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Motivation (I) – QCD phase diagram
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[ K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

adapted from [ W.-j. Fu et al., Phys. Rev. D. 101

(2020)]

‚ A plot full of conjectures

‚ What goes on at finite µB and low T ?

‚ Do first principal calculations ñ very hard / impossible
‚ Use models of QCD

ñ a lot easier; questionable physical relevance
‚ Maybe chiral inhomogeneous phases?

‚ What we know about the QCD
phase diagram from lattice and
functional methods
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Motivation (II) – What is a chiral inhomogeneous phase?

‚ Possible chiral phases
‚ 〈ψ̄ψ〉(x) = const. = 0 : Symmetric phase (SP)
‚ 〈ψ̄ψ〉(x) = const. ‰ 0 : Homogeneously broken phase (HBP)

‚ 〈ψ̄ψ〉(x) = f (x) : Inhomogeneous phase (IP)

‚ IP breaks chiral symmetry and translational invariance (!)
‚ Well known in condensed matter,

exotic in high energy physics sQGP
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Outline

‚ The (1+1)-dimensional Gross-Neveu model: Where?
‚ Inhomogeneous condensation in the (1+1)-dimensional Gross-Neveu model: How?

[ M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] [ O. Schnetz et al., Ann. Phys. 314 (2004)]

‚ Tales from condensed matter physics: Peierls instability: “Why?”
‚ Where to go from here?

Laurin Pannullo 4 / 17



Gross-Neveu model

‚ Gross-Neveu (GN) model in 1+1 dimensions in the large-N limit / mean-field approximation
[ D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]

‚ “toy-model for QCD”

S[ψ̄,ψ] =
∫

d2x

[
ψ̄(/B+γ0µ)ψ´

G

N

(
ψ̄ψ

)2
]

H.S.
ÝÝÑ
trafo

Sσ[σ,ψ̄,ψ] =
∫

d2x

[
ψ̄(/B+γ0µ+σ)ψ+ Nσ2

4G

]
integrate
ÝÝÝÝÝÑ

ψ̄,ψ
Seff[σ] =

∫
d2x

σ2

4G
´ lnDet(/B+γ0µ+σ)

‚ Discrete chiral symmetry ψÑ γ5ψ , ψ̄Ñ ´ψ̄γ5, which gets broken spontaneously
‚ Asymptotic free theory
‚ Ward identity: 〈ψ̄ψ〉9〈σ〉

Four-Fermion vertex effectively describes gluonic interactions

Z =
∫

Dσe´N Seff[σ]

mean-
ÝÝÝÑ
field

Z =
∑

i
e´N Seff[Σi ]

Σ= argmin
σ

Seff[σ]
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Gross-Neveu model: Assuming translational invariance

‚ assume homogeneous fields σ= σ̄
‚ Minimize the effective action in σ̄

Seff(σ̄)

V β
= σ̄2

4G
´

1

V β
lnDet(/B+γ0µ+ σ̄)

‚ However, µc should be 2/π« 0.64 instead of
1
p

2 « 0.71! [ R. F. Dashen et al., Phys. Rev. D. 12

(1975)]

0.0 0.2 0.4 0.6 1p
2

0.8 1.0 1.2

µ/Σ̄0

0.0

0.2

0.4

eγ

π

T
/Σ̄

0

HBP SP

1st order hom. PB

2nd order hom. PB

Critical point

[ U. Wolff, Phys. Lett. 157B (1985)]
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Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields σ=σ(x) =σ(x +λ)

How to determine Σ(x)?

Gap equation:

0 = δ

δσ(y)
Seff[σ]

∣∣∣∣∣
σ=Σ

= δ

δσ(y)

[∫
d2x

σ2

4G
´ lnDet(/B+γ0µ+σ)

]∣∣∣∣∣
σ=Σ

‚ interesting, but not needed at this point
‚ see [ G. Basar et al., Phys. Rev. D. 79 (2009)]

Parametrization:
‚ Parametrize σ(x) and calculate

1-particle energies

‚ express grand-canonical potential via
these energies

‚ minimize in the parameters
‚ Strategy of [ M. Thies, K. Urlichs, Phys.

Rev. D. 67 (2003)] and [ M. Thies, Phys.

