Phase diagram of isospin-asymmetric QCD: direct results vs Taylor expansion

Gergely Endrődi

Goethe University of Frankfurt
in collaboration with
Bastian Brandt, Sebastian Schmalzbauer

Lattice seminar @ HUB, 26. November 2018

Outline

- introduction: QCD with isospin
- pion condensation
- spontaneous vs explicit symmetry breaking
- extrapolations in the explicit breaking parameter
- singular value representation
- leading-order reweighting
- Banks-Casher-type improvements
- results
- phase diagram
- comparison to Taylor expansion
- summary

Main result: phase diagram

[Brandt, Endrődi, Schmalzbauer 1712.08190]

Introduction

Introduction

- isospin density $n_{l} \equiv n_{u}-n_{d}$
- $n_{I}<0 \rightarrow$ excess of neutrons over protons

$$
\rightarrow \text { excess of } \pi^{-} \text {over } \pi^{+}
$$

- why relevant?
\rightarrow heavy-ion collisions, in particular for isobar runs

[RHIC isobar program, B. Müller]

Introduction

- isospin density $n_{l} \equiv n_{u}-n_{d}$
- $n_{I}<0 \rightarrow$ excess of neutrons over protons \rightarrow excess of π^{-}over π^{+}
- why relevant?
\rightarrow heavy-ion collisions, in particular for isobar runs
\rightarrow neutron star interiors and composition

[Georgia Tech (Caltech Media Assets)]

[Demorest et al '10]

Isospin chemical potential

- in the grand canonical ensemble
- quark chemical potentials (3-flavor)

$$
\mu_{u}=\frac{\mu_{B}}{3}+\mu_{I} \quad \mu_{d}=\frac{\mu_{B}}{3}-\mu_{I} \quad \mu_{s}=\frac{\mu_{B}}{3}-\mu_{S}
$$

- zero baryon number, zero strangeness, but nonzero isospin

$$
\mu_{u}=\mu_{I} \quad \mu_{d}=-\mu_{I} \quad \mu_{s}=0
$$

- pion chemical potential $\mu_{\pi}=\mu_{u}-\mu_{d}=2 \mu_{I}$
- isospin density $n_{I}=n_{u}-n_{d}$

Pion condensation

- QCD at low energies \approx pions chiral perturbation theory
- chemical potential for charged pions: μ_{π}
at zero temperature

$$
\begin{array}{lc}
\mu_{\pi}<m_{\pi} & \text { vacuum state } \\
\mu_{\pi} \geq m_{\pi} & \text { Bose-Einstein condensation }
\end{array}
$$

[Son, Stephanov '00]

Bose-Einstein condensate

- accumulation of bosonic particles in lowest energy state

[Anderson et al '95 JILA-NIST/University of Colorado]
- velocity distribution of Ru atoms at low temperature \rightarrow peak at zero velocity (zero energy)

BEC in lattice QCD

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V}
$$

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{I} \gamma_{0} \tau_{3}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}}
$$

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{I} \gamma_{0} \tau_{3}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}}
$$

- spontaneously broken by a pion condensate

$$
\left\langle\bar{\psi} \gamma_{5} \tau_{1,2} \psi\right\rangle
$$

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{I} \gamma_{0} \tau_{3}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}}
$$

- spontaneously broken by a pion condensate

$$
\left\langle\bar{\psi} \gamma_{5} \tau_{1,2} \psi\right\rangle
$$

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{I} \gamma_{0} \tau_{3}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}}
$$

- spontaneously broken by a pion condensate

$$
\left\langle\bar{\psi} \gamma_{5} \tau_{1,2} \psi\right\rangle
$$

- a Goldstone mode appears

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{l} \gamma_{0} \tau_{3}+i \lambda \gamma_{5} \tau_{2}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing
$$

- spontaneously broken by a pion condensate

$$
\left\langle\bar{\psi} \gamma_{5} \tau_{1,2} \psi\right\rangle
$$

- a Goldstone mode appears
- add small explicit breaking

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{l} \gamma_{0} \tau_{3}+i \lambda \gamma_{5} \tau_{2}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing
$$

- spontaneously broken by a pion condensate

$$
\left\langle\bar{\psi} \gamma_{5} \tau_{1,2} \psi\right\rangle
$$

- a Goldstone mode appears
- add small explicit breaking
- extrapolate results $\lambda \rightarrow 0$

Dictionary

	pion condensation	
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	
coset	$\mathrm{U}(1)$	
Goldstones	1	
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	
explicit	$\lambda \rightarrow 0$	

Dictionary

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	
coset	$\mathrm{U}(1)$	
Goldstones	1	
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	
explicit	$\lambda \rightarrow 0$	

Dictionary

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	$\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \rightarrow \mathrm{SU}(2)_{V}$
coset	$\mathrm{U}(1)$	
Goldstones	1	
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	
explicit	$\lambda \rightarrow 0$	

Dictionary

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	$\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \rightarrow \mathrm{SU}(2)_{V}$
coset	$\mathrm{U}(1)$	$\mathrm{SU}(2)_{A}$
Goldstones	1	
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	
explicit	$\lambda \rightarrow 0$	

Dictionary

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	$\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \rightarrow \mathrm{SU}(2)_{V}$
coset	$\mathrm{U}(1)$	$\mathrm{SU}(2)_{A}$
Goldstones	1	3
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	
explicit	$\lambda \rightarrow 0$	

Dictionary

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	$\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \rightarrow \mathrm{SU}(2)_{V}$
coset	$\mathrm{U}(1)$	$\mathrm{SU}(2)_{A}$
Goldstones	1	3
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	$\langle\bar{\psi} \psi\rangle$
explicit	$\lambda \rightarrow 0$	

Dictionary

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	$\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \rightarrow \mathrm{SU}(2)_{V}$
coset	$\mathrm{U}(1)$	$\mathrm{SU}(2)_{A}$
Goldstones	1	3
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	$\langle\bar{\psi} \psi\rangle$
explicit	$\lambda \rightarrow 0$	$m \rightarrow 0$

Dictionary

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	$\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \rightarrow \mathrm{SU}(2)_{V}$
coset	$\mathrm{U}(1)$	$\mathrm{SU}(2)_{A}$
Goldstones	1	3
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	$\langle\bar{\psi} \psi\rangle$
explicit	$\lambda \rightarrow 0$	$m \rightarrow 0$

- long story short: pion condensation $1 / 3$ as challenging as the chiral limit of the QCD vacuum

Simulation with $\lambda>0$

- staggered light quark matrix with $\eta_{5}=(-1)^{n_{x}+n_{y}+n_{z}+n_{t}}$

$$
M=\left(\begin{array}{cc}
\phi_{\mu}+m & \lambda \eta_{5} \\
-\lambda \eta_{5} & \emptyset_{-\mu}+m
\end{array}\right)
$$

- we have $\gamma_{5} \tau_{1}$-hermiticity

$$
\eta_{5} \tau_{1} M \tau_{1} \eta_{5}=M^{\dagger}
$$

- determinant is real and positive

$$
\operatorname{det} M=\operatorname{det}\left(\left|D_{\mu}+m\right|^{2}+\lambda^{2}\right)
$$

- early studies [Kogut, Sinclair '02] [de Forcrand, Stephanov, Wenger '07] [Endrödi '14] with unimproved action
- here: $N_{f}=2+1$ rooted stout-smeared staggered quarks + tree-level Symanzik improved gluons

Pion condensate on the lattice

- traditional method [Kogut, Sinclair '02] measure full operator at nonzero λ (via noisy estimators)

$$
\Sigma_{\pi} \propto\left\langle\operatorname{Tr} M^{-1} \eta_{5} \tau_{2}\right\rangle
$$

- extrapolation $\lambda \rightarrow 0$ very steep

Pion condensate on the lattice

- traditional method [Kogut, Sinclair '02] measure full operator at nonzero λ (via noisy estimators)

$$
\Sigma_{\pi} \propto\left\langle\operatorname{Tr} M^{-1} \eta_{5} \tau_{2}\right\rangle
$$

- extrapolation $\lambda \rightarrow 0$ very steep
- new method to etract $\lambda=0$ limit

Computational cost

- computational cost for inverting M grows as $\lambda \rightarrow 0$

- iteration count diverges if a massless mode is present \rightsquigarrow alternative definition of pion condensation
- additionally, reduced step-size necessary due to enhanced fluctuations in fermionic force

Improved λ-extrapolation

Singular value representation

- singular values

$$
\left|D_{\mu}+m\right|^{2} \psi_{i}=\xi_{i}^{2} \psi_{i}
$$

independent of Dirac eigenvalues due to $\left[D_{\mu}, D_{\mu}^{\dagger}\right] \neq 0$

- pion condensate

$$
\Sigma_{\pi}=\frac{\partial}{\partial \lambda} \log \operatorname{det}\left(\left|D_{\mu}+m\right|^{2}+\lambda^{2}\right)=\operatorname{Tr} \frac{2 \lambda}{\left|\not \phi_{\mu}+m\right|^{2}+\lambda^{2}}
$$

- spectral representation

$$
\Sigma_{\pi}=\frac{T}{V} \sum_{i} \frac{2 \lambda}{\xi_{i}^{2}+\lambda^{2}}=\int \mathrm{d} \xi \rho(\xi) \frac{2 \lambda}{\xi^{2}+\lambda^{2}} \xrightarrow{\lambda \rightarrow 0} \pi \rho(0)
$$

first derived in [Kanazawa, Wettig, Yamamoto '11]

Singular value representation

- singular values

$$
\left|\not \phi_{\mu}+m\right|^{2} \psi_{i}=\xi_{i}^{2} \psi_{i}
$$

independent of Dirac eigenvalues due to $\left[D_{\mu}, D_{\mu}^{\dagger}\right] \neq 0$

- pion condensate

$$
\Sigma_{\pi}=\frac{\partial}{\partial \lambda} \log \operatorname{det}\left(\left|D_{\mu}+m\right|^{2}+\lambda^{2}\right)=\operatorname{Tr} \frac{2 \lambda}{\left|\not \phi_{\mu}+m\right|^{2}+\lambda^{2}}
$$

- spectral representation

$$
\Sigma_{\pi}=\frac{T}{V} \sum_{i} \frac{2 \lambda}{\xi_{i}^{2}+\lambda^{2}}=\int \mathrm{d} \xi \rho(\xi) \frac{2 \lambda}{\xi^{2}+\lambda^{2}} \xrightarrow{\lambda \rightarrow 0} \pi \rho(0)
$$

first derived in [Kanazawa, Wettig, Yamamoto '11]

- compare to Banks-Casher-relation at $\mu_{I}=0$

Dictionary

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing$	$\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \rightarrow \mathrm{SU}(2)_{V}$
coset	$\mathrm{U}(1)$	$\mathrm{SU}(2)_{A}$
Goldstones	1	3
spontaneous	$\left\langle\bar{\psi} \gamma_{5} \tau_{2} \psi\right\rangle$	$\langle\bar{\psi} \psi\rangle$
explicit	$\lambda \rightarrow 0$	$m \rightarrow 0$
Banks-Casher	$\rho^{\left\|\not \phi_{\mu}+m\right\|^{2}}(0)$	$\rho^{ゆ}(0)$

Singular value density

- integrated spectral density

$$
N(\xi)=\int_{0}^{\xi} \mathrm{d} \xi^{\prime} \rho\left(\xi^{\prime}\right), \quad \rho(0)=\lim _{\xi \rightarrow 0} N(\xi) / \xi
$$

Singular value density

- integrated spectral density

$$
N(\xi)=\int_{0}^{\xi} \mathrm{d} \xi^{\prime} \rho\left(\xi^{\prime}\right), \quad \rho(0)=\lim _{\xi \rightarrow 0} N(\xi) / \xi
$$

- compare $\rho(0)$ to velocity distribution around zero

Singular value density

- integrated spectral density

$$
N(\xi)=\int_{0}^{\xi} \mathrm{d} \xi^{\prime} \rho\left(\xi^{\prime}\right), \quad \rho(0)=\lim _{\xi \rightarrow 0} N(\xi) / \xi
$$

- compare $\rho(0)$ to velocity distribution around zero
- Bose-Einstein condensation!

Reweighting

- reweighting factor

$$
W=\frac{\operatorname{det}\left(\left|D_{\mu}+m\right|^{2}\right)}{\operatorname{det}\left(\left|\not D_{\mu}+m\right|^{2}+\lambda^{2}\right)}
$$

- but λ is small, so expand in it:

$$
\begin{gathered}
W_{\mathrm{LO}}=\exp \left[-\lambda V_{4} \cdot \Sigma_{\pi}\right] \\
\langle\mathcal{O}\rangle_{\text {rew }}=\frac{\left\langle\mathcal{O} W_{\mathrm{LO}}\right\rangle}{\left\langle W_{\mathrm{LO}}\right\rangle}+\text { higher orders in } \lambda
\end{gathered}
$$

- scatter plot: $W_{\text {LO }}$ vs. W on small lattices

Comparison between old and new methods

- improvement is crucial for reliable $\lambda \rightarrow 0$ extrapolation

New method for other observables

- spectral representation for quark condensate
- improvement crucial for reliable $\lambda \rightarrow 0$ extrapolation

