Magnetic susceptibility of QCD matter

Gergely Endrődi
University of Bielefeld
in collaboration with
Gunnar Bali, Stefano Piemonte

Hot problems of strong interactions
November 92020

Preface: equation of state

Equation of state of QCD

- equilibrium description of QCD matter: $\epsilon(p)$
- evolution of the early universe (Friedmann equations)
- mass-radius relation of neutron stars (TOV equations)
- evolution of heavy-ion collisions

- in each setting, strong magnetic fields may be present O Kharzeev, Landsteiner, Schmitt, Yee '14

Equation of state of QCD

- at zero magnetic field, EoS is encoded in $p(T)$ calculated using lattice QCD simulations

Permeability

- contribution to EoS for small magnetic fields also accessible on the lattice

Outline

- introduction: permeability and magnetic fields in lattice simulations
- new technique: current-current correlators
- connection to HRG model and perturbation theory
- spin- and angular momentum-terms
- summary

Introduction

Susceptibility and permeability

- leading-order dependence of matter free energy density on B

$$
\chi=-\left.\frac{\partial^{2} f}{\partial(e B)^{2}}\right|_{B=0}
$$

from this the $\mathcal{O}\left(B^{2}\right)$ equation of state can be reconstructed

- total free energy

$$
f^{\mathrm{tot}}=-\chi \cdot \frac{(e B)^{2}}{2}+\frac{B^{2}}{2}=\frac{B^{2}}{2 \mu}
$$

- permeability ρ Landau-Lifschitz Vol 8 .

$$
\mu=\frac{1}{1-e^{2} \chi}
$$

- $\mu>1(\chi>0)$: paramagnetism
$\mu<1(\chi<0) \quad:$ diamagnetism

Paramagnets and diamagnets

- paramagnets: attracted to magnetic field
- diamagnets: repel magnetic field

paramagnet: liquid oxygen
Q NCSU physics demonstrations

diamagnet: frog
Q Berry, Geim '10 (Ig Nobel prize)

Magnetic susceptibility - expectations

- in the vacuum $\mu=1$, so $\chi=0$
- spins align with B, so free quarks are paramagnetic
- orbital angular momentum anti-aligns with B (Lenz's law), so free pions are diamagnetic

On the lattice: flux quantization problem

Magnetic field on the torus

torus \mathbb{T}^{2}
with surface area $L_{x} L_{y}$
O D'Elia, Negro '11

- phase factor along path: $\varphi_{\mathcal{C}}=\exp \left(i q \oint_{\mathcal{C}} \mathrm{d} x_{\mu} A_{\mu}\right)$
- Stokes:

$$
\varphi_{\mathcal{C}}=\exp \left(i q \iint_{A} \mathrm{~d} \sigma B\right)=\exp (i q B \cdot A)
$$

but also

$$
\varphi_{\mathcal{C}}=\exp \left(-i q \iint_{\mathbb{T}^{2}-A} \mathrm{~d} \sigma B\right)=\exp \left(-i q B \cdot\left(L_{x} L_{y}-A\right)\right)
$$

- consistent if o't Hooft '79 O Hashimi, Wiese '08

$$
\exp \left(i q B L_{x} L_{y}\right)=1 \quad \rightarrow \quad q B L_{x} L_{y}=2 \pi \cdot N_{b}, \quad N_{b} \in \mathbb{Z}
$$

Flux quantization

- flux quantization in finite volume

$$
e B=\frac{6 \pi \cdot N_{b}}{L_{x} L_{y}}, \quad N_{b}=0,1, \ldots
$$

$\Rightarrow \chi$ via differentiation wrt. B is ill-defined

- workarounds:
- calculate $f\left(N_{b}\right)$ in a sufficiently large volume and differentiate numerically \& Bonati et al. '13 \& Bali et al. '14
\& computationally expensive
- replace constant B by 'half-half setup' with zero flux, differentiation is allowed Q Levkova, DeTar '13
\& introduces large finite size effects
- relate χ to pressure differences θ Bali et al. '13
\& needs anisotropic lattices
- new method: express χ as an operator in the thermodynamic limit \& Bali, Endrödi, Piemonte '20

New method: sketch

Oscillatory background fields

- approach constant B via oscillatory fields

Current-current correlator method

- vector potential interacts with current

$$
\mathcal{Z}=\int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left[S_{0}+i \int \mathrm{~d}^{4} \times A_{\mu} j_{\mu}\right], \quad j_{\mu}=\sum_{f} q_{f} \bar{\psi} \gamma_{\mu} \psi
$$

- susceptibility at finite p_{1}

$$
B\left(x_{1}\right)=B \cdot \cos \left(p_{1} x_{1}\right), \quad A_{2}\left(x_{1}\right)=B \cdot \frac{\sin \left(p_{1} x_{1}\right)}{p_{1}}
$$

