Critical point for strong background magnetic fields [1504.08280]

Gergely Endrődi

University of Regensburg

XQCD @ Wuhan, 22. September 2015

Outline

- introduction
 - a brief history of B T phase diagrams
 - open questions
- new lattice results
 - full QCD for strong magnetic fields
 - \blacktriangleright effective theory for $B \rightarrow \infty$ limit
- conclusions

Introduction

• 2010: linear σ model [Mizher, Chernodub, Fraga]

With vacuum corrections

• 2010: PNJL model [Gatto, Ruggieri]

• 2010: lattice, coarse, heavy [D'Elia, Mukherjee, Sanfilippo]

• 2011: lattice, cont.limit, physical

[Bali, Bruckmann, Endrődi, Fodor, Katz, Krieg, Schäfer, Szabó]

• 2014: parameterized models [Fraga, Mintz, Schaffner-Bielich]

• 2014: FRG [Braun, Mian, Rechenberger]

Open questions

- for $eB < 1 \ {\rm GeV}^2$ the phase diagram is known from lattice
 - $T_c(B)$ monotonously decreases
 - the transition is an analytic crossover
- what happens for eB > 1 GeV²?
 - is there a turning point, where $T_c(B)$ starts increasing?
 - is there a splitting between the chiral/deconfinement transitions?
 - is there a splitting between the up/down chiral transitions?
 - does the transition become a real phase transition?

Open questions

- for $eB < 1 \ {\rm GeV}^2$ the phase diagram is known from lattice
 - $T_c(B)$ monotonously decreases
 - the transition is an analytic crossover
- what happens for eB > 1 GeV²?
 - is there a turning point, where $T_c(B)$ starts increasing?
 - is there a splitting between the chiral/deconfinement transitions?
 - is there a splitting between the up/down chiral transitions?
 - does the transition become a real phase transition?
- significance: guiding effective theories and low-energy models

Open questions

- for $eB < 1 \ {\rm GeV}^2$ the phase diagram is known from lattice
 - $T_c(B)$ monotonously decreases
 - the transition is an analytic crossover
- what happens for eB > 1 GeV²?
 - is there a turning point, where $T_c(B)$ starts increasing?
 - is there a splitting between the chiral/deconfinement transitions?
 - is there a splitting between the up/down chiral transitions?
 - does the transition become a real phase transition?
- significance: guiding effective theories and low-energy models
- aim: answer these questions using lattice simulations

largest possible field on a finite lattice is

$$eB_{
m max} pprox a^{-2} \quad \Rightarrow \quad eB_{
m max}/T^2 pprox N_t^2$$

- how to go even beyond?
 - exploit that eB is the largest scale and calculate the relevant effective theory
- strategy
 - simulate full QCD at $eB = 3.25 \text{ GeV}^2$
 - simulate the effective theory at $B \to \infty$

Lattice results – full QCD

• average of up and down quark condensates: T_c =inflection point

• average of up and down quark condensates: T_c =inflection point

- average of up and down quark condensates: T_c =inflection point
- is there a turning point, where $T_c(B)$ starts increasing? No.

• up and down quark condensates separately

- up and down quark condensates separately
- is there a splitting between the up/down chiral transitions? No.

Polyakov loop

• Polyakov loop: T_c =inflection point

Polyakov loop

- Polyakov loop: T_c =inflection point
- is there a splitting between the chiral/deconfinement transitions? No.

Strange quark number susceptibility

is there a splitting between the chiral/deconfinement transitions? No.

Phase diagram

Phase diagram

• summarizing T_c from all observables at eB = 3.25 GeV²

Nature of transition: chiral susceptibility

 peak height independent of volume → analytic crossover (real phase transition would show singularity as V → ∞)

Strength of the transition

• is there a tendency for strengthening/weakening?

- the peak gets slowly but significantly narrower
- maybe there is a critical point at even stronger B?

Lattice results – effective theory

The effective theory

- what happens to $\mathcal{L}_{\rm QCD}$ at $eB \gg \Lambda_{\rm QCD}^2$?
- ▶ first guess: asymptotic freedom says and a says a sa
- but: B breaks rotational symmetry and effectively reduces the dimension of the theory for quarks

$$\xrightarrow{B}_{\frac{1}{\sqrt{B}}}$$

• gluons also inherit this spatial anisotropy, $\kappa(B) \propto B$ [Miransky, Shovkovy 2002; Endrődi 1504.08280]

$$\mathcal{L}_{ ext{QCD}} \xrightarrow{B o \infty} \operatorname{tr} \mathcal{B}_{\parallel}^2 + \operatorname{tr} \mathcal{B}_{\perp}^2 + [1 + \kappa(B)] \operatorname{tr} \mathcal{E}_{\parallel}^2 + \operatorname{tr} \mathcal{E}_{\perp}^2$$

Polyakov loop

finite κ: usual action, just multiply z − t plaquettes by (1 + κ)
large κ leads to large autocorrelation times

