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e Do first principal calculations = very hard / impossible
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e A plot full of conjectures
e What goes on at finite ug and low T7

e Do first principal calculations = very hard / impossible
e Use models of QCD
= a lot easier; questionable physical relevance

e Maybe chiral inhomogeneous phases?
Laurin Pannullo

T[MeV]

----- FRG: N;=2+1
FRG: inhom
EZZZz Lattice: WB
Lattice: HotQCD
----- DSE: Fischer et al.
------- DSE: Gao et al.

60
40
20

0 200 400 600 800 1000
pi [MeV]

adapted from [ W.-j. Fu et al., Phys. Rev. D. 101
(2020)]

e What we know about the QCD
phase diagram from lattice and
functional methods

2/17



Motivation (II) - What is a chiral inhomogeneous phase?

e Possible chiral phases
e (Pw)(x) =const. =0 : Symmetric phase (SP)
o (Yy)(x) =const. #0 : Homogeneously broken phase (HBP)
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Motivation (II) - What is a chiral inhomogeneous phase?

e Possible chiral phases
e (y)(x) =const. =0 : Symmetric phase (SP)
o (Yy)(x) =const. #0 : Homogeneously broken phase (HBP)
o (Yy)(x) = f(x) : Inhomogeneous phase (IP)
o |P breaks chiral symmetry and translational invariance (!)
e Well known in condensed matter,
exotic in high energy physics
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Outline

e The (1 +1)-dimensional Gross-Neveu model: Where?

e Inhomogeneous condensation in the (1 + 1)-dimensional Gross-Neveu model: How?
[ M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] [ O. Schnetz et al., Ann. Phys. 314 (2004)]

e Tales from condensed matter physics: Peierls instability: “Why?"
e Where to go from here?
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Gross-Neveu model
e Gross-Neveu (GN) model in 1+ 1 dimensions in the large- IV limit / mean-field approximation

[ D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
e "toy-model for QCD”
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Gross-Neveu model

e Gross-Neveu (GN) model in 1+ 1 dimensions in the large-IV limit / mean-field approximation
[ D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
e "toy-model for QCD”

] ] G, .
Sly,wl = f d®x w((fwou)w—ﬁ(ww)z]

Four-Fermion vertex effectively describes gluonic interactions
| |
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Gross-Neveu model

e Gross-Neveu (GN) model in 1+ 1 dimensions in the ‘ large-N limit / mean-field approximation
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Gross-Neveu model: Assuming translational invariance

e assume homogeneous fields 0 =&
e Minimize the effective action in &

Sef(@) % 1 )
= — — — InDet
VB G VB nDet(@+you + &)
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Gross-Neveu model: Assuming translational invariance

e assume homogeneous fields 0 =&
e Minimize the effective action in &
Sef(@) 6% 1

— — — D 5
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e However, . should be 2/t~ 0.64 instead of
12~ 0.71! [R.F. Dashen et al., Phys. Rev. D. 12
(1975)]
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Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields 0 =g (x) = o (x + A)

How to determine X(x)?
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e interesting, but not needed at this point
e see [ G. Basar et al.,, Phys. Rev. D. 79 (2009)]
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Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields 0 =o(x) =g (x+ A)

How to determine X(x)?

Gap equation:

6(7(_)/) Seff[o']‘

6
8oy

o=2

2
[dzx Z—G —InDet(? + you + o)

o=2

e interesting, but not needed at this point
e see [ G. Basar et al.,, Phys. Rev. D. 79 (2009)]

Laurin Pannullo

Parametrization:

Parametrize o(x) and calculate
1-particle energies

express grand-canonical potential via
these energies

minimize in the parameters

Strategy of [ M. Thies, K. Urlichs, Phys.
Rev. D. 67 (2003)] and [ M. Thies, Phys.
Rev. D. 69 (2004)]
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Gross-Neveu model: Hartree-Fock equation

e Euler-Lagrange equation obtained from the action:

[id+0(x)]w=0

Laurin Pannullo 8/17



Gross-Neveu model: Hartree-Fock equation

e Euler-Lagrange equation obtained from the action:
[id+0(x)]w=0

e Assume stationary states to obtain Hartree-Fock (HF) equation
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Gross-Neveu model: Hartree-Fock equation

e Euler-Lagrange equation obtained from the action:
[id+0(x)]w=0
e Assume stationary states to obtain Hartree-Fock (HF) equation
—i' L+ 0|y =Ey, Y =-01, y'=ios, ¥ =yy'=-
o Express spinors as y = (¢+,¢_) to obtain the coupled equations
+| & To|os =Fos,
which can be decoupled by squaring

|- & 7L+ 0| ps = Fos.
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Gross-Neveu model: Hartree-Fock equation

e Euler-Lagrange equation obtained from the action:
[id+0(x)]w=0
e Assume stationary states to obtain Hartree-Fock (HF) equation
—i' L+ 0|y =Ey, Y =-01, y'=ios, ¥ =yy'=-
o Express spinors as y = (¢+,¢_) to obtain the coupled equations
+|&Folor =Eo,
which can be decoupled by squaring
[—f—i%— ]¢i=E2¢i-

o Lots of analogies with SUSY

e Schrédinger potentials Uy = For 6‘7 +02 with same eigenvalues
e o is the so-called superpotentlal to U
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Gross-Neveu model: Parametrization of the scalar field (I)

