Inhomogeneous phases in the Gross-Neveu model (and beyond)

```
Based on
[ M. Thies, K. Urlichs, Phys. Rev. D. }67\mathrm{ (2003)]
        [ M. Thies, Phys. Rev. D. }69\mathrm{ (2004)]
    [ O. Schnetz et al., Ann. Phys. }314\mathrm{ (2004)]
```


Motivation (I) - QCD phase diagram

[K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

- A plot full of conjectures

Motivation (I) - QCD phase diagram

[K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

- A plot full of conjectures
- What goes on at finite μ_{B} and low T ?

Motivation (I) - QCD phase diagram

[K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

- A plot full of conjectures
- What goes on at finite μ_{B} and low T ?
- Do first principal calculations \Rightarrow very hard / impossible

$$
\begin{aligned}
& 180 \\
& 160 \\
& 140 \\
& 120
\end{aligned}
$$

- What we know about the QCD phase diagram from lattice and functional methods

Motivation (I) - QCD phase diagram

[K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

- A plot full of conjectures
- What goes on at finite μ_{B} and low T ?
- Do first principal calculations \Rightarrow very hard / impossible
- Use models of QCD
\Rightarrow a lot easier; questionable physical relevance

adapted from [W.-j. Fu et al., Phys. Rev. D. 101 (2020)]
- What we know about the QCD phase diagram from lattice and functional methods

Motivation (I) - QCD phase diagram

[K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

- A plot full of conjectures
- What goes on at finite μ_{B} and low T ?
- Do first principal calculations \Rightarrow very hard / impossible
- Use models of QCD
\Rightarrow a lot easier; questionable physical relevance
- Maybe chiral inhomogeneous phases?
- What we know about the QCD phase diagram from lattice and functional methods

Motivation (II) - What is a chiral inhomogeneous phase?

- Possible chiral phases
- $\langle\bar{\psi} \psi\rangle(x)=$ const. $=0$: Symmetric phase (SP)
- $\langle\bar{\psi} \psi\rangle(x)=$ const. $\neq 0$: Homogeneously broken phase (HBP)

Motivation (II) - What is a chiral inhomogeneous phase?

- Possible chiral phases
- $\langle\bar{\psi} \psi\rangle(x)=$ const. $=0$: Symmetric phase (SP)
- $\langle\bar{\psi} \psi\rangle(x)=$ const. $\neq 0$: Homogeneously broken phase (HBP)

[K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

Motivation (II) - What is a chiral inhomogeneous phase?

- Possible chiral phases
- $\langle\bar{\psi} \psi\rangle(x)=$ const. $=0$: Symmetric phase (SP)
- $\langle\bar{\psi} \psi\rangle(x)=$ const. $\neq 0$: Homogeneously broken phase (HBP)
- $\langle\bar{\psi} \psi\rangle(x)=f(x) \quad$: Inhomogeneous phase (IP)

[K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

Motivation (II) - What is a chiral inhomogeneous phase?

- Possible chiral phases
- $\langle\bar{\psi} \psi\rangle(x)=$ const. $=0$: Symmetric phase (SP)
- $\langle\bar{\psi} \psi\rangle(x)=$ const. $\neq 0$: Homogeneously broken phase (HBP)
- $\langle\bar{\psi} \psi\rangle(x)=f(x) \quad$: Inhomogeneous phase (IP)
- IP breaks chiral symmetry and translational invariance (!)
- Well known in condensed matter, exotic in high energy physics

[K. Fukushima, T. Hatsuda, Reports on Prog. Phys. 74 (2011)]

Outline

- The $(1+1)$-dimensional Gross-Neveu model: Where?
- Inhomogeneous condensation in the $(1+1)$-dimensional Gross-Neveu model: How? [M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] [O. Schnetz et al., Ann. Phys. 314 (2004)]
- Tales from condensed matter physics: Peierls instability: "Why?"
- Where to go from here?

