in intensity?
- Each sequence rated for perceived intensity by 203 participants

ANALYSIS AND RESULTS

- Acoustics of laughter extracted from audio recordings using Praat (Boersma & Weenink, 2018)
- Linear mixed models used to regress ratings of intensity on:
 - Social situation (amusement, embarrassment, Schadenfreude)
 - 11 acoustic features covered in previous research (Rychlowska et al., 2018; Wood et al., 2017)

CONCLUSIONS

 Amplitude, harmonicity, and F2 are the only predictors of perceptual intensity

THE TYPE OF SOCIAL SITUATION DOES NOT SIGNIFICANTLY PREDICT INTENSITY JUDGMENTS

Variable	В	SE	t	р
Social context	2.60	3.12	0.83	0.41
Duration [*]	5.86	4.46	1.31	0.20
Amplitude in dB	1.17	0.17	6.68	<.001
F0 mean	1.29	1.07	1.21	0.24
F0 range	0.13	0.30	0.42	0.68
SD F0/Duration*	12.05	9.55	-1.26	0.22
F0 slope [*]	2.84	6.34	0.56	0.66
Center of gravity*	7.60	5.00	1.52	0.14
Harmonicity	1.20	0.47	2.52	0.02
Voicing	0.18	0.10	1.78	0.08
F1 mean	0.01	0.02	0.83	0.41
F2 mean	-0.04	0.01	-2.87	<.001

REFERENCES

- 1. McKeown, G., & Curran, W., (2015). *Proceedings of the 4th Laughter Workshop*, Enschede, 2018
- Intensity does not covary with social situation
- Results yield fewer significant predictors than in Rychlowska et al. (2015)
- Questions for future research: Can observers accurately judge the emotional state of a person when their laughter is presented without contextual information?
- Curran, W., McKeown, G., Rychlowska, M., André, E., Wagner, J., & Lingenfelser, F.. (2018). *Front Psychol*
- 3. Boersma, P, & Weenink, D., (2018). Praat, Version 6.1.09,
- 4. Rychlowska, M., McKeown, G., Sneddon, I., & Curran, W. (2018). *Proceedings of the* 5th Laughter Workshop, Paris, 2018
- 5. Wood, A. R., Martin, J., & Niedenthal, P. M. (2017). PLOS ONE

Magdalena Rychlowska Queen's University Belfast M.Rychlowska@qub.ac.uk

LEVERHULME TRUST_____

