QCD in background electric fields

Gergely Endrődi

Goethe University of Frankfurt

SIGN 2019 3 September 2018

- introduction: electric fields
- Taylor expansion
- susceptibility via vacuum polarization
- results: electric and magnetic susceptibility
- conclusions

Introduction

Electric fields

 electromagnetic fields in the early stage of heavy-ion collisions [Deng et al '12]

 impact of electric field enhanced for asymmetric systems (for example Cu+Au at RHIC) [Voronyuk et al '14]

Magnetic/electric fields

 effect of magnetic fields on QCD thermodynamics well understood [Bali et al '11, '12] [D'Elia et al '11] [Endrődi '15]

Magnetic/electric fields

 effect of magnetic fields on QCD thermodynamics well understood [Bali et al '11, '12] [D'Elia et al '11] [Endrődi '15]

effect of electric fields:
 NJL model calculations [Suganuma et al '91, Babansky et al '98]
 lattice QCD with opposite charges [Yamamoto '13]
 electric polarizability of hadrons [Engelhardt et al '07]
 [Alexandru et al '14]

Setup

Euclidean electric fields

covariant derivative (electric charge q)

$$D_{\mu} = \partial_{\mu} + i q A_{\mu} + i \mathcal{A}_{\mu}^{\mathrm{gluon}}$$

Minkowskian electric field

$$E_i = F_{i0} = \partial_i A_0 - \partial_0 A_i$$

Wick rotation

$$\partial_0 \rightarrow i \partial_4, \qquad A_0 \rightarrow i A_4$$

Euclidean electric field

$$E_i^{\mathrm{Eucl}} = \partial_i A_4 - \partial_4 A_i \equiv -iE_i$$

Sign problem

• consider constant $\mathbf{E} = E \, \mathbf{e_1}$ in a static gauge

$$A_4 = -iE x_1$$

▶ U(1) links

$$u_4 = \exp\left[iaqA_4\right] = \exp\left[aqEx_1\right]$$

hermiticity relation

$${
ot\!\!/}^\dagger(E)=-{
ot\!\!/}(-E^*)$$

determinant

$$\det {
ot\!\!/} (E) \in {\mathbb C}, \qquad \det {
ot\!\!/} (E^{
m Eucl}) \in {\mathbb R}$$

Sign problem

electric fields cause a sign problem

Sign problem

- electric fields cause a sign problem
- magnetic fields cause no sign problem

Avoiding the sign problem

Taylor expansion

circumvent sign problem via Taylor-expansion

$$f(E) \approx f(0) + \mathcal{O}(E^2) + \mathcal{O}(E^4) + \dots$$

odd powers vanish due to rotational symmetry

 cannot account for non-perturbative phenomena like Schwinger pair production

$$\operatorname{Im} f(E) \propto \exp(-1/E)$$

- can give access to the change in the permittivity of QCD matter
 - $\rightsquigarrow \textit{linear response}$

▶ free energy density *f* in small background fields

$$f^{\rm tot} = \frac{B^2}{2\mu} + \epsilon \frac{E^2}{2}$$

▶ free energy density *f* in small background fields

$$f^{\rm tot} = \frac{B^2}{2\mu} + \epsilon \frac{E^2}{2}$$

medium-dependent part

$$f = \left(\frac{1}{\mu} - 1\right) \cdot \frac{B^2}{2} + (\epsilon - 1) \cdot \frac{E^2}{2}$$

▶ free energy density *f* in small background fields

$$f^{\rm tot} = \frac{B^2}{2\mu} + \epsilon \frac{E^2}{2}$$

medium-dependent part

$$f = \left(rac{1}{\mu} - 1
ight) \cdot rac{B^2}{2} + (\epsilon - 1) \cdot rac{E^2}{2}$$

constitutive relations

$$\begin{array}{ll} B = \mu H & B = H + M & M = \chi B \\ D = \epsilon E & D = E + P & P = \xi E \end{array}$$