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

$$
S[\bar{\psi}, \psi]=\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu\right) \psi-\frac{G}{N}(\bar{\psi} \psi)^{2}\right]
$$

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

$$
S[\bar{\psi}, \psi]=\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu\right) \psi-\frac{G}{N}(\bar{\psi} \psi)^{2}\right]
$$

Four-Fermion vertex effectively describes gluonic interactions

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

$$
\left.\begin{array}{rl}
S[\bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu\right) \psi-\frac{G}{N}(\bar{\psi} \psi)^{2}\right] \\
\underset{\text { trafo }}{\text { H.S. }} & S_{\sigma}[\sigma, \bar{\psi}, \psi]
\end{array}\right)=\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu+\sigma\right) \psi+\frac{N \sigma^{2}}{4 G}\right]
$$

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

$$
\begin{aligned}
& S[\bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu\right) \psi-\frac{G}{N}(\bar{\psi} \psi)^{2}\right] \\
\underset{\text { trafo }}{\text { H.S. }} & S_{\sigma}[\sigma, \bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu+\sigma\right) \psi+\frac{N \sigma^{2}}{4 G}\right] \\
\underset{\bar{\psi}, \psi}{\text { integrate }} & S_{\text {eff }}[\sigma] & =\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)
\end{aligned}
$$

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

$$
\begin{array}{rlrl}
S[\bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu\right) \psi-\frac{G}{N}(\bar{\psi} \psi)^{2}\right] \\
\xrightarrow[\text { trafo }]{\text { H.S. }} & S_{\sigma}[\sigma, \bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu+\sigma\right) \psi+\frac{N \sigma^{2}}{4 G}\right] \\
\underset{\bar{\psi}, \psi}{\text { integrate }} & S_{\text {eff }}[\sigma] & =\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)
\end{array}
$$

- Discrete chiral symmetry $\psi \rightarrow \gamma_{5} \psi, \bar{\psi} \rightarrow-\bar{\psi} \gamma_{5}$, which gets broken spontaneously

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

$$
\begin{array}{rlrl}
S[\bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu\right) \psi-\frac{G}{N}(\bar{\psi} \psi)^{2}\right] \\
\xrightarrow[\text { trafo }]{\text { H.S. }} & S_{\sigma}[\sigma, \bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu+\sigma\right) \psi+\frac{N \sigma^{2}}{4 G}\right] \\
\underset{\bar{\psi}, \psi}{\text { integrate }} & S_{\text {eff }}[\sigma] & =\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)
\end{array}
$$

- Discrete chiral symmetry $\psi \rightarrow \gamma_{5} \psi, \bar{\psi} \rightarrow-\bar{\psi} \gamma_{5}$, which gets broken spontaneously
- Asymptotic free theory

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

$$
\begin{array}{rlrl}
S[\bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu\right) \psi-\frac{G}{N}(\bar{\psi} \psi)^{2}\right] \\
\xrightarrow[\text { trafo }]{\text { H.S. }} & S_{\sigma}[\sigma, \bar{\psi}, \psi] & =\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu+\sigma\right) \psi+\frac{N \sigma^{2}}{4 G}\right] \\
\underset{\bar{\psi}, \psi}{\text { integrate }} & S_{\text {eff }}[\sigma] & =\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)
\end{array}
$$

- Discrete chiral symmetry $\psi \rightarrow \gamma_{5} \psi, \bar{\psi} \rightarrow-\bar{\psi} \gamma_{5}$, which gets broken spontaneously
- Asymptotic free theory
- Ward identity: $\langle\bar{\psi} \psi\rangle \propto\langle\sigma\rangle$

Gross-Neveu model

- Gross-Neveu (GN) model in $1+1$ dimensions in the
large- N limit / mean-field approximation [D. J. Gross, A. Neveu, Phys. Rev. D. 10 (1974)]
- "toy-model for QCD"

$$
\begin{aligned}
& S[\bar{\psi}, \psi]=\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu\right) \psi-\frac{G}{N}(\bar{\psi} \psi)^{2}\right] \quad Z=\int \mathscr{D} \sigma \mathrm{e}^{-N S_{\text {eff }}[\sigma]} \\
& \xrightarrow[\text { trafo }]{\text { H.S. }} \\
& S_{\sigma}[\sigma, \bar{\psi}, \psi]=\int \mathrm{d}^{2} x\left[\bar{\psi}\left(\partial+\gamma_{0} \mu+\sigma\right) \psi+\frac{N \sigma^{2}}{4 G}\right] \quad \begin{aligned}
\xrightarrow[\text { field }]{\text { mean- }} Z & =\sum_{i} \mathrm{e}^{-N S_{\text {eff }}\left[\Sigma_{i}\right]} \\
\Sigma & =\underset{\sigma}{\operatorname{argmin}} S_{\text {eff }}[\sigma]
\end{aligned} \\
& \xrightarrow[\bar{\psi}, \psi]{\text { integrate }} \\
& S_{\mathrm{eff}}[\sigma]=\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)
\end{aligned}
$$

