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Motivation



Magnetic fields in QCD - why?

I this you all know . . .
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Magnetic fields in QCD - how?

I this Gunnar has just explained
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Find your plot
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Find your plot, continued
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Outline

• QCD transition at B > 0
I magnetic catalysis
I inverse magnetic catalysis
I brief history of phase diagrams
I open questions

• most recent lattice results
I full QCD for strong magnetic fields
I effective theory for B →∞ limit

• mechanism behind inverse catalysis
• outlook and conclusions
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Magnetic catalysis



Magnetic catalysis explained

I chiral condensate ↔ spectral density around 0 [Banks, Casher ’80]〈
ψ̄ψ

〉
∝ ρ(0)

I large magnetic fields reduce dimensionality 3 + 1→ 1 + 1
and induce degeneracy ∝ B

I in the chiral limit, to maintain
〈
ψ̄ψ

〉
> 0 [Gusynin et al ’96]

B = 0 ρ(p) ∼ p2dp “strong interaction is needed”
B � m2 ρ(p) ∼ B dp “the weakest interaction suffices”
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Magnetic catalysis – zero temperature

I MC at zero temperature is a robust concept:
χPT, NJL, AdS-CFT, linear σ model, lattice QCD , . . .

lattice QCD, physical mπ, continuum limit
[Bali,Bruckmann,Endrődi,Fodor,Katz,Schäfer ’12]

I improve NJL model further, cf. [Krein, yesterday]
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Inverse magnetic catalysis



Inverse magnetic catalysis

I magnetic catalysis at T ≈ Tc is lost
[Bali,Bruckmann,Endrődi,Fodor,Katz,Schäfer ’12]
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Inverse magnetic catalysis

I magnetic catalysis at T ≈ Tc is lost
[Bali,Bruckmann,Endrődi,Fodor,Katz,Schäfer ’12]

I valence and sea effects compete and around Tc the sea wins
I inflection point shifts to left → Tc is reduced

8 / 30



Phase diagram



A brief history of B − T phase diagrams

• 2010: linear σ model [Mizher, Chernodub, Fraga]
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A brief history of B − T phase diagrams

• 2010: PNJL model [Gatto, Ruggieri]
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A brief history of B − T phase diagrams

• 2010: lattice, coarse, heavy [D’Elia, Mukherjee, Sanfilippo]
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A brief history of B − T phase diagrams

• 2011: lattice, cont.limit, physical
[Bali, Bruckmann, Endrődi, Fodor, Katz, Krieg, Schäfer, Szabó]
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A brief history of B − T phase diagrams

• 2014: parameterized models [Fraga, Mintz, Schaffner-Bielich]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

eB [GeV
2
]

0.8

0.85

0.9

0.95

1

1.05
T

c(B
)/

T
c(0

)

Lattice
b(N

f
, B) = b

0
 - 60(eB)

2
/mτ

4

b(N
f
, B) = b

0
 - 2(eB)

1/2
/mτ

9 / 30



A brief history of B − T phase diagrams

• 2014: FRG+NJL [Müller, Pawlowski]
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Open questions

• for eB < 1 GeV2 the phase diagram is known from lattice
I Tc(B) monotonously decreases
I the transition is an analytic crossover

• what happens for eB > 1 GeV2?
I is there a turning point, where Tc(B) starts increasing?
I is there a splitting between the chiral/deconfinement

transitions?
I is there a splitting between the up/down chiral transitions?
I does the transition become a real phase transition?

• significance: guiding effective theories and low-energy models

• aim: answer these questions using lattice simulations
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Strategy

I largest possible field on a finite lattice is

eBmax ≈ a−2 ⇒ eBmax/T 2 ≈ N2
t

• how to go even beyond?
I exploit that eB is the largest scale and calculate the relevant

effective theory
• strategy [Endrődi 1504.08280]:

I simulate full QCD at eB = 3.25 GeV2

I simulate the effective theory at B →∞
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Lattice results – full QCD



Quark condensates

• average of up and down quark condensates:
Tc=inflection point

I is there a turning point, where Tc(B) starts increasing? No.
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Quark condensates

• up and down quark condensates separately

I is there a splitting between the up/down chiral transitions?
No.
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Quark condensates

• up and down quark condensates separately
I is there a splitting between the up/down chiral transitions?

