QCD at nonzero isospin densities

Gergely Endrődi

Goethe University of Frankfurt
in collaboration with Bastian Brandt

Phase structure of lattice field theories
26. September 2016

Outline

- introduction: QCD with isospin
- relevant phenomena
- pion condensation
- chiral symmetry breaking
- λ-extrapolation
- naive method
- new method
- results
- phase boundary for pion condensation
- χ_{SB} transition line at low μ_{1}
- direct check of Taylor-expansion
- outlook

Introduction

- isospin density $n_{I}=n_{u}-n_{d}$
- $n_{I}<0 \rightarrow$ excess of neutrons over protons

$$
\rightarrow \text { excess of } \pi^{-} \text {over } \pi^{+}
$$

- applications
- neutron stars
- heavy-ion collisions

- chemical potentials (3-flavor)

$$
\mu_{B}=3\left(\mu_{u}+\mu_{d}\right) / 2
$$

$$
\mu_{I}=\left(\mu_{u}-\mu_{d}\right) / 2
$$

$$
\mu_{S}=0
$$

Introduction

- isospin density $n_{l}=n_{u}-n_{d}$
- $n_{I}<0 \rightarrow$ excess of neutrons over protons

$$
\rightarrow \text { excess of } \pi^{-} \text {over } \pi^{+}
$$

- applications
- neutron stars
- heavy-ion collisions

- chemical potentials (3-flavor)

$$
\mu_{B}=3\left(\mu_{u}+\mu_{d}\right) / 2 \quad \mu_{I}=\left(\mu_{u}-\mu_{d}\right) / 2 \quad \mu_{S}=0
$$

- here: zero baryon number but nonzero isospin

$$
\mu_{u}=\mu_{I} \quad \mu_{d}=-\mu_{I}
$$

Introduction

- QCD at low energies \approx pions
- on the level of charged pions: $\mu_{\pi}=2 \mu_{1}$ at zero temperature

$$
\begin{array}{lc}
\mu_{\pi}<m_{\pi} & \text { vacuum state } \\
\mu_{\pi}=m_{\pi} & \text { Bose-Einstein condensation } \\
\mu_{\pi}>m_{\pi} & \text { undefined }
\end{array}
$$

- on the level of quarks: lattice simulations
- no sign problem
- conceptual analogies to baryon density (Silver Blaze, hadron creation, saturation)
- technical similarities (proliferation of low eigenvalues)

Setup

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V}
$$

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{I} \gamma_{0} \tau_{3}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}}
$$

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{I} \gamma_{0} \tau_{3}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}}
$$

- spontaneously broken by a pion condensate

$$
\left\langle\bar{\psi} \gamma_{5} \tau_{1,2} \psi\right\rangle
$$

- a Goldstone mode appears

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{l} \gamma_{0} \tau_{3}+i \lambda \gamma_{5} \tau_{2}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing
$$

- spontaneously broken by a pion condensate

$$
\left\langle\bar{\psi} \gamma_{5} \tau_{1,2} \psi\right\rangle
$$

- a Goldstone mode appears
- add small explicit breaking

Symmetry breaking

- QCD with light quark matrix

$$
M=\not D+m_{u d} \mathbb{1}+\mu_{l} \gamma_{0} \tau_{3}+i \lambda \gamma_{5} \tau_{2}
$$

- chiral symmetry (flavor-nontrivial)

$$
\mathrm{SU}(2)_{V} \rightarrow \mathrm{U}(1)_{\tau_{3}} \rightarrow \varnothing
$$

- spontaneously broken by a pion condensate

$$
\left\langle\bar{\psi} \gamma_{5} \tau_{1,2} \psi\right\rangle
$$

- a Goldstone mode appears
- add small explicit breaking
- extrapolate results $\lambda \rightarrow 0$

Simulation details

- staggered light quark matrix with $\eta_{5}=(-1)^{n_{x}+n_{y}+n_{z}+n_{t}}$

$$
M=\left(\begin{array}{cc}
\text { D}_{\mu}+m & \lambda \eta_{5} \\
-\lambda \eta_{5} & \not D_{-\mu}+m
\end{array}\right)
$$

- we have $\gamma_{5} \tau_{1}$-hermiticity

$$
\eta_{5} \tau_{1} M \tau_{1} \eta_{5}=M^{\dagger}
$$

- determinant is real and positive

$$
\operatorname{det} M=\operatorname{det}\left(\left|\not D_{\mu}+m\right|^{2}+\lambda^{2}\right)
$$

- pioneering studies [Kogut, Sinclair '02] [de Forcrand, Stephanov, Wenger '07] with unimproved action
- here: $N_{f}=2+1$ rooted stout-smeared staggered quarks + tree-level Symanzik improved gluons

Condensates: definition and renormalization

$$
\langle\bar{\psi} \psi\rangle=\frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial m} \quad\langle\pi\rangle=\frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \lambda}
$$

- multiplicative renormalization

$$
Z_{\pi}=Z_{\lambda}^{-1}=Z_{m}^{-1}=Z_{\bar{\psi} \psi}
$$

- convenient normalization

$$
\Sigma_{\bar{\psi} \psi} \equiv m \cdot\langle\bar{\psi} \psi\rangle \cdot \frac{1}{m_{\pi}^{2} f_{\pi}^{2}} \quad \Sigma_{\pi} \equiv m \cdot\langle\pi\rangle \cdot \frac{1}{m_{\pi}^{2} f_{\pi}^{2}}
$$

- so that in leading-order chiral PT [Son, Stephanov '00]

$$
\Sigma_{\bar{\psi} \psi}^{2}\left(\mu_{l}\right)+\Sigma_{\pi}^{2}\left(\mu_{l}\right)=1
$$

Condensates: old method

Pion condensate: old method

- traditional method [Kogut, Sinclair '02] measure full operator at nonzero λ (via noisy estimators)

$$
\Sigma_{\pi} \propto\left\langle\operatorname{Tr} M^{-1} \eta_{5} \tau_{2}\right\rangle
$$

- extrapolation very 'steep'

Pion condensate: old method

- traditional method [Kogut, Sinclair '02] measure full operator at nonzero λ (via noisy estimators)

$$
\Sigma_{\pi} \propto\left\langle\operatorname{Tr} M^{-1} \eta_{5} \tau_{2}\right\rangle
$$

- extrapolation very 'steep'

Pion condensate: old method

- traditional method [Kogut, Sinclair '02] measure full operator at nonzero λ (via noisy estimators)

$$
\Sigma_{\pi} \propto\left\langle\operatorname{Tr} M^{-1} \eta_{5} \tau_{2}\right\rangle
$$

- extrapolation very 'steep'

Chiral condensate: old method

- traditional method [Kogut, Sinclair '02] measure full operator at nonzero λ (via noisy estimators)

$$
\Sigma_{\bar{\psi} \psi} \propto\left\langle\operatorname{Tr} M^{-1}\right\rangle
$$

- extrapolation very 'steep'

Pion condensate: new method

Singular value representation

- pion condensate

$$
\pi=\frac{\partial}{\partial \lambda} \log \operatorname{det}\left(\left|\not D_{\mu}+m\right|^{2}+\lambda^{2}\right)=\operatorname{Tr} \frac{2 \lambda}{\left|D_{\mu}+m\right|^{2}+\lambda^{2}}
$$

- singular values

$$
\left|\not D_{\mu}+m\right|^{2} \psi_{i}=\xi_{i}^{2} \psi_{i}
$$

- spectral representation

$$
\pi=\frac{T}{V} \sum_{i} \frac{2 \lambda}{\xi_{i}^{2}+\lambda^{2}}=\int \mathrm{d} \xi \rho(\xi) \frac{2 \lambda}{\xi^{2}+\lambda^{2}} \xrightarrow{\lambda \rightarrow 0} \pi \rho(0)
$$

first derived in [Kanazawa, Wettig, Yamamoto '11]