▶ free energy density *f* in small background fields

$$f^{\rm tot} = \frac{B^2}{2\mu} + \epsilon \frac{E^2}{2}$$

medium-dependent part

$$f = \left(rac{1}{\mu} - 1
ight) \cdot rac{B^2}{2} + (\epsilon - 1) \cdot rac{E^2}{2}$$

constitutive relations

$$\begin{array}{ll} B = \mu H & B = H + M & M = \chi B \\ D = \epsilon E & D = E + P & P = \xi E \end{array}$$

free energy via susceptibilities

$$f = -\chi \frac{B^2}{2} + \xi \frac{E^2}{2}$$

▶ free energy density *f* in small background fields

$$f^{\rm tot} = \frac{B^2}{2\mu} + \epsilon \frac{E^2}{2}$$

medium-dependent part

$$f = \left(rac{1}{\mu} - 1
ight) \cdot rac{B^2}{2} + (\epsilon - 1) \cdot rac{E^2}{2}$$

constitutive relations

$$\begin{array}{ll} B = \mu H & B = H + M & M = \chi B \\ D = \epsilon E & D = E + P & P = \xi E \end{array}$$

free energy via susceptibilities

$$f = -\chi \frac{B^2}{2} + \xi \frac{E^2}{2} = -\chi \frac{B^2}{2} - \xi \frac{(E^{\text{Eucl}})^2}{2}$$

constant Euclidean electric field

$$A_4 = E^{\text{Eucl}} x_1, \qquad u_4 = \exp[i\eta n_1], \qquad \eta = a^2 q E^{\text{Eucl}}$$

constant Euclidean electric field

$$A_4 = E^{\text{Eucl}} x_1, \qquad u_4 = \exp\left[i\eta n_1\right], \qquad \eta = a^2 q E^{\text{Eucl}}$$

constant Euclidean electric field

$$A_4 = E^{\text{Eucl}} x_1, \qquad u_4 = \exp\left[i\eta n_1\right], \qquad \eta = a^2 q E^{\text{Eucl}}$$

 $\psi(N_1, n_4) \rightarrow \psi(N_1, n_4) \cdot V^{n_4}$

constant Euclidean electric field

$$A_4 = E^{\text{Eucl}} x_1, \qquad u_4 = \exp\left[i\eta n_1\right], \qquad \eta = a^2 q E^{\text{Eucl}}$$

- ▶ violates b.c. in x_1 -direction
- local U(1) gauge trafo
 V = exp(iηN₁)
 - $\psi(N_1, n_4) \rightarrow \psi(N_1, n_4) \cdot V^{n_4}$
- restores periodicity
- ▶ periodic in x₄-direction if exp(-iηN₁N₄) = 1

Flux quantization

▶ constant electric fields represented by periodic u_{μ} if

$$\exp\left(-ia^2qE^{\mathrm{Eucl}}N_1N_4\right)=1$$

therefore

$$qE^{\mathrm{Eucl}} \cdot L_1 L_4 = 2\pi N_E, \qquad N_E \in \mathbb{Z}$$

Flux quantization

▶ constant electric fields represented by periodic u_{μ} if

$$\exp\left(-ia^2qE^{\mathrm{Eucl}}N_1N_4\right)=1$$

therefore

$$qE^{\mathrm{Eucl}} \cdot L_1 L_4 = 2\pi N_E, \qquad N_E \in \mathbb{Z}$$

 on a finite lattice the 'flux' of E^{Eucl} is a discrete variable (the same is true for B)

Flux quantization

• constant electric fields represented by periodic u_{μ} if

$$\exp\left(-ia^2qE^{\mathrm{Eucl}}N_1N_4\right)=1$$

therefore

$$qE^{\mathrm{Eucl}} \cdot L_1 L_4 = 2\pi N_E, \qquad N_E \in \mathbb{Z}$$

- on a finite lattice the 'flux' of E^{Eucl} is a discrete variable (the same is true for B)
- ► Taylor expansion <u>not</u> applicable

Avoiding the quantized flux-problem

• quantization due to p = 0 Fourier transform in finite volume

- quantization due to p = 0 Fourier transform in finite volume
- let's work in coordinate space:
 - ▶ keep general electromagnetic field (finite *p*)
 - ▶ perform p = 0 projection in infinite volume

- quantization due to p = 0 Fourier transform in finite volume
- let's work in coordinate space:

f

▶ keep general electromagnetic field (finite *p*)

- ▶ perform p = 0 projection in infinite volume
- spoiler: susceptibility equals vacuum polarization

- quantization due to p = 0 Fourier transform in finite volume
- let's work in coordinate space:

▶ keep general electromagnetic field (finite *p*)

▶ perform p = 0 projection in infinite volume

spoiler: susceptibility equals vacuum polarization

$$-\frac{\partial^2 f}{\partial E^2}\Big|_{E=0} = \xi$$

- quantization due to p = 0 Fourier transform in finite volume
- let's work in coordinate space:

▶ keep general electromagnetic field (finite *p*)

- ▶ perform p = 0 projection in infinite volume
- spoiler: susceptibility equals vacuum polarization

- quantization due to p = 0 Fourier transform in finite volume
- let's work in coordinate space:

▶ keep general electromagnetic field (finite *p*)

- ▶ perform p = 0 projection in infinite volume
- spoiler: susceptibility equals vacuum polarization

$$\left. - \frac{\partial^2 f}{\partial E^2} \right|_{E=0} = \xi = \frac{-1}{2} \left. \frac{\partial^2 \Pi_{44}(p_1)}{\partial p_1^2} \right|_{p_1=0}$$

vector potential interacts with current

$$i \int d^4 x A_4 j_4, \qquad j_\mu = \sum_f q_f \bar{\psi} \gamma_\mu \psi$$

vector potential interacts with current

$$i \int d^4 x A_4 j_4, \qquad j_\mu = \sum_f q_f \bar{\psi} \gamma_\mu \psi$$

susceptibility at finite p₁

 $E(x_1) = \cos(p_1 x_1) \cdot E,$

vector potential interacts with current

$$i \int d^4 x A_4 j_4, \qquad j_\mu = \sum_f q_f \bar{\psi} \gamma_\mu \psi$$

susceptibility at finite p₁

$$E(x_1) = \cos(p_1 x_1) \cdot E, \qquad A_4(x_1) = \frac{\sin(p_1 x_1)}{p_1} \cdot E$$

vector potential interacts with current

$$i \int d^4 x A_4 j_4, \qquad j_\mu = \sum_f q_f \bar{\psi} \gamma_\mu \psi$$

susceptibility at finite p₁

$$E(x_1) = \cos(p_1 x_1) \cdot E, \qquad A_4(x_1) = \frac{\sin(p_1 x_1)}{p_1} \cdot E$$

$$\xi^{(p_1)} = -\left. \frac{\partial^2 f}{\partial E^2} \right|_{E=0} = -\frac{T}{V} \int \mathrm{d}^4 x \, \mathrm{d}^4 y \, \frac{\sin(p_1 x_1) \sin(p_1 y_1)}{p_1^2} \left\langle j_4(x) j_4(y) \right\rangle$$
oscillatory susceptibility

$$\xi^{(p_1)} = -rac{T}{V} \int \mathrm{d}^4 x \, \mathrm{d}^4 y \, rac{\sin(p_1 x_1) \sin(p_1 y_1)}{p_1^2} \, \langle j_4(x) j_4(y)
angle$$

oscillatory susceptibility

$$\xi^{(p_1)} = -\frac{T}{V} \int d^4 x \, d^4 y \, \frac{\sin(p_1 x_1) \sin(p_1 y_1)}{p_1^2} \, \langle j_4(x) j_4(y) \rangle$$

trigonometric identities + translational invariance + trick

$$\xi^{(p_1)} = \int \! \mathrm{d}^4 z \, rac{1 - \cos(p_1 z_1)}{p_1^2} \left< j_4(z) j_4(0) \right>$$

oscillatory susceptibility

$$\xi^{(p_1)} = -\frac{T}{V} \int d^4 x \, d^4 y \, \frac{\sin(p_1 x_1) \sin(p_1 y_1)}{p_1^2} \, \langle j_4(x) j_4(y) \rangle$$

trigonometric identities + translational invariance + trick

$$\xi^{(p_1)} = \int d^4 z \, rac{1 - \cos(p_1 z_1)}{p_1^2} \, \langle j_4(z) j_4(0)
angle$$

zero-momentum limit

$$\xi=\int\!\mathsf{d}^4z\,rac{z_1^2}{2}\left< j_4(z)j_4(0) \right>$$

oscillatory susceptibility

$$\xi^{(p_1)} = -\frac{T}{V} \int d^4 x \, d^4 y \, \frac{\sin(p_1 x_1) \sin(p_1 y_1)}{p_1^2} \, \langle j_4(x) j_4(y) \rangle$$

trigonometric identities + translational invariance + trick

$$\xi^{(p_1)} = \int d^4 z \, rac{1 - \cos(p_1 z_1)}{p_1^2} \, \langle j_4(z) j_4(0)
angle$$

zero-momentum limit

$$\begin{split} \xi &= \int \mathrm{d}^4 z \, \frac{z_1^2}{2} \left< j_4(z) j_4(0) \right> \\ &= \frac{-1}{2} \left. \frac{\partial^2 \Pi_{44}(p_1)}{\partial p_1^2} \right|_{p_1=0} \end{split} \blacksquare$$

photon vacuum polarization

$$\Pi_{\mu
u}(p)=\int\!\mathrm{d}^4z\,e^{ipz}\,\langle j_\mu(z)j_
u(0)
angle$$

photon vacuum polarization

$$\Pi_{\mu
u}(
ho)=\int\!\mathrm{d}^4z\,e^{i
ho z}\,\langle j_\mu(z)j_
u(0)
angle$$

Lorentz-structure [Kapusta] [Le Bellac] [Gross, Pisarski, Yaffe '81]

$$\Pi_{\mu\nu}(p) = \Pi \cdot P^L_{\mu\nu} + \Xi \cdot P^T_{\mu\nu}$$

photon vacuum polarization

$$\Pi_{\mu
u}(p)=\int\!\mathrm{d}^4z\,e^{ipz}\,\langle j_\mu(z)j_
u(0)
angle$$

Lorentz-structure [Kapusta] [Le Bellac] [Gross, Pisarski, Yaffe '81]

$$\Pi_{\mu\nu}(p) = \Pi \cdot P^L_{\mu\nu} + \Xi \cdot P^T_{\mu\nu}$$

leading order in p_1

 $\Pi_{22}(p_1,0,0,0) = -p_1^2 \,\Pi^{(2)}, \qquad \Pi_{44}(p_1,0,0,0) = -T^2 \,\Xi^{(0)} - p_1^2 \,\Xi^{(2)}$

photon vacuum polarization

$$\Pi_{\mu
u}(p)=\int\!\mathrm{d}^4z\,e^{ipz}\,\langle j_\mu(z)j_
u(0)
angle$$

Lorentz-structure [Kapusta] [Le Bellac] [Gross, Pisarski, Yaffe '81]

$$\Pi_{\mu\nu}(p) = \Pi \cdot P^L_{\mu\nu} + \Xi \cdot P^T_{\mu\nu}$$

leading order in p_1

 $\Pi_{22}(p_1, 0, 0, 0) = -p_1^2 \Pi^{(2)}, \qquad \Pi_{44}(p_1, 0, 0, 0) = -T^2 \Xi^{(0)} - p_1^2 \Xi^{(2)}$

photon vacuum polarization

$$\Pi_{\mu
u}(p)=\int\!\mathrm{d}^4z\,e^{ipz}\,\langle j_\mu(z)j_
u(0)
angle$$

Lorentz-structure [Kapusta] [Le Bellac] [Gross, Pisarski, Yaffe '81]

$$\Pi_{\mu\nu}(p) = \Pi \cdot P^L_{\mu\nu} + \Xi \cdot P^T_{\mu\nu}$$

leading order in p_1

$$\Pi_{22}(p_1, 0, 0, 0) = -p_1^2 \Pi^{(2)}, \qquad \Pi_{44}(p_1, 0, 0, 0) = -T^2 \Xi^{(0)} - p_1^2 \Xi^{(2)}$$

