

Spectral and Transport properties of the Quark Gluon Plasma from Lattice QCD

Olaf Kaczmarek

University of Bielefeld

[L. Altenkort, OK, R. Larsen, S. Mukherjee, P. Petreczky, H.T. Shu, S. Stendebach, Heavy Quark Diffusion from 2+1 Flavor Lattice QCD, PRL 130 (2023) 231902]

[L. Altenkort, D. de la Cruz, OK, R. Larsen, G.D. Moore, S. Mukherjee, P. Petreczky, H.T. Shu, S. Stendebach Quark Mass Dependence of Heavy Quark Diffusion Coefficient from Lattice QCD, arXiv:2311.01525]

[L. Altenkort, A.M. Eller, OK, L. Mazur, G.D. Moore, Heavy quark momentum diffusion from the lattice using gradient flow, PRD103 (2021) 014511]

[A.Francis, OK, M. Laine, T. Neuhaus, H. