Phase diagram of isospin-asymmetric QCD: direct results vs Taylor expansion

Gergely Endrődi

Goethe University of Frankfurt

in collaboration with Bastian Brandt, Sebastian Schmalzbauer

Lattice seminar @ HUB, 26. November 2018

Outline

- introduction: QCD with isospin
 - pion condensation
 - spontaneous vs explicit symmetry breaking
- extrapolations in the explicit breaking parameter
 - singular value representation
 - leading-order reweighting
 - Banks-Casher-type improvements
- results
 - phase diagram
 - comparison to Taylor expansion
- summary

Main result: phase diagram

[Brandt, Endrődi, Schmalzbauer 1712.08190]

Introduction

Introduction

• isospin density $n_I \equiv n_u - n_d$

►
$$n_l < 0 \rightarrow$$
 excess of neutrons over protons
 \rightarrow excess of π^- over π^+

why relevant?

 \rightarrow heavy-ion collisions, in particular for isobar runs

[RHIC isobar program, B. Müller]

Introduction

- isospin density $n_I \equiv n_u n_d$
- ► $n_l < 0 \rightarrow$ excess of neutrons over protons \rightarrow excess of π^- over π^+
- why relevant?
 - \rightarrow heavy-ion collisions, in particular for isobar runs
 - \rightarrow neutron star interiors and composition

[Georgia Tech (Caltech Media Assets)]

Isospin chemical potential

- in the grand canonical ensemble
- quark chemical potentials (3-flavor)

$$\mu_u = \frac{\mu_B}{3} + \mu_I$$
 $\mu_d = \frac{\mu_B}{3} - \mu_I$ $\mu_s = \frac{\mu_B}{3} - \mu_S$

zero baryon number, zero strangeness, but nonzero isospin

$$\mu_u = \mu_I \qquad \mu_d = -\mu_I \qquad \mu_s = 0$$

• pion chemical potential $\mu_{\pi} = \mu_{u} - \mu_{d} = 2\mu_{I}$

• isospin density $n_I = n_u - n_d$

Pion condensation

► QCD at low energies ≈ pions chiral perturbation theory

 \blacktriangleright chemical potential for charged pions: μ_{π}

at zero temperature $\mu_{\pi} < m_{\pi}$ vacuum state $\mu_{\pi} \ge m_{\pi}$ Bose-Einstein condensation [Son, Stephanov '00]

Bose-Einstein condensate

accumulation of bosonic particles in lowest energy state

[Anderson et al '95 JILA-NIST/University of Colorado]

▶ velocity distribution of Ru atoms at low temperature → peak at zero velocity (zero energy)

BEC in lattice QCD

▶ QCD with light quark matrix
 M = Ø + m_{ud} 1
 ▶ chiral symmetry (flavor-nontrivial)

 ${
m SU}(2)_V$

QCD with light quark matrix

 $M = \not D + m_{ud} \mathbb{1} + \mu_I \gamma_0 \tau_3$

chiral symmetry (flavor-nontrivial)

 $\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3}$

QCD with light quark matrix

$$M = \not D + m_{ud} \mathbb{1} + \mu_I \gamma_0 \tau_3$$

chiral symmetry (flavor-nontrivial)

 $\mathrm{SU}(2)_V
ightarrow \mathrm{U}(1)_{ au_3}$

 spontaneously broken by a pion condensate

$$\left\langle \bar{\psi}\gamma_{5}\tau_{1,2}\psi\right\rangle$$

QCD with light quark matrix

$$M = \not D + m_{ud} \mathbb{1} + \mu_I \gamma_0 \tau_3$$

chiral symmetry (flavor-nontrivial)

 $\mathrm{SU}(2)_V
ightarrow \mathrm{U}(1)_{ au_3}$

 spontaneously broken by a pion condensate

$$\left\langle \bar{\psi}\gamma_5\tau_{1,2}\psi \right\rangle$$

QCD with light quark matrix

$$M = \not D + m_{ud} \mathbb{1} + \mu_I \gamma_0 \tau_3$$

chiral symmetry (flavor-nontrivial)

 $\mathrm{SU}(2)_V
ightarrow \mathrm{U}(1)_{ au_3}$

 spontaneously broken by a pion condensate

$$\left\langle \bar{\psi}\gamma_{5}\tau_{1,2}\psi\right\rangle$$

a Goldstone mode appears

QCD with light quark matrix

$$M = \not D + m_{ud} \mathbb{1} + \mu_I \gamma_0 \tau_3 + i \lambda \gamma_5 \tau_2$$

chiral symmetry (flavor-nontrivial)

$$\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3} \to \varnothing$$

 spontaneously broken by a pion condensate

$$\left\langle \bar{\psi}\gamma_{5}\tau_{1,2}\psi\right\rangle$$

- a Goldstone mode appears
- add small explicit breaking

QCD with light quark matrix

$$M = \not D + m_{ud} \mathbb{1} + \mu_I \gamma_0 \tau_3 + i\lambda \gamma_5 \tau_2$$

chiral symmetry (flavor-nontrivial)

$$\mathrm{SU}(2)_V \to \mathrm{U}(1)_{\tau_3} \to \varnothing$$

 spontaneously broken by a pion condensate

$$\left\langle \bar{\psi}\gamma_{5}\tau_{1,2}\psi\right\rangle$$

a Goldstone mode appears
add small explicit breaking

• extrapolate results $\lambda \rightarrow 0$

	pion condensation	
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	
coset	U(1)	
Goldstones	1	
spontaneous	$\left\langle \bar{\psi}\gamma_{5} au_{2}\psi ight angle$	
explicit	$\lambda ightarrow 0$	

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	
coset	U(1)	
Goldstones	1	
spontaneous	\left	
explicit	$\lambda ightarrow 0$	

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \to \mathrm{SU}(2)_V$
coset	U(1)	
Goldstones	1	
spontaneous	$\left\langle \bar{\psi}\gamma_{5} au_{2}\psi ight angle$	
explicit	$\lambda ightarrow 0$	

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \to \mathrm{SU}(2)_V$
coset	U(1)	${ m SU}(2)_{\mathcal{A}}$
Goldstones	1	
spontaneous	\left	
explicit	$\lambda ightarrow 0$	

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \to \mathrm{SU}(2)_V$
coset	U(1)	${ m SU}(2)_{\mathcal{A}}$
Goldstones	1	3
spontaneous	\left	
explicit	$\lambda ightarrow 0$	

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \to \mathrm{SU}(2)_V$
coset	U(1)	${ m SU}(2)_{\mathcal{A}}$
Goldstones	1	3
spontaneous	$\left\langle \bar{\psi}\gamma_{5} au_{2}\psi ight angle$	$\left\langle ar{\psi}\psi ight angle$
explicit	$\lambda ightarrow 0$	

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \to \mathrm{SU}(2)_V$
coset	U(1)	${ m SU}(2)_{\cal A}$
Goldstones	1	3
spontaneous	$\left\langle \bar{\psi}\gamma_{5} au_{2}\psi ight angle$	\left
explicit	$\lambda ightarrow 0$	m ightarrow 0

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R o \mathrm{SU}(2)_V$
coset	U(1)	$SU(2)_A$
Goldstones	1	3
spontaneous	$\left\langle \bar{\psi}\gamma_{5} au_{2}\psi ight angle$	\left
explicit	$\lambda ightarrow 0$	m ightarrow 0

 long story short: pion condensation 1/3 as challenging as the chiral limit of the QCD vacuum

Simulation with $\lambda > 0$

▶ staggered light quark matrix with $\eta_5 = (-1)^{n_x + n_y + n_z + n_t}$

$$M = \begin{pmatrix} \not D_{\mu} + m & \lambda \eta_5 \\ -\lambda \eta_5 & \not D_{-\mu} + m \end{pmatrix}$$

• we have $\gamma_5 \tau_1$ -hermiticity

$$\eta_5 \tau_1 M \tau_1 \eta_5 = M^{\dagger}$$

determinant is real and positive

$$\det M = \det(|\not\!\!D_\mu + m|^2 + \lambda^2)$$

- early studies [Kogut, Sinclair '02] [de Forcrand, Stephanov, Wenger '07] [Endrődi '14] with unimproved action
- here: N_f = 2 + 1 rooted stout-smeared staggered quarks + tree-level Symanzik improved gluons