Current-current correlator method

- vector potential interacts with current

$$
\mathcal{Z}=\int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left[S_{0}+i \int \mathrm{~d}^{4} \times A_{\mu} j_{\mu}\right], \quad j_{\mu}=\sum_{f} q_{f} \bar{\psi} \gamma_{\mu} \psi
$$

- susceptibility at finite p_{1}

$$
\begin{gathered}
B\left(x_{1}\right)=B \cdot \cos \left(p_{1} x_{1}\right), \quad A_{2}\left(x_{1}\right)=B \cdot \frac{\sin \left(p_{1} x_{1}\right)}{p_{1}} \\
\chi^{\left(p_{1}\right)}=-\left.\frac{\partial^{2} f}{\partial(e B)^{2}}\right|_{B=0}=-\frac{T}{V} \int \mathrm{~d}^{4} x \mathrm{~d}^{4} y \frac{\sin \left(p_{1} x_{1}\right) \sin \left(p_{1} y_{1}\right)}{p_{1}^{2}}\left\langle j_{2}(x) j_{2}(y)\right\rangle
\end{gathered}
$$

Current-current correlator method

- vector potential interacts with current

$$
\mathcal{Z}=\int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left[S_{0}+i \int \mathrm{~d}^{4} x A_{\mu} j_{\mu}\right], \quad j_{\mu}=\sum_{f} q_{f} \bar{\psi} \gamma_{\mu} \psi
$$

- susceptibility at finite p_{1}

$$
\begin{gathered}
B\left(x_{1}\right)=B \cdot \cos \left(p_{1} x_{1}\right), \quad A_{2}\left(x_{1}\right)=B \cdot \frac{\sin \left(p_{1} x_{1}\right)}{p_{1}} \\
\chi^{\left(p_{1}\right)}=-\left.\frac{\partial^{2} f}{\partial(e B)^{2}}\right|_{B=0}=-\frac{T}{V} \int \mathrm{~d}^{4} x \mathrm{~d}^{4} y \frac{\sin \left(p_{1} x_{1}\right) \sin \left(p_{1} y_{1}\right)}{p_{1}^{2}}\left\langle j_{2}(x) j_{2}(y)\right\rangle
\end{gathered}
$$

- use trigonometric identities + translational invariance + trick

Current-current correlator method

- oscillatory susceptibility

$$
\chi^{\left(p_{1}\right)}=\int \mathrm{d} x_{1} G\left(x_{1}\right) \frac{1-\cos \left(p_{1} x_{1}\right)}{p_{1}^{2}}, \quad G\left(x_{1}\right)=\int \mathrm{d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}\left\langle j_{2}(x) j_{2}(0)\right\rangle
$$

Current-current correlator method

- oscillatory susceptibility

$$
\chi^{\left(p_{1}\right)}=\int \mathrm{d} x_{1} G\left(x_{1}\right) \frac{1-\cos \left(p_{1} x_{1}\right)}{p_{1}^{2}}, \quad G\left(x_{1}\right)=\int \mathrm{d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}\left\langle j_{2}(x) j_{2}(0)\right\rangle
$$

- $p_{1} \rightarrow 0$ in the infinite volume

$$
\chi=\int \mathrm{d} x_{1} \frac{G\left(x_{1}\right)}{2} \cdot x_{1}^{2}
$$

Current-current correlator method

- oscillatory susceptibility

$$
\chi^{\left(p_{1}\right)}=\int \mathrm{d} x_{1} G\left(x_{1}\right) \frac{1-\cos \left(p_{1} x_{1}\right)}{p_{1}^{2}}, \quad G\left(x_{1}\right)=\int \mathrm{d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}\left\langle j_{2}(x) j_{2}(0)\right\rangle
$$

- $p_{1} \xrightarrow{\sim} 0$ in finite volume

$$
\chi=\int_{0}^{L} \mathrm{~d} x_{1} \frac{G\left(x_{1}\right)}{2} \cdot \begin{cases}x_{1}^{2}, & x_{1} \leq L / 2 \\ \left(x_{1}-L\right)^{2}, & x_{1}>L / 2\end{cases}
$$

Current-current correlator method

- oscillatory susceptibility

$$
\chi^{\left(p_{1}\right)}=\int \mathrm{d} x_{1} G\left(x_{1}\right) \frac{1-\cos \left(p_{1} x_{1}\right)}{p_{1}^{2}}, \quad G\left(x_{1}\right)=\int \mathrm{d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}\left\langle j_{2}(x) j_{2}(0)\right\rangle
$$

- $p_{1} \xrightarrow{\sim} 0$ in finite volume

$$
\chi=\int_{0}^{L} \mathrm{~d} x_{1} \frac{G\left(x_{1}\right)}{2} \cdot \begin{cases}x_{1}^{2}, & x_{1} \leq L / 2 \\ \left(x_{1}-L\right)^{2}, & x_{1}>L / 2\end{cases}
$$