Rev. D. 69 (2004)]
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Gap equation:

0 = δ

δσ(y)
Seff[σ]

∣∣∣∣∣
σ=Σ

= δ

δσ(y)

[∫
d2x

σ2

4G
´ lnDet(/B+γ0µ+σ)

]∣∣∣∣∣
σ=Σ

‚ interesting, but not needed at this point
‚ see [ G. Basar et al., Phys. Rev. D. 79 (2009)]

Parametrization:
‚ Parametrize σ(x) and calculate

1-particle energies

‚ express grand-canonical potential via
these energies

‚ minimize in the parameters
‚ Strategy of [ M. Thies, K. Urlichs, Phys.

Rev. D. 67 (2003)] and [ M. Thies, Phys.

Rev. D. 69 (2004)]
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Gross-Neveu model: Hartree-Fock equation

‚ Euler-Lagrange equation obtained from the action:[
i/B+σ(x)

]
ψ= 0

‚ Assume stationary states to obtain Hartree-Fock (HF) equation[
´iγ5 B

Bx +γ0σ(x)
]
ψ(x) = Eψ(x) , γ0 =´σ1 , γ1 = iσ3 , γ5 = γ0γ1 =´σ2

‚ Express spinors as ψ= (φ+,φ´) to obtain the coupled equations

˘

[
B

Bx ¯σ
]
φ¯ = Eφ˘,

which can be decoupled by squaring[
´ B2

Bx2 ¯ Bσ
Bx +σ2

]
φ˘ = E 2φ˘.

‚ Lots of analogies with SUSY
‚ Schrödinger potentials U˘ =¯ Bσ

Bx +σ2 with same eigenvalues
‚ σ is the so-called superpotential to U
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Gross-Neveu model: Parametrization of the scalar field (I)

Most naive parametrization:

‚ Put system in box L = N a and express σ as Fourier components

σ(x) =
∑

l
σ̃l ei2πl x/a .

‚ Find energies via numerical diagonalization and use these in the calculation of the
grand-canonical potential

‚ Strategy in [ M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] and enough to obtain the complete phase
diagram

‚ There is a better way!
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Gross-Neveu model: Parametrization of the scalar field (II)

Choose a better ansatz relying on intuition, SUSY and luck?:

‚ single baryon states were found to correspond to spatially dependent σ with reflectionless
(necessary condition) Schrödinger potential well U˘ =´

2y2

cosh2(y x˘c0)

‚ “stitch” these potential wells together in distance d

8∑
n=´8

1

cosh2(x ´ nd)
= complicated stuff

‚ the resulting Schrödinger potential is of the known Lamé-type with superpotential

σ(x) = Aκ2
sn

(
Ax|κ2

)
cn

(
Ax|κ2

)
dn

(
Ax|κ2

)
dn,cn,sn are Jacobi elliptic functions. A and κ are parameters of the ansatz.
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Gross-Neveu model: Solution of the Hartree-Fock equation

κ= 0.9999

A = 1.0 A = 0.5 A = 0.1

κ= 0.9000

κ= 0.5000

‚ superpotential:

σ(x) = Aκ2
sn

(
Ax|κ2

)
cn

(
Ax|κ2

)
dn

(
Ax|κ2

)

‚ dimensionless variables: ξ= Ax , ω= E/A

‚ HF equation for Lamé-superpotential[
´ B2

Bξ2 +2κ2 sn
(
ξ|κ)]

φ+ = (ω2 +κ2)φ+.

‚ Known solution for φ+ and ω!

|ω| = dn
(
α|κ)

, q =´iAZ (α)+ Aπ

2K
,

dq

dω
=˘A

ω2 ´ E/K√
(ω2 ´ 1+κ2)(ω2 ´ 1)

Laurin Pannullo 11 / 17



Gross-Neveu model: Solution of the Hartree-Fock equation

κ= 0.9999

A = 1.0 A = 0.5 A = 0.1

κ= 0.9000

κ= 0.5000

‚ superpotential:

σ(x) = Aκ2
sn

(
Ax|κ2

)
cn

(
Ax|κ2

)
dn

(
Ax|κ2

)
‚ dimensionless variables: ξ= Ax , ω= E/A

‚ HF equation for Lamé-superpotential[
´ B2

Bξ2 +2κ2 sn
(
ξ|κ)]

φ+ = (ω2 +κ2)φ+.

‚ Known solution for φ+ and ω!

|ω| = dn
(
α|κ)

, q =´iAZ (α)+ Aπ

2K
,

dq

dω
=˘A

ω2 ´ E/K√
(ω2 ´ 1+κ2)(ω2 ´ 1)

Laurin Pannullo 11 / 17



Gross-Neveu model: Solution of the Hartree-Fock equation

κ= 0.9999

A = 1.0 A = 0.5 A = 0.1

κ= 0.9000

κ= 0.5000

‚ superpotential:

σ(x) = Aκ2
sn

(
Ax|κ2

)
cn

(
Ax|κ2

)
dn

(
Ax|κ2

)
‚ dimensionless variables: ξ= Ax , ω= E/A

‚ HF equation for Lamé-superpotential[
´ B2

Bξ2 +2κ2 sn
(
ξ|κ)]

φ+ = (ω2 +κ2)φ+.