Pion condensate on the lattice

 traditional method [Kogut, Sinclair '02] measure full operator at nonzero \(\lambda\) (via noisy estimators)

$$\Sigma_{\pi} \propto \left< {
m Tr} M^{-1} \eta_5 au_2
ight>$$

• extrapolation $\lambda \rightarrow 0$ very steep

Pion condensate on the lattice

 traditional method [Kogut, Sinclair '02] measure full operator at nonzero \(\lambda\) (via noisy estimators)

$$\Sigma_\pi \propto \left< {
m Tr} M^{-1} \eta_5 au_2
ight>$$

- extrapolation $\lambda \rightarrow 0$ very steep
- new method to etract $\lambda = 0$ limit

Computational cost

• computational cost for inverting M grows as $\lambda \rightarrow 0$

- iteration count diverges if a massless mode is present
 alternative definition of pion condensation
- additionally, reduced step-size necessary due to enhanced fluctuations in fermionic force

Improved λ -extrapolation

Singular value representation

singular values

$$|\not\!D_{\mu}+m|^2\,\psi_i=\xi_i^2\,\psi_i$$

independent of Dirac eigenvalues due to $[\not\!\!D_\mu, \not\!\!D_\mu^\dagger]
eq 0$

pion condensate

$$\Sigma_{\pi} = rac{\partial}{\partial\lambda}\log\det(|{
otin}_{\mu}+m|^2+\lambda^2) = {
m Tr}rac{2\lambda}{|{
otin}_{\mu}+m|^2+\lambda^2}$$

spectral representation

$$\Sigma_{\pi} = \frac{T}{V} \sum_{i} \frac{2\lambda}{\xi_{i}^{2} + \lambda^{2}} = \int d\xi \,\rho(\xi) \,\frac{2\lambda}{\xi^{2} + \lambda^{2}} \xrightarrow{\lambda \to 0} \pi \rho(0)$$

first derived in [Kanazawa, Wettig, Yamamoto '11]

Singular value representation

singular values

$$|\not\!D_{\mu}+m|^2\,\psi_i=\xi_i^2\,\psi_i$$

independent of Dirac eigenvalues due to $[\not\!\!D_\mu, \not\!\!D_\mu^\dagger] \neq 0$

pion condensate

$$\Sigma_{\pi} = rac{\partial}{\partial\lambda}\log\det(|{
otin}_{\mu}+m|^2+\lambda^2) = {
m Tr}rac{2\lambda}{|{
otin}_{\mu}+m|^2+\lambda^2}$$

spectral representation

$$\Sigma_{\pi} = \frac{T}{V} \sum_{i} \frac{2\lambda}{\xi_{i}^{2} + \lambda^{2}} = \int d\xi \,\rho(\xi) \,\frac{2\lambda}{\xi^{2} + \lambda^{2}} \xrightarrow{\lambda \to 0} \pi \rho(0)$$

first derived in [Kanazawa, Wettig, Yamamoto '11]

• compare to Banks-Casher-relation at $\mu_I = 0$

	pion condensation	vacuum chiral symmetry breaking
pattern	$\mathrm{U}(1)_{ au_3} o arnothing$	$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \to \mathrm{SU}(2)_V$
coset	U(1)	${ m SU}(2)_{\mathcal{A}}$
Goldstones	1	3
spontaneous	$\left\langle ar{\psi}\gamma_{5} au_{2}\psi ight angle$	\left
explicit	$\lambda ightarrow 0$	m ightarrow 0
Banks-Casher	$ ho^{ { ot\!\!/}\!\!/}_\mu+m ^2}(0)$	$ ho^{ ot\!\!\!\!D}(0)$

Singular value density

integrated spectral density

$$N(\xi) = \int_0^\xi \mathrm{d}\xi'
ho(\xi'), \qquad
ho(0) = \lim_{\xi o 0} N(\xi)/\xi$$

Singular value density

integrated spectral density

$$N(\xi) = \int_0^\xi \mathrm{d}\xi'
ho(\xi'), \qquad
ho(0) = \lim_{\xi o 0} N(\xi)/\xi$$

• compare $\rho(0)$ to velocity distribution around zero

Singular value density

integrated spectral density

$$N(\xi) = \int_0^\xi \mathrm{d}\xi'
ho(\xi'), \qquad
ho(0) = \lim_{\xi o 0} N(\xi)/\xi$$

- compare $\rho(0)$ to velocity distribution around zero
- Bose-Einstein condensation!

Reweighting

on

reweighting factor

$$W=rac{{
m det}(|{
ot\!\!/}_\mu+m|^2)}{{
m det}(|{
ot\!\!/}_\mu+m|^2+\lambda^2)}$$

• but λ is small, so expand in it:

$$W_{\rm LO} = \exp\left[-\lambda V_4 \cdot \boldsymbol{\Sigma}_{\pi}\right]$$

$$\langle \mathcal{O} \rangle_{\text{rew}} = \frac{\langle \mathcal{O} W_{\text{LO}} \rangle}{\langle W_{\text{LO}} \rangle} + \text{ higher orders in } \lambda$$
scatter plot: W_{LO} vs. $W \stackrel{\text{i.4}}{\underset{0.8}{\textcircled{o}}} \stackrel{1.4}{\underset{0.8}{\textcircled{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\textcircled{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\overbrace{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\overbrace{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\overbrace{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\overbrace{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\overbrace{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\overbrace{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\overbrace{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\overbrace{o}}} \stackrel{\text{i.4}}{\underset{0.8}{\atop{o}}} \stackrel{\text{i.4}$

0.5

1

 $W / \langle W \rangle$

15 / 32

2

1.5

Comparison between old and new methods

• improvement is crucial for reliable $\lambda \rightarrow 0$ extrapolation

New method for other observables

spectral representation for quark condensate

• improvement crucial for reliable $\lambda \rightarrow 0$ extrapolation

Results: phase diagram [1712.08190]

Condensates

• pion and chiral condensate after $\lambda \rightarrow 0$ extrapolation

▶ read off chiral crossover T_{pc}(µ_I) and pion condensation boundary µ_{I,c}(T)

Order of the transition

volume scaling of order parameter shows typical sharpening

► collapse according to O(2) critical exponents [Ejiri et al '09]

Order of the transition

- volume scaling of order parameter shows typical sharpening
- ► collapse according to O(2) critical exponents [Ejiri et al '09]
- ► indications for a second order phase transition at $\mu_I \approx m_{\pi}/2$, in the O(2) universality class

Transition temperatures

- ► *T_{pc}*: inflection point of chiral condensate
- $\mu_{I,c}$: boundary of $\Sigma_{\pi} > 0$ region
- continuum limit based on $N_t = 6, 8, 10, 12$

meeting point of chiral crossover and pion condensation boundary: pseudo-triple point

at $T_{pt} = 151(7)$ MeV, $\mu_{I,pt} = 70(5)$ MeV

meeting point of chiral crossover and pion condensation boundary: pseudo-triple point

at $T_{pt} = 151(7)$ MeV, $\mu_{I,pt} = 70(5)$ MeV

the two transitions coincide beyond the pseudo-triple point

Polyakov loop as measure for deconfinement

- no significant response in *P* on pion condensation

 favored phase diagram schematically: hadronic, quark-gluon plasma, BEC, BCS phases

 $m_{\pi}/2$ μ_{I}

Taylor expansion method

Taylor expansion method

- overcome sign problem at $\mu_B > 0$
- reconstruct observable $\mathcal{O}(\mu_B)$ via

$$\mathcal{O}(\mu_B) = \sum_{i=0}^{\infty} c_i^{\mathcal{O}} \mu_B^i$$

routinely used for phase diagram and for EoS

Radius of convergence

- reconstruction via Taylor expansion only works for analytic functions
- radius of convergence marks nearest singularity
- used to investigate the QCD critical endpoint

Taylor expansion for nonzero isospin

- comparison between full results and expansion is possible
- our choice for the observable:

$$\langle n_I \rangle = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_I}$$

compared to Taylor-expansion

$$\frac{\langle n_l \rangle}{T^3} = \langle c_2 \rangle \cdot \frac{\mu_l}{T} + \frac{\langle c_4 \rangle}{6} \cdot \left(\frac{\mu_l}{T}\right)^3 + \mathcal{O}(\mu_l^5)$$

with $\langle c_{2,4} \rangle$ available in [Borsányi et al '12]

Results: comparison to Taylor series [1810.11045]

 Taylor expansion breaks down at the phase transition visualized for the 24³ × 6 ensemble