- cusp of kernel at $x_{1}=L / 2$ is unproblematic

Correlators

- correlator

Correlators

- correlator and its convolution with the kernels

Correlators

- correlator and its convolution with the kernels

- finite volume effects indeed small

Correlators

- correlator and its convolution with the kernels

- finite volume effects indeed small
- note: $\chi^{(p)}$ analogous to vacuum polarization form factor relevant for muon $g-2$ calculations at $T=0 \&$ Bali, Endrödi '15

Results

Zero temperature

- susceptibility contains additive divergence $\propto \log a$ due to charge renormalization o Schwinger '51 \& Bali et al. '14

Zero temperature

- susceptibility contains additive divergence $\propto \log a$ due to charge renormalization o Schwinger '51 \& Bali et al. '14

- renormalize as $\chi(T)=\chi_{b}(T)-\chi_{b}(T=0)$

Zero temperature

- susceptibility contains additive divergence $\propto \log a$ due to charge renormalization o Schwinger '51 \& Bali et al. '14

- renormalize as $\chi(T)=\chi_{b}(T)-\chi_{b}(T=0)$
- different methods in the literature agree with each other

Nonzero temperature

- continuum extrapolation using four lattice spacings

Nonzero temperature

- continuum extrapolation using four lattice spacings

Nonzero temperature

- continuum extrapolation using four lattice spacings

Nonzero temperature

- continuum extrapolation using four lattice spacings

- comparison to HRG model (low T) \& Endrödi ' 13 and to perturbation theory (high T) \& Bali et al. '14

Nonzero temperature

- continuum extrapolation using four lattice spacings

- comparison to HRG model (low T) \& Endrődi '13 and to perturbation theory (high T) \& Bali et al. '14
- taste splitting lattice artefacts severe at low T; careful continuum extrapolation required \& Bali, Endrődi, Piemonte '20

Permeability

- permeability $\mu=\left(1-e^{2} \chi\right)^{-1}$

Permeability

- permeability $\mu=\left(1-e^{2} \chi\right)^{-1}$
- parameterization as python script, to be used in models https://arxiv.org/src/2004.08778v2/anc/param_EoS.py contains all other observables in the EoS

Decomposition of the susceptibility

Spin and angular momentum

- free fermion: $\chi=\chi^{\text {spin }}+\chi^{\text {ang }}$

$$
\chi^{\mathrm{spin}}: \chi^{\mathrm{ang}}=(+3):(-1)
$$

Spin and angular momentum

- free fermion: $\chi=\chi^{\text {spin }}+\chi^{\text {ang }}$

$$
\chi^{\text {spin }}: \chi^{\mathrm{ang}}=(+3):(-1)
$$

- in the interacting case it still holds

$$
-D^{2}=\underbrace{q B \cdot \sigma_{12}}_{\text {spin term }}+\underbrace{D_{\mu}^{2}}_{\text {angular momentum term }} \quad \sigma_{12}=\frac{1}{2 i}\left[\gamma_{1}, \gamma_{2}\right]
$$

Spin term

- spin term from $\left\langle\bar{\psi}_{f} \sigma_{12} \psi_{f}\right\rangle \quad$ Bali, Endrődi, Piemonte '20

$$
\chi^{\text {spin }}=\sum_{f} \frac{\left(q_{f} / e\right)^{2}}{2 m_{f}}\left[1-\lim _{m_{f}^{\text {val }} \rightarrow 0}\right] \underbrace{\frac{\partial}{\partial\left(q_{f} B\right)}\left\langle\bar{\psi}_{f} \sigma_{12} \psi_{f}\right\rangle}_{\tau_{f}}
$$

- incidentally, τ_{f} is related to the normalization of the leading-twist photon distribution amplitude
? Balitsky, Braun, Kolesnichenko '89

Spin term

- additive renormalization by $T=0$ subtraction (just like χ)
- multiplicative renormalization by Z_{T}

- light yellow band: systematic uncertainty

Decomposition

- angular momentum term indirectly $\chi^{\text {ang }}=\chi-\chi^{\text {spin }}$

- very high temperatures: $\chi^{\text {spin }}: \chi^{\text {ang }}=(+3):(-1)$
- in QCD regime: $\quad \chi^{\text {spin }}: \chi^{\text {ang }} \approx(-1):(+1)$

Decomposition

- angular momentum term indirectly $\chi^{\text {ang }}=\chi-\chi^{\text {spin }}$

- very high temperatures: $\chi^{\text {spin }}: \chi^{\text {ang }}=(+3):(-1)$
- in QCD regime: $\quad \chi^{\text {spin }}: \chi^{\text {ang }} \approx(-1):(+1)$
- interplay of confinement and spin physics

Summary

- new method to calculate χ at $B=0$ in finite volumes

Summary

- new method to calculate χ at $B=0$ in finite volumes

- pions are diamagnetic, QGP is paramagnetic parameterization of $\operatorname{EoS}(T, B)$

Summary

- new method to calculate χ at $B=0$ in finite volumes
- pions are diamagnetic, QGP is paramagnetic parameterization of $\operatorname{EoS}(T, B)$
- nontrivial decomposition into spin and angular momentum: role of confinement