- Discrete chiral symmetry $\psi \rightarrow \gamma_{5} \psi, \bar{\psi} \rightarrow-\bar{\psi} \gamma_{5}$, which gets broken spontaneously
- Asymptotic free theory
- Ward identity: $\langle\bar{\psi} \psi\rangle \propto\langle\sigma\rangle$

Gross-Neveu model: Assuming translational invariance

- assume homogeneous fields $\sigma=\bar{\sigma}$
- Minimize the effective action in $\bar{\sigma}$

$$
\frac{S_{\mathrm{eff}}(\bar{\sigma})}{V \beta}=\frac{\bar{\sigma}^{2}}{4 G}-\frac{1}{V \beta} \ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\bar{\sigma}\right)
$$

[U. Wolff, Phys. Lett. 157B (1985)]

Gross-Neveu model: Assuming translational invariance

- assume homogeneous fields $\sigma=\bar{\sigma}$
- Minimize the effective action in $\bar{\sigma}$

$$
\frac{S_{\mathrm{eff}}(\bar{\sigma})}{V \beta}=\frac{\bar{\sigma}^{2}}{4 G}-\frac{1}{V \beta} \ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\bar{\sigma}\right)
$$

- However, μ_{c} should be $2 / \pi \approx 0.64$ instead of $1 \sqrt{2} \approx 0.71$! [R. F. Dashen et al., Phys. Rev. D. 12 (1975)]

[U. Wolff, Phys. Lett. 157B (1985)]

Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields $\sigma=\sigma(x)=\sigma(x+\lambda)$
How to determine $\Sigma(x)$?

Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields $\sigma=\sigma(x)=\sigma(x+\lambda)$
How to determine $\Sigma(x)$?

Gap equation:

$$
\begin{aligned}
0 & =\left.\frac{\delta}{\delta \sigma(y)} S_{\text {eff }}[\sigma]\right|_{\sigma=\Sigma} \\
& =\left.\frac{\delta}{\delta \sigma(y)}\left[\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)\right]\right|_{\sigma=\Sigma}
\end{aligned}
$$

Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields $\sigma=\sigma(x)=\sigma(x+\lambda)$
How to determine $\Sigma(x)$?

Gap equation:

$$
\begin{aligned}
0 & =\left.\frac{\delta}{\delta \sigma(y)} S_{\text {eff }}[\sigma]\right|_{\sigma=\Sigma} \\
& =\left.\frac{\delta}{\delta \sigma(y)}\left[\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)\right]\right|_{\sigma=\Sigma}
\end{aligned}
$$

- interesting, but not needed at this point
- see [G. Basar et al., Phys. Rev. D. 79 (2009)]

Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields $\sigma=\sigma(x)=\sigma(x+\lambda)$
How to determine $\Sigma(x)$?

Gap equation:

$$
\begin{aligned}
0 & =\left.\frac{\delta}{\delta \sigma(y)} S_{\text {eff }}[\sigma]\right|_{\sigma=\Sigma} \\
& =\left.\frac{\delta}{\delta \sigma(y)}\left[\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)\right]\right|_{\sigma=\Sigma}
\end{aligned}
$$

- interesting, but not needed at this point
- see [G. Basar et al., Phys. Rev. D. 79 (2009)]

Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields $\sigma=\sigma(x)=\sigma(x+\lambda)$
How to determine $\Sigma(x)$?