‚ Known solution for φ+ and ω!

|ω| = dn
(
α|κ)

, q =´iAZ (α)+ Aπ

2K
,

dq

dω
=˘A

ω2 ´ E/K√
(ω2 ´ 1+κ2)(ω2 ´ 1)

Laurin Pannullo 11 / 17



Gross-Neveu model: Grand-canonical potential

‚ Grand-canonical potential:

Ω=Seff

βV
=

=´
1

βπ

∫ Λ/2

0
dq ln

[(
1+e´β(E´µ)

)(
1+e´β(E+µ)

)]
+ 1

4GV

∫ 8

´8
dxσ2(x) =

= ´
A

βπ

∫ p
1´κ2

0
dω+

∫ Λ1

1
dω

 dq

dω
ln

[(
1+e´β(Aω´µ)

)(
1+e´β(Aω+µ)

)]
+ 1

4GV

∫ 8

´8
dxσ2(x)

‚ renormalize Ω and minimize in κ and A (very technical, not discussed here)
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Gross-Neveu model: Inhomogeneous phase diagram

0.0 0.2 0.4 0.6 1p
2

0.8 1.0 1.2

µ/Σ̄0
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0.4
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π

T
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0

HBP SP

1st order hom. PB

2nd order hom. PB

Critical point
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1.0

Σ
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x/Σ̄0

0.0

0.2

n
B

/Σ̄
0

∆µ= 0.0002 ∆µ= 0.0426 ∆µ= 0.4369

‚ What is going on? Why does the system break translational invariance?
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Tales from condensed matter: Peierls instability

‚ Consider simple example to understand how
something like this can happen

‚ Consider 1-dimensional atomic lattice with
free electrons moving in the resulting periodic
potential

‚ Blochs theorem ñ band gap at k =π/a

‚ Assume one electron per atom ñ half filling
‚ Move every second atom closer to a neighbor,

doubles period of potential
‚ Band gap at k =π/(2a) ñ energy gain around

Fermi surface vs. distortion energy
‚ Argument only works in 1D and at T = 0/low

temperatures
‚ This effect was identified in condensed matter

model equivalent to GN

a

−πa − π2a
π
2a = kF

π
a

k

ε(k)

2a

−πa − π2a
π
2a = kF

π
a

k

ε(k)
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Back to the Gross-Neveu model

‚ Electrons ” Fermions in the Gross-Neveu
model

‚ potential of the atoms ” chiral condensate

‚ dispersion relation has pronounced gap at
p = π

2K =πp f

[ O. Schnetz et al., Ann. Phys. 314 (2004)]
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Summary of what we learned

‚ The Gross-Neveu model is a very simple four-Fermion model
‚ It experiences spontaneous breaking of translation symmetry at finite density
‚ This is caused by the Peierls instability
‚ Very specific setting: Mean-field, 1+1 dimensions, simple model

Laurin Pannullo 16 / 17



Where to go from here?

‚ These results were pretty exciting and there are several directions to explore

‚ Change the model
‚ Other Four-Fermion models in 1+1 dimensions and mean-field also exhibit IP!

e.g. [ G. Basar et al., Phys. Rev. D. 79 (2009)]

‚ Relax mean-field approximation
‚ Mermin-Wagner theorem should prevent spontaneous symmetry breaking in 1+1 D
‚ Remants of IP, but no actual breaking of translational invariance remains

[ J. Lenz et al., Phys. Rev. D. 101 (2020)]

‚ higher dimensions? see next point

‚ Higher dimensions:
‚ 2+1: Gross-Neveu and other models show no IP [ M. Buballa et al., Phys. Rev. D. 103 (2021)]

‚ 3+1: similar models show IP, but models are non-renormalizable or have other problems
[ S. Carignano et al., Phys. Rev. D. 90 (2014)] [ M. Buballa, S. Carignano, Prog. Part. Nucl. Phys. 81 (2015)]

[ L. Pannullo et al., PoS. LATTICE2022 (2023)]

‚ d +1: IP only for d < 2, IP in d = 3 regulator dependent (“artifact”)
[ L. Pannullo, Phys. Rev. D. 108 (2023)]
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