Results: phase diagram [1712.08190]

Condensates

- pion and chiral condensate after $\lambda \rightarrow 0$ extrapolation

- read off chiral crossover $T_{p c}\left(\mu_{l}\right)$ and pion condensation boundary $\mu_{I, c}(T)$

Order of the transition

- volume scaling of order parameter shows typical sharpening
- collapse according to $\mathrm{O}(2)$ critical exponents [Ejiri et al '09]

Order of the transition

- volume scaling of order parameter shows typical sharpening
- collapse according to $\mathrm{O}(2)$ critical exponents [Ejiri et al '09]
- indications for a second order phase transition at $\mu_{I} \approx m_{\pi} / 2$, in the $\mathrm{O}(2)$ universality class

Transition temperatures

- $T_{p c}$: inflection point of chiral condensate
- $\mu_{l, c}$: boundary of $\Sigma_{\pi}>0$ region
- continuum limit based on $N_{t}=6,8,10,12$

Phase diagram

- meeting point of chiral crossover and pion condensation boundary: pseudo-triple point

$$
\text { at } T_{p t}=151(7) \mathrm{MeV}, \mu_{l, p t}=70(5) \mathrm{MeV}
$$

Phase diagram

- meeting point of chiral crossover and pion condensation boundary: pseudo-triple point

$$
\text { at } T_{p t}=151(7) \mathrm{MeV}, \mu_{I, p t}=70(5) \mathrm{MeV}
$$

- the two transitions coincide beyond the pseudo-triple point

Phase diagram

- Polyakov loop as measure for deconfinement

- no significant response in P on pion condensation
- deconfinement crossover persists in pion condensed phase \rightsquigarrow BCS superconductivity [Son, Stephanov '01]

Phase diagram

- favored phase diagram schematically: hadronic, quark-gluon plasma, BEC, BCS phases

Taylor expansion method

Taylor expansion method

- overcome sign problem at $\mu_{B}>0$
- reconstruct observable $\mathcal{O}\left(\mu_{B}\right)$ via

$$
\mathcal{O}\left(\mu_{B}\right)=\sum_{i=0}^{\infty} c_{i}^{\mathcal{O}} \mu_{B}^{i}
$$

- routinely used for phase diagram and for EoS

Baryonic chemical potential (MeV)
[Endrődi et al '11]

[HotQCD '17]

[BMWc '18]

Radius of convergence

- reconstruction via Taylor expansion only works for analytic functions
- radius of convergence marks nearest singularity
- used to investigate the QCD critical endpoint

[Datta, Gavai, Gupta '17]

[HotQCD '17]

Taylor expansion for nonzero isospin

- comparison between full results and expansion is possible
- our choice for the observable:

$$
\left\langle n_{I}\right\rangle=\frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_{I}}
$$

- compared to Taylor-expansion

$$
\frac{\left\langle n_{l}\right\rangle}{T^{3}}=\left\langle c_{2}\right\rangle \cdot \frac{\mu_{1}}{T}+\frac{\left\langle c_{4}\right\rangle}{6} \cdot\left(\frac{\mu_{l}}{T}\right)^{3}+\mathcal{O}\left(\mu_{l}^{5}\right)
$$

with $\left\langle c_{2,4}\right\rangle$ available in [Borsányi et al '12]

Results: comparison to Taylor series [1810.11045]

Breakdown at pion condensation onset

- second-order phase transition along condensation onset

- Taylor expansion breaks down at the phase transition visualized for the $24^{3} \times 6$ ensemble

Breakdown at pion condensation onset

- second-order phase transition along condensation onset

- Taylor expansion breaks down at the phase transition visualized for the $24^{3} \times 6$ ensemble

Breakdown at pion condensation onset

- second-order phase transition along condensation onset

- Taylor expansion breaks down at the phase transition visualized for the $24^{3} \times 6$ ensemble

Breakdown at pion condensation onset

- second-order phase transition along condensation onset

- Taylor expansion breaks down at the phase transition visualized for the $24^{3} \times 6$ ensemble