Gap equation:

$$
\begin{aligned}
0 & =\left.\frac{\delta}{\delta \sigma(y)} S_{\text {eff }}[\sigma]\right|_{\sigma=\Sigma} \\
& =\left.\frac{\delta}{\delta \sigma(y)}\left[\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)\right]\right|_{\sigma=\Sigma}
\end{aligned}
$$

- interesting, but not needed at this point
- see [G. Basar et al., Phys. Rev. D. 79 (2009)]

Gross-Neveu model: Relaxing translational invariance

assume time independent, inhomogeneous, periodic fields $\sigma=\sigma(x)=\sigma(x+\lambda)$
How to determine $\Sigma(x)$?

Gap equation:

$$
\begin{aligned}
0 & =\left.\frac{\delta}{\delta \sigma(y)} S_{\text {eff }}[\sigma]\right|_{\sigma=\Sigma} \\
& =\left.\frac{\delta}{\delta \sigma(y)}\left[\int \mathrm{d}^{2} x \frac{\sigma^{2}}{4 G}-\ln \operatorname{Det}\left(\partial+\gamma_{0} \mu+\sigma\right)\right]\right|_{\sigma=\Sigma}
\end{aligned}
$$

- interesting, but not needed at this point
- see [G. Basar et al., Phys. Rev. D. 79 (2009)]

Parametrization:

- Parametrize $\sigma(x)$ and calculate 1-particle energies
- express grand-canonical potential via these energies
- minimize in the parameters
- Strategy of [M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] and [M. Thies, Phys. Rev. D. 69 (2004)]

Gross-Neveu model: Hartree-Fock equation

- Euler-Lagrange equation obtained from the action:

$$
[\mathrm{i} \partial+\sigma(x)] \psi=0
$$

Gross-Neveu model: Hartree-Fock equation

- Euler-Lagrange equation obtained from the action:

$$
[\mathrm{i} \not \partial+\sigma(x)] \psi=0
$$

- Assume stationary states to obtain Hartree-Fock (HF) equation

$$
\left[-\mathrm{i} \gamma^{5} \frac{\partial}{\partial x}+\gamma^{0} \sigma(x)\right] \psi(x)=E \psi(x), \quad \gamma^{0}=-\sigma_{1}, \quad \gamma^{1}=\mathrm{i} \sigma_{3}, \quad \gamma^{5}=\gamma^{0} \gamma^{1}=-\sigma_{2}
$$

Gross-Neveu model: Hartree-Fock equation

- Euler-Lagrange equation obtained from the action:

$$
[\mathrm{i} \not \partial+\sigma(x)] \psi=0
$$

- Assume stationary states to obtain Hartree-Fock (HF) equation

$$
\left[-\mathrm{i} \gamma^{5} \frac{\partial}{\partial x}+\gamma^{0} \sigma(x)\right] \psi(x)=E \psi(x), \quad \gamma^{0}=-\sigma_{1}, \quad \gamma^{1}=\mathrm{i} \sigma_{3}, \quad \gamma^{5}=\gamma^{0} \gamma^{1}=-\sigma_{2}
$$

- Express spinors as $\psi=\left(\phi_{+}, \phi_{-}\right)$to obtain the coupled equations

$$
\pm\left[\frac{\partial}{\partial x} \mp \sigma\right] \phi_{\mp}=E \phi_{ \pm},
$$

which can be decoupled by squaring

$$
\left[-\frac{\partial^{2}}{\partial x^{2}} \mp \frac{\partial \sigma}{\partial x}+\sigma^{2}\right] \phi_{ \pm}=E^{2} \phi_{ \pm}
$$

Gross-Neveu model: Hartree-Fock equation

- Euler-Lagrange equation obtained from the action:

$$
[\mathrm{i} \not \partial+\sigma(x)] \psi=0
$$

- Assume stationary states to obtain Hartree-Fock (HF) equation

$$
\left[-\mathrm{i} \gamma^{5} \frac{\partial}{\partial x}+\gamma^{0} \sigma(x)\right] \psi(x)=E \psi(x), \quad \gamma^{0}=-\sigma_{1}, \quad \gamma^{1}=\mathrm{i} \sigma_{3}, \quad \gamma^{5}=\gamma^{0} \gamma^{1}=-\sigma_{2}
$$

