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Preface: equation of state



Equation of state of QCD
I equilibrium description of QCD matter: ε(p)

I evolution of the early universe (Friedmann equations)
I mass-radius relation of neutron stars (TOV equations)
I evolution of heavy-ion collisions
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I in each setting, strong magnetic fields may be present
Kharzeev, Landsteiner, Schmitt, Yee ’14
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http://inspirehep.net/record/1426801
http://inspirehep.net/record/1381548
https://inspirehep.net/literature/1204463


Equation of state of QCD

I at zero magnetic field, EoS is encoded in p(T )
calculated using lattice QCD simulations
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https://inspirehep.net/literature/1307761
https://inspirehep.net/literature/1254865


Permeability

I contribution to EoS for small magnetic fields
also accessible on the lattice

Bali, Endrődi, Piemonte ’20
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https://inspirehep.net/literature/1791784


Outline

I introduction: permeability and magnetic fields in lattice
simulations

I new technique: current-current correlators
I connection to HRG model and perturbation theory
I spin- and angular momentum-terms
I summary
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Introduction



Susceptibility and permeability
I leading-order dependence of matter free energy density on B

χ = − ∂2f
∂(eB)2

∣∣∣∣∣
B=0

from this the O(B2) equation of state can be reconstructed
I total free energy

f tot = −χ · (eB)2

2 + B2

2 = B2

2µ
I permeability Landau-Lifschitz Vol 8.

µ = 1
1− e2χ

I µ > 1 (χ > 0) : paramagnetism
µ < 1 (χ < 0) : diamagnetism
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Paramagnets and diamagnets

I paramagnets: attracted to magnetic field
I diamagnets: repel magnetic field

paramagnet: liquid oxygen diamagnet: frog
NCSU physics demonstrations Berry, Geim ’10 (Ig Nobel prize)
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https://www.physics.ncsu.edu/demoroom/html/demos/188.html
http://inspirehep.net/record/458868


Magnetic susceptibility – expectations

I in the vacuum µ = 1, so χ = 0
I spins align with B, so free quarks are paramagnetic
I orbital angular momentum anti-aligns with B (Lenz’s law), so

free pions are diamagnetic
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On the lattice: flux quantization problem



Magnetic field on the torus

torus T2

with surface area LxLy

D’Elia, Negro ’11

I phase factor along path: ϕC = exp(iq
∮
C dxµAµ)

I Stokes:
ϕC = exp(iq

∫∫
A dσB) = exp(iqB · A)

but also
ϕC = exp(−iq

∫∫
T2−A dσB) = exp(−iqB · (LxLy − A))

I consistent if ’t Hooft ’79 Hashimi, Wiese ’08

exp(iqBLxLy ) = 1 → qBLxLy = 2π · Nb, Nb ∈ Z
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https://inspirehep.net/literature/892007
https://inspirehep.net/literature/140045
https://inspirehep.net/literature/789917


Flux quantization
I flux quantization in finite volume

eB = 6π · Nb
LxLy

, Nb = 0, 1, . . .

⇒ χ via differentiation wrt. B is ill-defined
I workarounds:

I calculate f (Nb) in a sufficiently large volume and differentiate
numerically Bonati et al. ’13 Bali et al. ’14
E computationally expensive

I replace constant B by ‘half-half setup’ with zero flux,
differentiation is allowed Levkova, DeTar ’13
E introduces large finite size effects

I relate χ to pressure differences Bali et al. ’13
E needs anisotropic lattices

I new method: express χ as an operator in the thermodynamic
limit Bali, Endrődi, Piemonte ’20

9 / 21

https://inspirehep.net/literature/1245255
https://inspirehep.net/literature/1298814
https://inspirehep.net/literature/1252722
https://inspirehep.net/literature/1222680
https://inspirehep.net/literature/1791784


New method: sketch



Oscillatory background fields

I approach constant B via oscillatory fields

B(x) = B · cos(p1x1)
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Current-current correlator method

I vector potential interacts with current

Z =
∫
DUDψ̄Dψ exp

[
S0 + i

∫
d4x Aµ jµ

]
, jµ =

∑
f

qf ψ̄γµψ

I susceptibility at finite p1

B(x1) = B · cos(p1x1), A2(x1) = B · sin(p1x1)
p1

χ(p1) = − ∂2f
∂(eB)2

∣∣∣∣∣
B=0

= −T
V

∫
d4x d4y sin(p1x1) sin(p1y1)

p2
1

〈j2(x)j2(y)〉

I use trigonometric identities + translational invariance + trick
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Current-current correlator method
I oscillatory susceptibility

χ(p1) =
∫

dx1 G(x1) 1− cos(p1x1)
p2

1
, G(x1) =

∫
dx2dx3dx4 〈j2(x)j2(0)〉

I cusp of kernel at x1 = L/2 is unproblematic
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Correlators

I correlator

and its convolution with the kernels

I finite volume effects indeed small

I note: χ(p) analogous to vacuum polarization form factor
relevant for muon g − 2 calculations at T = 0 Bali, Endrődi ’15
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Results



Zero temperature

I susceptibility contains additive divergence ∝ log a
due to charge renormalization Schwinger ’51 Bali et al. ’14

I renormalize as χ(T ) = χb(T )− χb(T = 0)

I different methods in the literature agree with each other
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Nonzero temperature

I continuum extrapolation using four lattice spacings

I comparison to HRG model (low T ) Endrődi ’13
and to perturbation theory (high T ) Bali et al. ’14

I taste splitting lattice artefacts severe at low T ; careful
continuum extrapolation required Bali, Endrődi, Piemonte ’20
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Permeability

I permeability µ = (1− e2χ)−1

I parameterization as python script, to be used in models
https://arxiv.org/src/2004.08778v2/anc/param_EoS.py

contains all other observables in the EoS
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Decomposition of the susceptibility



Spin and angular momentum
I free fermion: χ = χspin + χang

B

χspin : χang = (+3) : (−1)

I in the interacting case it still holds

− /D2 = qB · σ12︸ ︷︷ ︸
spin term

+ D2
µ︸︷︷︸

angular momentum term

σ12 = 1
2i [γ1, γ2]
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Spin term
I spin term from

〈
ψ̄f σ12ψf

〉
Bali, Endrődi, Piemonte ’20

χspin =
∑

f

(qf /e)2

2mf

[
1− lim

mval
f →0

]
∂

∂(qf B)
〈
ψ̄f σ12ψf

〉
︸ ︷︷ ︸

τf

Bali et al ’12

I incidentally, τf is related to the normalization of the
leading-twist photon distribution amplitude

Balitsky, Braun, Kolesnichenko ’89
18 / 21

https://inspirehep.net/literature/1791784
https://inspirehep.net/literature/1188172
https://inspirehep.net/literature/278186


Spin term

I additive renormalization by T = 0 subtraction (just like χ)
I multiplicative renormalization by ZT

I light yellow band: systematic uncertainty
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Decomposition

I angular momentum term indirectly χang = χ− χspin

I very high temperatures: χspin : χang = (+3) : (−1)
I in QCD regime: χspin : χang ≈ (−1) : (+1)

I interplay of confinement and spin physics
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Summary

I new method to calculate χ at
B = 0 in finite volumes

I pions are diamagnetic, QGP is
paramagnetic
parameterization of EoS(T ,B)

I nontrivial decomposition into
spin and angular momentum:
role of confinement
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