Most naive parametrization:

e Put system in box L= Na and express ¢ as Fourier components

o(x) = Zé_leﬁnlx/a.
l
e Find energies via numerical diagonalization and use these in the calculation of the
grand-canonical potential
e Strategy in [ M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] and enough to obtain the complete phase
diagram
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Gross-Neveu model: Parametrization of the scalar field (I)

Most naive parametrization:

e Put system in box L= Na and express ¢ as Fourier components

o(x) = Zé_leﬁnlx/a.
l
e Find energies via numerical diagonalization and use these in the calculation of the
grand-canonical potential
e Strategy in [ M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] and enough to obtain the complete phase
diagram

e There is a better way!
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Gross-Neveu model: Parametrization of the scalar field (II)

Choose a better ansatz relying on intuition, SUSY and luck?:
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Gross-Neveu model: Parametrization of the scalar field (II)

Choose a better ansatz relying on intuition, SUSY and luck?:

e single baryon states were found to correspond to spatially dependent o with reflectionless

2
(necessary condition) Schrédinger potential well Uy = fﬁi)ﬁm .
+ o ]

e “stitch” these potential wells together in distance d

&L 1

———— = complicated stuff _...........
n=—op cosh®(x — nd)

e the resulting Schrédinger potential is of the known Lamé-type with superpotential
sn (Ax|1<2) cn (Ax|1(2)
dn (Ax|x?)

o(x) = Ax?

dn, cn,sn are Jacobi elliptic functions. A and x are parameters of the ansatz.
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Gross-Neveu model: Solution of the Hartree-Fock equation

e superpotential:

Laurin Pannullo

- ZSH(AJC|K2)CH(AX|K2)
o(x) = Ax

dn (Ax|x?)
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Gross-Neveu model: Solution of the Hartree-Fock equation

e superpotential: & =0.9999 _'\/‘\- _f

2 s (Alez) cn (Ax|1<2) x =0.9000
dn (Ax|x?) -,\/\/\/\' i

o(x) = Ax

e dimensionless variables: ¢ = Ax, w=E/A ®=05000 I AnAAA| e

e HF equation for Lamé-superpotential T S S

2 4 ox%sn (&lx)

_W (P+ = ((U2+K2)(P+.
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Gross-Neveu model: Solution of the Hartree-Fock equation

e superpotential: X =0.9999 _-\f\- _I
zsn(AxIKZ)cn(Axlkz) K = 0.9000 E
=0.9000 3 I
dn (Ax|x?) ,\/\/\/\' E

dimensionless variables: ¢ = Ax, w=E/A ®=05000 I AnAAA| e

o(x) = Ax

HF equation for Lamé-superpotential T S S

2 4 ox%sn (&lx)

[_W (P+:((U2+K2)(P+.

Known solution for ¢ and w!

; Am dq w?—E/K
lwl=dn(alx), g=—iAZ@+—, —=+A
2K do V@2 -1+ @?—1)
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Gross-Neveu model: Grand-canonical potential

e Grand-canonical potential:

Seff

=5y =

1 A2
=— — dgl
ﬁﬂfo 7

(1 + e_ﬁ(E_’”) (1 + e_ﬁ(E“”)

1 0
+ —f dxo?(x) =
4GV J-o
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Gross-Neveu model: Grand-canonical potential

e Grand-canonical potential:

_Seff _
BV

1 A2 1 00

:——f dgln (1+e_ﬁ(5_”))(1+e_ﬁ(5+“)) +—f dxo?(x) =
ﬁT[ 0 4GV —0
A 1—x2 A d

= — f dw+f dw —ql (1+e_ﬁ(A“’_“)) (1+e_ﬁ(Aw+“) f dxo?(x)
Bt | Jo 1 4GV
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Gross-Neveu model: Grand-canonical potential

e Grand-canonical potential:

_Selt
2%

1 A2 1 0

:——f dgln (1+e_ﬁ(5_”)) (1+e_ﬁ(E+”)) +—f dxo?(x) =
ﬁT[ 0 4GV —0
A 1—«? AN d

= — f dw+f dw —ql (1+e_ﬁ(A“’_“)) (1+e_ﬁ(Aw+m f dxo?(x)
pre | Jo 1 AGV

e renormalize Q and minimize in k¥ and A (very technical, not discussed here)
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Gross-Neveu model: Inhomogeneous phase diagram

e¥ |
€
0.4 1
- J
w HBP SP
& \
0.2 == 1% orderhom.PB \
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e  (ritical point \
0.0vvvx"'x"'x"!'x"'x"
0.0 0.2 0.4 0.6 L 0.8 1.0 1.2
V2
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Gross-Neveu model: Inhomogeneous phase diagram
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Gross-Neveu model: Inhomogeneous phase diagram
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Gross-Neveu model: Inhomogeneous phase diagram