- Express spinors as $\psi=\left(\phi_{+}, \phi_{-}\right)$to obtain the coupled equations

$$
\pm\left[\frac{\partial}{\partial x} \mp \sigma\right] \phi_{\mp}=E \phi_{ \pm},
$$

which can be decoupled by squaring

$$
\left[-\frac{\partial^{2}}{\partial x^{2}} \mp \frac{\partial \sigma}{\partial x}+\sigma^{2}\right] \phi_{ \pm}=E^{2} \phi_{ \pm} .
$$

- Lots of analogies with SUSY
- Schrödinger potentials $U_{ \pm}=\mp \frac{\partial \sigma}{\partial x}+\sigma^{2}$ with same eigenvalues
- σ is the so-called superpotential to U

Gross-Neveu model: Parametrization of the scalar field (I)

Most naive parametrization:

- Put system in box $L=N a$ and express σ as Fourier components

$$
\sigma(x)=\sum_{l} \tilde{\sigma}_{l} \mathrm{e}^{\mathrm{i} 2 \pi l x / a} .
$$

- Find energies via numerical diagonalization and use these in the calculation of the grand-canonical potential
- Strategy in [M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] and enough to obtain the complete phase diagram

Gross-Neveu model: Parametrization of the scalar field (I)

Most naive parametrization:

- Put system in box $L=N a$ and express σ as Fourier components

$$
\sigma(x)=\sum_{l} \tilde{\sigma}_{l} \mathrm{e}^{\mathrm{i} 2 \pi l x / a} .
$$

- Find energies via numerical diagonalization and use these in the calculation of the grand-canonical potential
- Strategy in [M. Thies, K. Urlichs, Phys. Rev. D. 67 (2003)] and enough to obtain the complete phase diagram
- There is a better way!

Gross-Neveu model: Parametrization of the scalar field (II)

Choose a better ansatz relying on intuition, SUSY and luck?:

Gross-Neveu model: Parametrization of the scalar field (II)

Choose a better ansatz relying on intuition, SUSY and luck?:

- single baryon states were found to correspond to spatially dependent σ with reflectionless (necessary condition) Schrödinger potential well $U_{ \pm}=-\frac{2 y^{2}}{\cosh ^{2}\left(y x \pm c_{0}\right)}$

Gross-Neveu model: Parametrization of the scalar field (II)

Choose a better ansatz relying on intuition, SUSY and luck?:

- single baryon states were found to correspond to spatially dependent σ with reflectionless (necessary condition) Schrödinger potential well $U_{ \pm}=-\frac{2 y^{2}}{\cosh ^{2}\left(y x \pm c_{0}\right)}$
- "stitch" these potential wells together in distance d

$$
\sum_{n=-\infty}^{\infty} \frac{1}{\cosh ^{2}(x-n d)}=\text { complicated stuff }
$$

- the resulting Schrödinger potential is of the known Lamé-type with superpotential

$$
\sigma(x)=A \kappa^{2} \frac{\operatorname{sn}\left(A x \mid \kappa^{2}\right) \operatorname{cn}\left(A x \mid \kappa^{2}\right)}{\operatorname{dn}\left(A x \mid \kappa^{2}\right)}
$$

$\mathrm{dn}, \mathrm{cn}, \mathrm{sn}$ are Jacobi elliptic functions. A and κ are parameters of the ansatz.

Gross-Neveu model: Solution of the Hartree-Fock equation

- superpotential:

$$
\sigma(x)=A \kappa^{2} \frac{\operatorname{sn}\left(A x \mid \kappa^{2}\right) \operatorname{cn}\left(A x \mid \kappa^{2}\right)}{\operatorname{dn}\left(A x \mid \kappa^{2}\right)}
$$

$$
\kappa=0.9000
$$

$$
\kappa=0.5000
$$

Gross-Neveu model: Solution of the Hartree-Fock equation

- superpotential:

$$
\sigma(x)=A \kappa^{2} \frac{\operatorname{sn}\left(A x \mid \kappa^{2}\right) \operatorname{cn}\left(A x \mid \kappa^{2}\right)}{\operatorname{dn}\left(A x \mid \kappa^{2}\right)}
$$

- dimensionless variables: $\xi=A x, \quad \omega=E / A$
- HF equation for Lamé-superpotential

$\kappa=0.5000$

$$
\left[-\frac{\partial^{2}}{\partial \xi^{2}}+2 \kappa^{2} \operatorname{sn}(\xi \mid \kappa)\right] \phi_{+}=\left(\omega^{2}+\kappa^{2}\right) \phi_{+}
$$