$$\xi$$

photon vacuum polarization

$$\Pi_{\mu
u}(p)=\int\!\mathrm{d}^4z\,e^{ipz}\,\langle j_\mu(z)j_
u(0)
angle$$

Lorentz-structure [Kapusta] [Le Bellac] [Gross, Pisarski, Yaffe '81]

$$\Pi_{\mu\nu}(p) = \Pi \cdot P^L_{\mu\nu} + \Xi \cdot P^T_{\mu\nu}$$

leading order in p_1

photon vacuum polarization

$$\Pi_{\mu
u}(p)=\int\!\mathrm{d}^4z\,e^{ipz}\,\langle j_\mu(z)j_
u(0)
angle$$

Lorentz-structure [Kapusta] [Le Bellac] [Gross, Pisarski, Yaffe '81]

$$\Pi_{\mu
u}(p) = \Pi \cdot P^L_{\mu
u} + \Xi \cdot P^T_{\mu
u}$$

leading order in p_1

$$\Pi_{22}(p_1, 0, 0, 0) = -p_1^2 \Pi^{(2)}, \qquad \Pi_{44}(p_1, 0, 0, 0) = -T^2 \Xi^{(0)} - p_1^2 \Xi^{(2)}$$
see also [Weldon '82]

 \blacktriangleright electric fields induce sign problem \rightsquigarrow work with ${\it E}^{\rm Eucl}$

- electric fields induce sign problem \rightsquigarrow work with E^{Eucl}
- \blacktriangleright constant fields have quantized flux \rightsquigarrow need workaround

- electric fields induce sign problem \rightsquigarrow work with E^{Eucl}
- ▶ constant fields have quantized flux ~→ need workaround
- approach constant fields via oscillatory fields in infinite volume

- electric fields induce sign problem \rightsquigarrow work with E^{Eucl}
- ▶ constant fields have quantized flux ~→ need workaround
- approach constant fields via oscillatory fields in infinite volume
- susceptibility given by vacuum polarization form factor

$$\xi = \int \mathrm{d} z_1 \, rac{z_1^2}{2} G_{44}(z_1), \qquad G_{\mu
u}(z_1) = \int \mathrm{d} z_2 \, \mathrm{d} z_3 \, \mathrm{d} z_4 \, \langle j_\mu(z) j_
u(0)
angle$$

- \blacktriangleright electric fields induce sign problem \rightsquigarrow work with ${\it E}^{\rm Eucl}$
- ▶ constant fields have quantized flux ~→ need workaround
- approach constant fields via oscillatory fields in infinite volume
- susceptibility given by vacuum polarization form factor

$$\xi = \int\! \mathrm{d} z_1 \, rac{z_1^2}{2} G_{44}(z_1), \qquad G_{\mu
u}(z_1) = \int\! \mathrm{d} z_2 \, \mathrm{d} z_3 \, \mathrm{d} z_4 \, \langle j_\mu(z) j_
u(0)
angle$$

similarly magnetic susceptibility

$$\chi = \int \mathrm{d} z_1 \, \frac{z_1^2}{2} \, G_{22}(z_1)$$

Results

Correlators

• on $24^3 \times 6$ lattice, at temperature T = 176 MeV

- connected as well as disconnected contributions included
- filled (empty) points: positive (negative)

Vacuum polarization

*p*₁ > 0: convolute *G*_{µν}(*z*₁) with [1 - cos(*p*₁*z*₁)]/*p*₁²
 *p*₁ = 0: convolute *G*_{µν}(*z*₁) with *z*₁²/2

Vacuum polarization

*p*₁ > 0: convolute *G*_{µν}(*z*₁) with [1 - cos(*p*₁*z*₁)]/*p*₁²
 *p*₁ = 0: convolute *G*_{µν}(*z*₁) with *z*₁²/2

Precision

 \blacktriangleright $j_2 j_2$ and $j_4 j_4$ correlate

 $\Rightarrow \xi-\chi$ can be measured more precisely

Temperature-dependence

Temperature-dependence

▶ but in the vacuum $\epsilon = \mu = 1$ ⇒ $\xi(T = 0) = \chi(T = 0) = 0$ should hold