No.
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Spin polarization

I new expectation value induced by B [Ioffe, Smilga ’84]〈
ψ̄f σxyψf

〉
= τ · qf Fxy = τ · qf B

= χf ·
〈
ψ̄f ψf

〉
· qf B

I reproduced in the NJL model extended with σxy -channels
[Ferrer, Incera, Portillo, Quiroz ’14]
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Polyakov loop

• Polyakov loop: Tc=inflection point

I is there a splitting between the chiral/deconfinement
transitions? No.
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Polyakov loop

• Polyakov loop: Tc=inflection point
I is there a splitting between the chiral/deconfinement

transitions? No.
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Strange quark number susceptibility

I is there a splitting between the chiral/deconfinement
transitions? No.
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Phase diagram

• summarizing Tc from all observables at eB = 3.25 GeV2
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Phase diagram

• summarizing Tc from all observables at eB = 3.25 GeV2
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Nature of transition: chiral susceptibility

I peak height independent of volume → analytic crossover
(real phase transition would show singularity as V →∞)

like and not like
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Strength of the transition

• is there a tendency for strengthening/weakening?

I the peak gets slowly but significantly narrower
I maybe there is a critical point at even stronger B?
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Lattice results – effective theory



The effective theory

• what happens to LQCD at eB � Λ2
QCD?

I first guess: asymptotic freedom says αs → 0 i.e. complete
decoupling of quarks and gluons

I but: B breaks rotational symmetry and effectively reduces the
dimension of the theory for quarks

• gluons also inherit this spatial anisotropy, κ(B) ∝ B
[Miransky, Shovkovy 2002; Endrődi 1504.08280]

LQCD
B→∞−−−−→ trB2

‖ + trB2
⊥ + [1 + κ(B)] tr E2

‖ + tr E2
⊥
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The effective theory

• finite κ: usual action, just multiply z − t plaquettes by (1 + κ)

I large κ leads to large autocorrelation times
• κ =∞ reduces independent degrees of freedom to

local Polyakov loops Lt(x , y) and
local spatial Polyakov loops Lz(x , y)
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Finite size scaling at κ =∞

• Polyakov loop on different volumes: jump gets sharper

• Polyakov loop susceptibility peak height scales with V
• histogram shows double peak-structure at Tc
I does the transition become a real phase transition? Yes.
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Implications



Critical point

• analytical crossover for 0 ≤ eB ≤ 3.25 GeV2

first-order transition for B →∞
I there must be a critical point in between [Cohen, Yamamoto ’13]

• estimate: extrapolate width of susceptibility peak to 0

eBCP = 10(2)(?) GeV2
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Critical temperature

• to get Tc(B →∞) in physical units, we need lattice scale a
but: no a priori known dimensionful quantity at B →∞

I attempt to use a pure gluonic quantity: w0
and match the combination Tcw0

• assuming that w0(B) flattens out as B →∞
→ Tc reduces monotonously
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Final conclusion

25 / 30



Another look at IMC



Mechanism behind MC and IMC

• two competing mechanisms at finite B
[Bruckmann,Endrődi,Kovács ’13]

I direct (valence) effect B ↔ qf
I indirect (sea) effect B ↔ qf ↔ g〈

ψ̄ψ(B)
〉
∝

∫
DAµ e−Sg det( /D(B,A) + m)︸ ︷︷ ︸

sea

Tr
[
( /D(B,A) + m)−1

]
︸ ︷︷ ︸

valence

BB BB
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Mechanism behind MC

• valence sector: driven by the low eigenvalues of /D〈
ψ̄ψ(B)

〉
∝

∫
DAµ e−Sg

∏
i

(λ2
i (0) + m2)

∑
j

m
λ2

j (B) + m2

• valence sector: B creates many low eigenvalues through
Landau-level degeneracy
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Mechanism behind IMC

• sea sector: disfavors low eigenvalues of /D through det〈
ψ̄ψ(B)

〉
∝

∫
DAµ e−Sg

∏
i

(λ2
i (B) + m2)

∑
j

m
λ2

j (0) + m2

• most important gauge dof is the Polyakov loop

• it represents a shift of the boundary condition → influences
lowest eigenvalues λmin ∼ P
• small eigenvalues suppress the determinant (weight)
⇒ B can increase det through the Polyakov loop
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Outlook



Outlook

I separate lowest Landau-level on the lattice

I measure how much of the effect comes from LLL and HLL
I facilitate comparison to models
I ideas?
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Summary



Summary

I analytic crossover even at
eB = 3.25 GeV2

I first-order phase transition at
B →∞

I critical point, estimated
location eBCP = 10(2) GeV2
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