Gross-Neveu model: Solution of the Hartree-Fock equation

- superpotential:

$$
\sigma(x)=A \kappa^{2} \frac{\operatorname{sn}\left(A x \mid \kappa^{2}\right) \operatorname{cn}\left(A x \mid \kappa^{2}\right)}{\operatorname{dn}\left(A x \mid \kappa^{2}\right)}
$$

- dimensionless variables: $\xi=A x, \quad \omega=E / A$
- HF equation for Lamé-superpotential

$$
\kappa=0.5000
$$

$$
\left[-\frac{\partial^{2}}{\partial \xi^{2}}+2 \kappa^{2} \operatorname{sn}(\xi \mid \kappa)\right] \phi_{+}=\left(\omega^{2}+\kappa^{2}\right) \phi_{+}
$$

- Known solution for ϕ_{+}and ω !

$$
|\omega|=\operatorname{dn}(\alpha \mid \kappa), \quad q=-\mathbf{i} A Z(\alpha)+\frac{A \pi}{2 \mathbf{K}}, \quad \frac{\mathrm{~d} q}{\mathrm{~d} \omega}= \pm A \frac{\omega^{2}-\mathbf{E} / \mathbf{K}}{\sqrt{\left(\omega^{2}-1+\kappa^{2}\right)\left(\omega^{2}-1\right)}}
$$

Gross-Neveu model: Grand-canonical potential

- Grand-canonical potential:

$$
\begin{aligned}
\Omega & =\frac{S_{\text {eff }}}{\beta V}= \\
& =-\frac{1}{\beta \pi} \int_{0}^{\Lambda / 2} \mathrm{~d} q \ln \left[\left(1+\mathrm{e}^{-\beta(E-\mu)}\right)\left(1+\mathrm{e}^{-\beta(E+\mu)}\right)\right]+\frac{1}{4 G V} \int_{-\infty}^{\infty} \mathrm{d} x \sigma^{2}(x)=
\end{aligned}
$$

Gross-Neveu model: Grand-canonical potential

- Grand-canonical potential:

$$
\begin{aligned}
\Omega & =\frac{S_{\text {eff }}}{\beta V}= \\
& =-\frac{1}{\beta \pi} \int_{0}^{\Lambda / 2} \mathrm{~d} q \ln \left[\left(1+\mathrm{e}^{-\beta(E-\mu)}\right)\left(1+\mathrm{e}^{-\beta(E+\mu)}\right)\right]+\frac{1}{4 G V} \int_{-\infty}^{\infty} \mathrm{d} x \sigma^{2}(x)= \\
& =-\frac{A}{\beta \pi}\left[\int_{0}^{\sqrt{1-\kappa^{2}}} \mathrm{~d} \omega+\int_{1}^{\Lambda^{\prime}} \mathrm{d} \omega\right] \frac{\mathrm{d} q}{\mathrm{~d} \omega} \ln \left[\left(1+\mathrm{e}^{-\beta(A \omega-\mu)}\right)\left(1+\mathrm{e}^{-\beta(A \omega+\mu)}\right)\right]+\frac{1}{4 G V} \int_{-\infty}^{\infty} \mathrm{d} x \sigma^{2}(x)
\end{aligned}
$$

Gross-Neveu model: Grand-canonical potential

- Grand-canonical potential:

$$
\begin{aligned}
\Omega & =\frac{S_{\text {eff }}}{\beta V}= \\
& =-\frac{1}{\beta \pi} \int_{0}^{\Lambda / 2} \mathrm{~d} q \ln \left[\left(1+\mathrm{e}^{-\beta(E-\mu)}\right)\left(1+\mathrm{e}^{-\beta(E+\mu)}\right)\right]+\frac{1}{4 G V} \int_{-\infty}^{\infty} \mathrm{d} x \sigma^{2}(x)= \\
& =-\frac{A}{\beta \pi}\left[\int_{0}^{\sqrt{1-\kappa^{2}}} \mathrm{~d} \omega+\int_{1}^{\Lambda^{\prime}} \mathrm{d} \omega\right] \frac{\mathrm{d} q}{\mathrm{~d} \omega} \ln \left[\left(1+\mathrm{e}^{-\beta(A \omega-\mu)}\right)\left(1+\mathrm{e}^{-\beta(A \omega+\mu)}\right)\right]+\frac{1}{4 G V} \int_{-\infty}^{\infty} \mathrm{d} x \sigma^{2}(x)
\end{aligned}
$$

- renormalize Ω and minimize in κ and A (very technical, not discussed here)

Gross-Neveu model: Inhomogeneous phase diagram

- What is going on? Why does the system break translational invariance?

