

Übungsaufgaben zu *Anwendungen der Mathematik* Blatt IX vom 06.12.2018

Aufgabe IX.1 (2+2+2 Punkte)

Berechnen Sie jeweils den Flächeninhalt der Fläche, der zwischen dem Graphen der Funktion $f: \mathbb{R} \to \mathbb{R}$ und der x-Achse im angegebenen Intervall I eingeschlossen wird:

a)
$$f(x) = x^2 - 3x$$
, $I = [1, 4]$,

b)
$$f(x) = \sin(x), I = [0, 3\pi],$$

c)
$$f(x) = e^{-x}$$
, $I = [0, a]$, wobei $a > 0$ ein beliebiger Parameter ist.

Stellen Sie die eingeschlossene Fläche jeweils grafisch dar.

Aufgabe IX.2 (3 Punkte)

Bestimmen Sie $a \in \mathbb{R}$ derart, dass

$$\int_{a}^{5} x^2 \, \mathrm{d}x = 63.$$

Aufgabe IX.3 (5 Punkte)

Eine Hotelanlage mit einer Kapazität von 200 Doppelzimmern hat aktuell jedes Wochenende 100 Buchungen des Pakets "Wellness-Wochenende für 2 Personen inkl. 2 Übernachtungen, Vollpension und Prosecco zum Empfang". Der Preis hierfür beträgt aktuell 420 €.

Ein Marktexperte hat berechnet, dass das Hotel pro Preisreduktion um $1 \in$ jeweils eine zusätzliche Buchung hätte. Der Hotelmanager weiß, dass er bei einer Anzahl von x Buchungen pro Wochenende die folgenden Kosten (in \in) hat:

$$K(x) = 15000 + 250x$$

Berechnen Sie, bei welcher Preisreduktion der Manager seinen Gewinn maximieren würde.

Aufgabe IX.4 (6 Punkte)

Bestimmen Sie alle lokalen und globalen Extrema der Funktion

$$f: [-2, 10] \to \mathbb{R}, \quad f(x) = (x^2 - 3)e^{-x}.$$