Singular value representation

- pion condensate

$$
\pi=\frac{\partial}{\partial \lambda} \log \operatorname{det}\left(\left|\not D_{\mu}+m\right|^{2}+\lambda^{2}\right)=\operatorname{Tr} \frac{2 \lambda}{\left|\not D_{\mu}+m\right|^{2}+\lambda^{2}}
$$

- singular values

$$
\left|\not D_{\mu}+m\right|^{2} \psi_{i}=\xi_{i}^{2} \psi_{i}
$$

- spectral representation

$$
\pi=\frac{T}{V} \sum_{i} \frac{2 \lambda}{\xi_{i}^{2}+\lambda^{2}}=\int \mathrm{d} \xi \rho(\xi) \frac{2 \lambda}{\xi^{2}+\lambda^{2}} \xrightarrow{\lambda \rightarrow 0} \pi \rho(0)
$$

first derived in [Kanazawa, Wettig, Yamamoto '11]

- compare to Banks-Casher-relation at $\mu_{I}=0$

Singular value density

- spectral densities at $\lambda / m=0.17$

Density at zero

- scaling with λ is improved drastically

Density at zero

- scaling with λ is improved drastically

Density at zero

- scaling with λ is improved drastically

- leading-order reweighting

$$
\langle\pi\rangle_{\text {rew }}=\left\langle\pi W_{\lambda}\right\rangle /\left\langle W_{\lambda}\right\rangle \quad W_{\lambda}=\exp \left[-\lambda V_{4} \pi+\mathcal{O}\left(\lambda^{2}\right)\right]
$$

Comparison between old and new methods

- extrapolation in λ gets almost completely flat

Results

Phase boundary

- interpolate $\rho(0)$ as function of μ_{I} to find phase boundary

Phase boundary

- interpolate $\rho(0)$ as function of μ_{I} to find phase boundary

Phase boundary

- interpolate $\rho(0)$ as function of μ_{I} to find phase boundary

Phase boundary

- interpolate $\rho(0)$ as function of μ_{I} to find phase boundary

Phase boundary

- interpolate $\rho(0)$ as function of μ_{I} to find phase boundary

- compare to expectations from χ PT [Son, Stephanov '00]

Phase boundary

- interpolate $\rho(0)$ as function of μ_{I} to find phase boundary

- compare to expectations from χ PT [Son, Stephanov '00]
- no pion condensate above $T \approx 160 \mathrm{MeV}$

New method for other observables

Singular value representation

- chiral condensate

$$
\bar{\psi} \psi=\frac{\partial}{\partial m} \log \operatorname{det}\left(\left|D_{\mu}+m\right|^{2}+\lambda^{2}\right)=\operatorname{Tr} \frac{\left(\not \phi_{\mu}+m\right)+\left(\not \phi_{\mu}+m\right)^{\dagger}}{\left|\phi_{\mu}+m\right|^{2}+\lambda^{2}}
$$

- singular values

$$
\left|\not D_{\mu}+m\right|^{2} \psi_{i}=\xi_{i}^{2} \psi_{i}
$$

- spectral representation

$$
\bar{\psi} \psi=\frac{T}{V} \sum_{i} 2 \operatorname{Re} \frac{\left\langle\psi_{i}\right| \bigsqcup_{\mu}+m\left|\psi_{i}\right\rangle}{\xi_{i}^{2}+\lambda^{2}}
$$

Singular value representation

- spectral representation at $\lambda=0$

$$
\bar{\psi} \psi=\frac{T}{V} \sum_{i=1}^{N} 2 \operatorname{Re} \frac{\left\langle\psi_{i}\right| \phi_{\mu}+m\left|\psi_{i}\right\rangle}{\xi_{i}^{2}}
$$

- convergence not visible for $N \leq 150$

Improvement

- work instead with the difference

$$
\begin{aligned}
& \delta_{\bar{\psi} \psi} \equiv \bar{\psi} \psi(\lambda=0)-\bar{\psi} \psi(\lambda)=\frac{2 T}{V} \sum_{i=1}^{N} \operatorname{Re}\left\langle\psi_{i}\right| D_{\mu}+m\left|\psi_{i}\right\rangle\left[\frac{1}{\xi_{i}^{2}}-\frac{1}{\xi_{i}^{2}+\lambda^{2}}\right] \\
& \bar{\psi} \psi(0)=\bar{\psi} \psi(\lambda)+\delta_{\bar{\psi} \psi}
\end{aligned}
$$

- convergence already for small N

Improvement

- work instead with the difference

$$
\delta_{\bar{\psi} \psi} \equiv \bar{\psi} \psi(\lambda=0)-\bar{\psi} \psi(\lambda)=\frac{2 T}{V} \sum_{i=1}^{N} \operatorname{Re}\left\langle\psi_{i}\right| D_{\mu}+m\left|\psi_{i}\right\rangle\left[\frac{1}{\xi_{i}^{2}}-\frac{1}{\xi_{i}^{2}+\lambda^{2}}\right]
$$

$$
\bar{\psi} \psi(0)=\bar{\psi} \psi(\lambda)+\delta_{\bar{\psi} \psi}
$$

noisy estimators

- convergence already for small N

Improvement

- work instead with the difference

$$
\delta_{\bar{\psi} \psi} \equiv \bar{\psi} \psi(\lambda=0)-\bar{\psi} \psi(\lambda)=\frac{2 T}{V} \sum_{i=1}^{N} \operatorname{Re}\left\langle\psi_{i}\right| \not D_{\mu}+m\left|\psi_{i}\right\rangle\left[\frac{1}{\xi_{i}^{2}}-\frac{1}{\xi_{i}^{2}+\lambda^{2}}\right]
$$

- convergence already for small N

Comparison between old and new methods

- extrapolation in λ gets almost completely flat

Improvement

- the same strategy for the isospin density $n_{I}=\partial(\log \mathcal{Z}) / \partial \mu_{I}$

- convergence already for small N

Comparison between old and new methods

- extrapolation in λ gets almost completely flat

Results

Transition temperature

- additively renormalized chiral condensate

$$
\Sigma_{\bar{\psi} \psi}(T)-\Sigma_{\bar{\psi} \psi}(T=0)
$$

- define T_{c} using the temperature at a constant value (valid at low μ_{I})

Check Taylor-expansion

- isospin density via Taylor-expansion at $\mu_{I}=0$

$$
n_{l}\left(\mu_{l}\right)=\chi_{2}^{l} \cdot \mu_{I}+\chi_{4}^{l} \cdot \mu_{I}^{3}+\ldots
$$

using $\chi_{2,4}^{l}$ from [BMWc, 1112.4416]

- how far is it reliable?

- similar convergence expected for μ_{B}

Order of the transition - fits

- fit transition region using chiral perturbation theory [Splittorff et al '02, Endrödi '14]

Order of the transition - fits

- fit transition region using chiral perturbation theory [Splittorff et al '02, Endrödi '14]

Order of the transition - fits

- fit using $\mathrm{O}(2)$ scaling [Ejiri et al '09]

Outlook

- order of transition?
- deconfinement/chiral symmetry breaking transition
- asymptotic- $\mu_{\text {I }}$ limit?
- BCS phase at large μ_{I} ?

Summary

- determine/improve observables using singular values of $D_{\mu}+m$ \rightsquigarrow flat extrapolation in λ
- direct check of Taylor-expansion convergence

- phase boundary surprisingly flat for intermediate μ_{1}
- chance to test effective theories and low-energy models