 \blacktriangleright all derivatives so far were taken with respect to $\textit{eE}^{\rm Eucl}$ and eB

- \blacktriangleright all derivatives so far were taken with respect to $\textit{eE}^{\rm Eucl}$ and eB
- total free energy (set E = 0 for simplicity)

$$f^{\rm tot} = \frac{B^2}{2} - \chi \cdot \frac{(eB)^2}{2}$$

- \blacktriangleright all derivatives so far were taken with respect to $\textit{eE}^{\rm Eucl}$ and eB
- total free energy (set E = 0 for simplicity)

$$f^{\rm tot} = \frac{B^2}{2} - \chi \cdot \frac{(eB)^2}{2}$$

wave function renormalization

$$B_b^2 = Z_e B^2, \qquad e_b^2 = Z_e^{-1} e^2, \qquad e_b B_b = eB$$

- \blacktriangleright all derivatives so far were taken with respect to $\textit{eE}^{\rm Eucl}$ and eB
- total free energy (set E = 0 for simplicity)

$$f^{\rm tot} = \frac{B_b^2}{2} - \chi \cdot \frac{(eB)^2}{2}$$

wave function renormalization

$$B_b^2 = Z_e B^2, \qquad e_b^2 = Z_e^{-1} e^2, \qquad e_b B_b = eB$$

- \blacktriangleright all derivatives so far were taken with respect to $\textit{eE}^{\rm Eucl}$ and eB
- total free energy (set E = 0 for simplicity)

$$f^{\rm tot} = \frac{B_b^2}{2} - \chi \cdot \frac{(eB)^2}{2}$$

wave function renormalization

$$B_b^2 = Z_e B^2, \qquad e_b^2 = Z_e^{-1} e^2, \qquad e_b B_b = eB$$

renormalization constant

$$Z_e = 1 + \beta_1 e^2 \log(\mu a)^2, \qquad \beta_1 = \frac{N_c}{12\pi^2} \sum_f (q_f/e)^2$$

- ▶ all derivatives so far were taken with respect to eE^{Eucl} and eB
- total free energy (set E = 0 for simplicity)

$$f^{\rm tot} = \frac{B_b^2}{2} - \chi \cdot \frac{(eB)^2}{2}$$

wave function renormalization

$$B_b^2 = Z_e B^2, \qquad e_b^2 = Z_e^{-1} e^2, \qquad e_b B_b = eB$$

renormalization constant

$$Z_e = 1 + eta_1 e^2 \log(\mu a)^2, \qquad eta_1 = rac{N_c}{12\pi^2} \sum_f (q_f/e)^2$$

• f^{tot} is finite, so a divergence in χ must cancel this

$$\chi_{b} = \chi + \beta_1 \log(\mu a)^2$$

- \blacktriangleright all derivatives so far were taken with respect to eE^{Eucl} and eB
- total free energy (set E = 0 for simplicity)

$$f^{\rm tot} = \frac{B_b^2}{2} - \chi_b \cdot \frac{(eB)^2}{2}$$

wave function renormalization

$$B_b^2 = Z_e B^2, \qquad e_b^2 = Z_e^{-1} e^2, \qquad e_b B_b = eB$$

renormalization constant

$$Z_e = 1 + eta_1 e^2 \log(\mu a)^2, \qquad eta_1 = rac{N_c}{12\pi^2} \sum_f (q_f/e)^2$$

• f^{tot} is finite, so a divergence in χ must cancel this

$$\chi_{b} = \chi + \beta_1 \log(\mu a)^2$$

[Bali et al '14] [Bali, Endrődi, Piemonte in prep.]

[Bali et al '14] [Bali, Endrődi, Piemonte in prep.]

• renormalization scale fixed by requiring $\chi(T = 0) = 0$ $\chi_b(T = 0) = \beta_1 \log(\mu_{phys}a)^2$

[Bali et al '14] [Bali, Endrődi, Piemonte in prep.]

► renormalization scale fixed by requiring $\chi(T = 0) = 0$ $\chi_b(T = 0) = \beta_1 \log(\mu_{\text{phys}}a)^2$

• include QCD corrections in β_1 at scale 1/a

[Bali et al '14] [Bali, Endrődi, Piemonte in prep.]