1.0
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3 ]
2 0.0
e ]
7 -0.5 7
1 -1.0

—— T ———T——
0.4 1 ]

g S N Ve O e W S e e e Y
S HBP ]
_ 0.2+
024~ 1%t order hom. PB " 4
’ | === 274 order hom. PB S :
| == Inhomogeneous PB 0.0 4

| e Critical point 1 — Ap=00002 — Ap=0.0426 — Au=0.4369

0o+——FtT—" 77— ——T T —————

0.0 0.2 0.4 2 1L 08 1.0 1.2 0 2 4 6 10 12
T 5
%o o

e What is going on? Why does the system break translational invariance?
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Tales from condensed matter: Peierls instability

e Consider simple example to understand how
something like this can happen
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Tales from condensed matter: Peierls instability

e Consider simple example to understand how
something like this can happen

e Consider 1-dimensional atomic lattice with a
free electrons moving in the resulting periodic —
: ving | ulting periodi 900000000 0 O -
potential
e Blochs theorem = band gap at k=m/a e

e Assume one electron per atom = half filling
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Tales from condensed matter: Peierls instability

Consider simple example to understand how
something like this can happen

Consider 1-dimensional atomic lattice with
free electrons moving in the resulting periodic
potential

Blochs theorem = band gap at k=7/a
Assume one electron per atom = half filling

Move every second atom closer to a neighbor,
doubles period of potential
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Tales from condensed matter: Peierls instability

Consider simple example to understand how
something like this can happen

Consider 1-dimensional atomic lattice with
free electrons moving in the resulting periodic
potential

Blochs theorem = band gap at k=7/a
Assume one electron per atom = half filling

Move every second atom closer to a neighbor,
doubles period of potential

Band gap at k=7/(2a) = energy gain around
Fermi surface vs. distortion energy
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Tales from condensed matter: Peierls instability

e Consider simple example to understand how
something like this can happen

e Consider 1-dimensional atomic lattice with 2a
free electrons moving in the resulting periodic ‘ y
: ving | ulting periodi - 900 00 00 00 00 00
potential
e Blochs theorem = band gap at k=m/a e

e Assume one electron per atom = half filling

e Move every second atom closer to a neighbor,
doubles period of potential
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e Argument only works in 1D and at T =0/low

temperatures
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Tales from condensed matter: Peierls instability

Consider simple example to understand how
something like this can happen

Consider 1-dimensional atomic lattice with
free electrons moving in the resulting periodic
potential

Blochs theorem = band gap at k=7/a
Assume one electron per atom = half filling

Move every second atom closer to a neighbor,
doubles period of potential

Band gap at k=7/(2a) = energy gain around
Fermi surface vs. distortion energy

Argument only works in 1D and at T =0/low
temperatures

This effect was identified in condensed matter
model equivalent to GN
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Back to the Gross-Neveu model

e Electrons = Fermions in the Gross-Neveu
model

e potential of the atoms = chiral condensate
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Back to the Gross-Neveu model

e Electrons = Fermions in the Gross-Neveu

upper band
model
e potential of the atoms = chiral condensate
e dispersion relation has pronounced gap at |
P=3g =TPf .
lower band

[ O. Schnetz et al., Ann. Phys. 314 (2004)]

Laurin Pannullo 15 /17



Summary of what we learned

The Gross-Neveu model is a very simple four-Fermion model

It experiences spontaneous breaking of translation symmetry at finite density

This is caused by the Peierls instability

Very specific setting: Mean-field, 1+ 1 dimensions, simple model
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Where to go from here?

e These results were pretty exciting and there are several directions to explore
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Higher dimensions:

e 2+41: Gross-Neveu and other models show no IP [ M. Buballa et al., Phys. Rev. D. 103 (2021)]

e 3+1: similar models show IP, but models are non-renormalizable or have other problems
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Higher dimensions:

e 2+41: Gross-Neveu and other models show no IP [ M. Buballa et al., Phys. Rev. D. 103 (2021)]

e 3+1: similar models show IP, but models are non-renormalizable or have other problems
[ S. Carignano et al., Phys. Rev. D. 90 (2014)] [ M. Buballa, S. Carignano, Prog. Part. Nucl. Phys. 81 (2015)]

[ L. Pannullo et al., PoS. LATTICE2022 (2023)]
e d+1: IP only for d<2, IP in d =3 regulator dependent (“artifact”)
[ L. Pannullo, Phys. Rev. D. 108 (2023)]
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