Tales from condensed matter: Peierls instability

- Consider simple example to understand how something like this can happen

Tales from condensed matter: Peierls instability

- Consider simple example to understand how something like this can happen
- Consider 1-dimensional atomic lattice with free electrons moving in the resulting periodic potential

Tales from condensed matter: Peierls instability

- Consider simple example to understand how something like this can happen
- Consider 1-dimensional atomic lattice with free electrons moving in the resulting periodic potential
- Blochs theorem \Rightarrow band gap at $k=\pi / a$
- Assume one electron per atom \Rightarrow half filling

Tales from condensed matter: Peierls instability

- Consider simple example to understand how something like this can happen
- Consider 1-dimensional atomic lattice with free electrons moving in the resulting periodic potential
- Blochs theorem \Rightarrow band gap at $k=\pi / a$
- Assume one electron per atom \Rightarrow half filling
- Move every second atom closer to a neighbor, doubles period of potential

Tales from condensed matter: Peierls instability

- Consider simple example to understand how something like this can happen
- Consider 1-dimensional atomic lattice with free electrons moving in the resulting periodic potential
- Blochs theorem \Rightarrow band gap at $k=\pi / a$
- Assume one electron per atom \Rightarrow half filling
- Move every second atom closer to a neighbor, doubles period of potential
- Band gap at $k=\pi /(2 a) \Rightarrow$ energy gain around Fermi surface vs. distortion energy

Tales from condensed matter: Peierls instability

- Consider simple example to understand how something like this can happen
- Consider 1-dimensional atomic lattice with free electrons moving in the resulting periodic potential
- Blochs theorem \Rightarrow band gap at $k=\pi / a$
- Assume one electron per atom \Rightarrow half filling
- Move every second atom closer to a neighbor, doubles period of potential
- Band gap at $k=\pi /(2 a) \Rightarrow$ energy gain around Fermi surface vs. distortion energy
- Argument only works in 1D and at $T=0 /$ low temperatures

Tales from condensed matter: Peierls instability

- Consider simple example to understand how something like this can happen
- Consider 1-dimensional atomic lattice with free electrons moving in the resulting periodic potential
- Blochs theorem \Rightarrow band gap at $k=\pi / a$
- Assume one electron per atom \Rightarrow half filling
- Move every second atom closer to a neighbor, doubles period of potential
- Band gap at $k=\pi /(2 a) \Rightarrow$ energy gain around Fermi surface vs. distortion energy
- Argument only works in 1D and at $T=0 /$ low temperatures
- This effect was identified in condensed matter model equivalent to GN

Back to the Gross-Neveu model

- Electrons \equiv Fermions in the Gross-Neveu model
- potential of the atoms \equiv chiral condensate

Back to the Gross-Neveu model

- Electrons \equiv Fermions in the Gross-Neveu model
- potential of the atoms \equiv chiral condensate
- dispersion relation has pronounced gap at $p=\frac{\pi}{2 \mathrm{~K}}=\pi p_{f}$

Summary of what we learned

- The Gross-Neveu model is a very simple four-Fermion model
- It experiences spontaneous breaking of translation symmetry at finite density
- This is caused by the Peierls instability
- Very specific setting: Mean-field, $1+1$ dimensions, simple model

Where to go from here?