- ► renormalization scale fixed by requiring $\chi(T = 0) = 0$ $\chi_b(T = 0) = \beta_1 \log(\mu_{phys}a)^2$
- include QCD corrections in β_1 at scale 1/a
 - comparison to other approaches [Bonati et al '13, Bali et al '14]
Renormalized susceptibilities

• divergences cancel in
$$\chi = \chi_b(T) - \chi_b(T = 0)$$

Renormalized susceptibilities

• divergences cancel in
$$\chi = \chi_b(T) - \chi_b(T = 0)$$

Interpretation

• $\chi > 0$ at high temperature: paramagnetism of quarks

Interpretation

- $\chi > 0$ at high temperature: paramagnetism of quarks
- χ < 0 at low temperature (emerges towards continuum limit [Bali, Endrődi, Piemonte in prep.]): diamagnetism of pions

Interpretation

- $\chi > 0$ at high temperature: paramagnetism of quarks
- χ < 0 at low temperature (emerges towards continuum limit [Bali, Endrődi, Piemonte in prep.]): diamagnetism of pions
- ▶ $\xi > 0$: permittivity > 1 (holds for all dielectrics [Landau Vol 8.])

Electric mass

photon mass at finite temperature

$$m_{\rm el}^2 = \int \mathrm{d}z_1 \, G_{44}(z_1)$$

free quark gas

Dispersion relation

 photon propagator inverse for transverse/longitudinal oscillations

$$\omega^2 - k^2 - \Pi_{T/L}(\omega, k)$$

▶ in perturbation theory [Weldon '82]

Dispersion relation

 photon propagator inverse for transverse/longitudinal oscillations

$$\omega^2 - k^2 - \Pi_{T/L}(\omega, k)$$

▶ in perturbation theory [Weldon '82]

Dispersion relation

 photon propagator inverse for transverse/longitudinal oscillations

$$\omega^2 - k^2 - \Pi_{T/L}(\omega, k)$$

▶ in perturbation theory [Weldon '82]

Summary

 ▶ electric fields induce sign problem and quantization problem
 ⇒ solved via vacuum polarization approach

 divergence due to charge renormalization

 para/diamagnetism and paraelectricity

Summary

 ▶ electric fields induce sign problem and quantization problem
 ⇒ solved via vacuum polarization approach

 divergence due to charge renormalization

 para/diamagnetism and paraelectricity outlook: generalize to polarizabilities

Backup

Electric and magnetic fields

$$A_4 = -iE x_1, \qquad A_2 = B x_1$$

equivalence at <u>zero</u> temperature

$$L_4 = L_2 = \infty$$
: $\log \mathcal{Z}(E = i \cdot x) = \log \mathcal{Z}(B = x)$

effect of finite temperatures

$$L_4 < L_2$$
: $\log \mathcal{Z}(E = i \cdot x) \neq \log \mathcal{Z}(B = x)$

Trick

=

Consider cos-type and sin-type fields
$$E^{\cos}(x_1) = \cos(p_1x_1) \cdot E, \qquad A_4^{\cos}(x_1) = \frac{\sin(p_1x_1)}{p_1} \cdot E$$

$$E^{\sin}(x_1) = \sin(p_1x_1) \cdot E, \qquad A_4^{\sin}(x_1) = -\frac{\cos(p_1x_1)}{p_1} \cdot E$$
Corresponding susceptibilities in infinite volume
$$\xi_{\cos}^{(p_1)} \xrightarrow{p_1 \to 0} \xi, \qquad \xi_{\sin}^{(p_1)} \xrightarrow{p_1 \to 0} - \frac{m_{el}^2}{p_1^2}$$
Combine as
$$\xi_{\cos}^{(p_1)} + \xi_{\sin}^{(p_1)} + \frac{m_{el}^2}{p_1^2}$$

$$= -\frac{T}{V} \int d^4x \, d^4y \, \underbrace{\sin(p_1x_1)\sin(p_1y_1) + \cos(p_1x_1)\cos(p_1y_1) - 1}_{p_1^2} \langle j_4(x) j_$$