Polyakov loop

- finite κ : usual action, just multiply z t plaquettes by $(1 + \kappa)$
- large κ leads to large autocorrelation times
- $\kappa = \infty$ reduces independent dofs to local Polyakov loops $L_t(x, y)$ and local spatial Polyakov loops $L_z(x, y)$

• Polyakov loop on different volumes: jump gets sharper

- Polyakov loop on different volumes: jump gets sharper
- Polyakov loop susceptibility peak height scales with V

- Polyakov loop on different volumes: jump gets sharper
- Polyakov loop susceptibility peak height scales with \boldsymbol{V}
- histogram shows double peak-structure at T_c

- Polyakov loop on different volumes: jump gets sharper
- Polyakov loop susceptibility peak height scales with V
- histogram shows double peak-structure at T_c
- does the transition become a real phase transition? Yes.

Implications

Critical point

- analytical crossover for $0 \le eB \le 3.25 \text{ GeV}^2$ first-order transition for $B \to \infty$
- there must be a critical point in between

 $eB_{\rm CP} = 10(2) \,\,{\rm GeV}^2$

• estimate: extrapolate width of susceptibility peak to 0

Critical temperature

- to get $T_c(B \to \infty)$ in physical units, we need lattice scale *a* but: no a priori known dimensionful quantity at $B \to \infty$
- attempt to use a pure gluonic quantity: w₀

[cf. Kitazawa, this morning]

Critical temperature

- to get $T_c(B \to \infty)$ in physical units, we need lattice scale *a* but: no a priori known dimensionful quantity at $B \to \infty$
- attempt to use a pure gluonic quantity: w₀

[cf. Kitazawa, this morning]

• assuming that $w_0(B)$ flattens out as $B \to \infty$ $\to T_c$ reduces monotonously

Final conclusion

Summary

 analytic crossover even at eB = 3.25 GeV²

▶ first-order phase transition at $B \to \infty$

 critical point, estimated location eB_{CP} = 10(2) GeV²

Appendix

Deriving the effective theory

• take the fermionic action in Euclidean spacetime

$$\mathcal{L}^q = -\log \det[\mathcal{D}(B, \mathcal{B}, \mathcal{E}) + m]$$

and expand it for $B^2 \gg {\rm tr} {\cal B}^2, {\rm tr} {\cal E}^2, m^4$

- ▶ assumption: \mathcal{B} , \mathcal{E} covariantly constant i.e. $D_{\mu}\mathcal{E} = D_{\mu}\mathcal{B} = 0$
- ▶ to lowest order: enough to consider *B* and \mathcal{B}_{\parallel} or *B* and \mathcal{E}_{\parallel} etc.
- the case with B and \mathcal{B}_{\parallel} : Landau-problem in the \perp plane

$$\mathcal{L}^{q}(B,\mathcal{B}_{\parallel}) = \frac{1}{8\pi^{2}} \sum_{c} m^{2} \left(B + \mathcal{B}_{\parallel c}\right) \int \frac{\mathrm{d}s}{s^{2}} e^{-s} \coth \frac{(B + \mathcal{B}_{\parallel c})s}{m^{2}}$$

• for
$$\mathcal{B}_{\parallel c} \gg B$$
 this becomes independent of \mathcal{B}
 $\Rightarrow \mathcal{B}_{\parallel}$ decouples from the quarks

Deriving the effective theory

- similarly, \mathcal{B}_{\perp} and \mathcal{E}_{\perp} also decouple
- the case with *B* and \mathcal{E}_{\parallel} : Landau-problem in the \perp plane **and** in the $\parallel t$ plane

$$\mathcal{L}^{q}(B, \mathcal{E}_{\parallel}) = \frac{1}{8\pi^{2}} \sum_{c} B \mathcal{E}_{\parallel c} \int \frac{\mathrm{d}s}{s} e^{-s} \coth \frac{Bs}{m^{2}} \coth \frac{\mathcal{E}_{\parallel c}s}{m^{2}}$$

▶ for $\mathcal{E}_{\parallel c} \gg B$ a non-trivial dependence remains

$$\mathcal{L}^q(B, \mathcal{E}_{\parallel}) = \kappa(B) \operatorname{tr} \mathcal{E}_{\parallel}^2 + \mathcal{O}(\mathcal{E}^4), \qquad \kappa(B) \equiv rac{1}{24\pi^2} rac{|B|}{m^2}$$

 \Rightarrow magnetized quarks contribute only to tr $\mathcal{E}_{\parallel}^2$

Simulating at $\kappa = \infty$

• gauge fix to maximal tree ($\longrightarrow = 1$)

Simulating at $\kappa = \infty$

- gauge fix to maximal tree $(\longrightarrow = 1)$
- exploit that all plaquettes are $\mathbb{1}$ ($\longrightarrow = L_z$, $\longrightarrow = L_t$)