Reliability range

- quantify deviation between expanded and true values

$$
\Delta^{\mathrm{LO}}=\left|\frac{\left\langle n_{1}\right\rangle}{T^{3}}-\left\langle c_{2}\right\rangle \cdot \frac{\mu_{I}}{T}\right| \quad \Delta^{\mathrm{NLO}}=\left|\frac{\left\langle n_{1}\right\rangle}{T^{3}}-\left\langle c_{2}\right\rangle \cdot \frac{\mu_{I}}{T}-\frac{\left\langle c_{4}\right\rangle}{6} \cdot\left(\frac{\mu_{I}}{T}\right)^{3}\right|
$$

- different behavior inside and outside pion condensed phase
leading order

Reliability range

- quantify deviation between expanded and true values

$$
\Delta^{\mathrm{LO}}=\left|\frac{\left\langle n_{1}\right\rangle}{T^{3}}-\left\langle c_{2}\right\rangle \cdot \frac{\mu_{1}}{T}\right| \quad \Delta^{\mathrm{NLO}}=\left|\frac{\left\langle n_{1}\right\rangle}{T^{3}}-\left\langle c_{2}\right\rangle \cdot \frac{\mu_{1}}{T}-\frac{\left\langle c_{4}\right\rangle}{6} \cdot\left(\frac{\mu_{1}}{T}\right)^{3}\right|
$$

- different behavior inside and outside pion condensed phase
leading order

next-to-leading order

Contour lines in the continuum

- continuum extrapolation performed using $N_{t}=6,8,10,12$
- plot contours against μ_{I} / T

- large deviations from naively expected $\mu_{I} / T=$ const lines

Radius of convergence

- at low T, nearest singularity is at pion condensation onset
- radius of convergence for $\chi_{I}=\partial n_{I} / \partial \mu_{I}$:

$$
\frac{r}{T}=\lim _{n \rightarrow \infty} \sqrt{\frac{\left\langle c_{n}\right\rangle}{\left\langle c_{n}+2\right\rangle} \cdot(n-1) n} \sim \sqrt{\frac{\left\langle c_{2}\right\rangle}{\left\langle c_{4}\right\rangle} \cdot 2}
$$

using $\left\langle c_{2,4}\right\rangle$ from [Borsányi et al '12]

Radius of convergence

- at low T, nearest singularity is at pion condensation onset
- radius of convergence for $\chi_{I}=\partial n_{I} / \partial \mu_{I}$:

$$
\frac{r}{T}=\lim _{n \rightarrow \infty} \sqrt{\frac{\left\langle c_{n}\right\rangle}{\left\langle c_{n}+2\right\rangle} \cdot(n-1) n} \sim \sqrt{\frac{\left\langle c_{2}\right\rangle}{\left\langle c_{4}\right\rangle} \cdot 2}
$$

using $\left\langle c_{2,4}\right\rangle$ from [Borsányi et al '12]

Estimator from which series?

Estimator from which series?

- $r\left\{n_{l}^{\prime}\right\}=r\left\{n_{l}\right\}=r\{\log \mathcal{Z}\}$, but leading estimators differ as

$$
1: \sqrt{3}: \sqrt{6}
$$

Estimator from which series?

- $r\left\{n_{l}^{\prime}\right\}=r\left\{n_{l}\right\}=r\{\log \mathcal{Z}\}$, but leading estimators differ as

$$
1: \sqrt{3}: \sqrt{6}
$$

susceptibility-series seems to converge faster (see also [Karsch, Schaefer, Wagner, Wambach '11])

Estimator from which series?

- $r\left\{n_{l}^{\prime}\right\}=r\left\{n_{l}\right\}=r\{\log \mathcal{Z}\}$, but leading estimators differ as

$$
1: \sqrt{3}: \sqrt{6}
$$

susceptibility-series seems to converge faster (see also [Karsch, Schaefer, Wagner, Wambach '11])

- need higher-order estimates

Estimator from which series?

- $r\left\{n_{l}^{\prime}\right\}=r\left\{n_{l}\right\}=r\{\log \mathcal{Z}\}$, but leading estimators differ as

$$
1: \sqrt{3}: \sqrt{6}
$$

susceptibility-series seems to converge faster (see also [Karsch, Schaefer, Wagner, Wambach '11])

- need higher-order estimates
- results may give insight to convergence properties at $\mu_{B}>0$

Summary

- Bose-Einstein condensation via singular value density
\rightsquigarrow flat extrapolation in λ

- map QCD phase diagram for nonzero isospin-asymmetry \rightsquigarrow detected a $2^{\text {nd }}$ order phase transition in full QCD (for the first time)
- comparison to Taylor expansion around $\mu_{I}=0$
\rightsquigarrow susceptibility series optimal for convergence radius studies