- These results were pretty exciting and there are several directions to explore

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model
- Other Four-Fermion models in $1+1$ dimensions and mean-field also exhibit IP!
e.g. [G. Basar et al., Phys. Rev. D. 79 (2009)]

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model
- Other Four-Fermion models in $1+1$ dimensions and mean-field also exhibit IP! e.g. [G. Basar et al., Phys. Rev. D. 79 (2009)]
- Relax mean-field approximation

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model
- Other Four-Fermion models in $1+1$ dimensions and mean-field also exhibit IP!
e.g. [G. Basar et al., Phys. Rev. D. 79 (2009)]
- Relax mean-field approximation
- Mermin-Wagner theorem should prevent spontaneous symmetry breaking in $1+1 \mathrm{D}$

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model
- Other Four-Fermion models in $1+1$ dimensions and mean-field also exhibit IP!
e.g. [G. Basar et al., Phys. Rev. D. 79 (2009)]
- Relax mean-field approximation
- Mermin-Wagner theorem should prevent spontaneous symmetry breaking in $1+1 \mathrm{D}$
- Remants of IP, but no actual breaking of translational invariance remains [J. Lenz et al., Phys. Rev. D. 101 (2020)]
- higher dimensions? see next point

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model
- Other Four-Fermion models in $1+1$ dimensions and mean-field also exhibit IP!
e.g. [G. Basar et al., Phys. Rev. D. 79 (2009)]
- Relax mean-field approximation
- Mermin-Wagner theorem should prevent spontaneous symmetry breaking in $1+1 \mathrm{D}$
- Remants of IP, but no actual breaking of translational invariance remains
[J. Lenz et al., Phys. Rev. D. 101 (2020)]
- higher dimensions? see next point
- Higher dimensions:

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model
- Other Four-Fermion models in $1+1$ dimensions and mean-field also exhibit IP!
e.g. [G. Basar et al., Phys. Rev. D. 79 (2009)]
- Relax mean-field approximation
- Mermin-Wagner theorem should prevent spontaneous symmetry breaking in $1+1 \mathrm{D}$
- Remants of IP, but no actual breaking of translational invariance remains
[J. Lenz et al., Phys. Rev. D. 101 (2020)]
- higher dimensions? see next point
- Higher dimensions:
- 2+1: Gross-Neveu and other models show no IP [M. Buballa et al., Phys. Rev. D. 103 (2021)]

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model
- Other Four-Fermion models in $1+1$ dimensions and mean-field also exhibit IP!
e.g. [G. Basar et al., Phys. Rev. D. 79 (2009)]
- Relax mean-field approximation
- Mermin-Wagner theorem should prevent spontaneous symmetry breaking in $1+1 \mathrm{D}$
- Remants of IP, but no actual breaking of translational invariance remains

```
[ J. Lenz et al., Phys. Rev. D. }101\mathrm{ (2020)]
```

- higher dimensions? see next point
- Higher dimensions:
- 2+1: Gross-Neveu and other models show no IP [M. Buballa et al., Phys. Rev. D. 103 (2021)]
- 3+1: similar models show IP, but models are non-renormalizable or have other problems [S. Carignano et al., Phys. Rev. D. 90 (2014)] [M. Buballa, S. Carignano, Prog. Part. Nucl. Phys. 81 (2015)] [L. Pannullo et al., PoS. LATTICE2022 (2023)]

Where to go from here?

- These results were pretty exciting and there are several directions to explore
- Change the model
- Other Four-Fermion models in $1+1$ dimensions and mean-field also exhibit IP! e.g. [G. Basar et al., Phys. Rev. D. 79 (2009)]
- Relax mean-field approximation
- Mermin-Wagner theorem should prevent spontaneous symmetry breaking in $1+1 \mathrm{D}$
- Remants of IP, but no actual breaking of translational invariance remains

```
[ J. Lenz et al., Phys. Rev. D. }101\mathrm{ (2020)]
```

- higher dimensions? see next point
- Higher dimensions:
- 2+1: Gross-Neveu and other models show no IP [M. Buballa et al., Phys. Rev. D. 103 (2021)]
- 3+1: similar models show IP, but models are non-renormalizable or have other problems [S. Carignano et al., Phys. Rev. D. 90 (2014)] [M. Buballa, S. Carignano, Prog. Part. Nucl. Phys. 81 (2015)]
[L. Pannullo et al., PoS. LATTICE2022 (2023)]
- $d+1$: IP only for $d<2$, IP in $d=3$ regulator dependent ("artifact")
[L. Pannullo, Phys. Rev. D. 108 (2023)]