- second-order phase transition along condensation onset
 along transition along transition onset
 - Taylor expansion breaks down at the phase transition visualized for the 24³ × 6 ensemble

0.8

 second-order phase transition along condensation onset

 Taylor expansion breaks down at the phase transition visualized for the 24³ × 6 ensemble

 second-order phase transition along condensation onset

 Taylor expansion breaks down at the phase transition visualized for the 24³ × 6 ensemble

Reliability range

quantify deviation between expanded and true values

$$\Delta^{\mathrm{LO}} = \left| rac{\langle n_l
angle}{T^3} - \langle c_2
angle \cdot rac{\mu_l}{T}
ight| \qquad \Delta^{\mathrm{NLO}} = \left| rac{\langle n_l
angle}{T^3} - \langle c_2
angle \cdot rac{\mu_l}{T} - rac{\langle c_4
angle}{6} \cdot \left(rac{\mu_l}{T}
ight)^3$$

different behavior inside and outside pion condensed phase

Reliability range

leading order

quantify deviation between expanded and true values

$$\Delta^{\mathrm{LO}} = \left| rac{\langle n_l
angle}{T^3} - \langle c_2
angle \cdot rac{\mu_l}{T}
ight| \qquad \Delta^{\mathrm{NLO}} = \left| rac{\langle n_l
angle}{T^3} - \langle c_2
angle \cdot rac{\mu_l}{T} - rac{\langle c_4
angle}{6} \cdot \left(rac{\mu_l}{T}
ight)^3$$

different behavior inside and outside pion condensed phase

28 / 32

next-to-leading order

Contour lines in the continuum

- continuum extrapolation performed using $N_t = 6, 8, 10, 12$
- plot contours against μ_I/T

▶ large deviations from naively expected $\mu_I/T = \text{const}$ lines

Radius of convergence

- \blacktriangleright at low T, nearest singularity is at pion condensation onset
- radius of convergence for $\chi_I = \partial n_I / \partial \mu_I$:

$$\frac{r}{T} = \lim_{n \to \infty} \sqrt{\frac{\langle c_n \rangle}{\langle c_n + 2 \rangle} \cdot (n-1)n} \sim \sqrt{\frac{\langle c_2 \rangle}{\langle c_4 \rangle} \cdot 2}$$

using $\langle c_{2,4} \rangle$ from [Borsányi et al '12]

Radius of convergence

- \blacktriangleright at low T, nearest singularity is at pion condensation onset
- radius of convergence for $\chi_I = \partial n_I / \partial \mu_I$:

$$\frac{r}{T} = \lim_{n \to \infty} \sqrt{\frac{\langle c_n \rangle}{\langle c_n + 2 \rangle} \cdot (n-1)n} \sim \sqrt{\frac{\langle c_2 \rangle}{\langle c_4 \rangle} \cdot 2}$$

using $\langle c_{2,4} \rangle$ from [Borsányi et al '12]

► $r\{n'_I\} = r\{n_I\} = r\{\log Z\}$, but leading estimators differ as 1 : $\sqrt{3}$: $\sqrt{6}$

▶ $r\{n'_I\} = r\{n_I\} = r\{\log Z\}$, but leading estimators differ as 1 : $\sqrt{3}$: $\sqrt{6}$

susceptibility-series seems to converge faster (see also [Karsch, Schaefer, Wagner, Wambach '11])

► $r\{n_l\} = r\{n_l\} = r\{\log Z\}$, but leading estimators differ as 1 : $\sqrt{3}$: $\sqrt{6}$

susceptibility-series seems to converge faster (see also [Karsch, Schaefer, Wagner, Wambach '11])

need higher-order estimates

► $r\{n'_I\} = r\{n_I\} = r\{\log Z\}$, but leading estimators differ as 1 : $\sqrt{3}$: $\sqrt{6}$

susceptibility-series seems to converge faster (see also [Karsch, Schaefer, Wagner, Wambach '11])

- need higher-order estimates
- ▶ results may give insight to convergence properties at $\mu_B > 0$

Summary

 Bose-Einstein condensation via singular value density

 \leadsto flat extrapolation in λ

- ▶ map QCD phase diagram for nonzero isospin-asymmetry
 → detected a 2nd order phase transition in full QCD (for the first time)
- comparison to Taylor expansion around µ_I = 0
 → susceptibility series optimal for convergence radius studies

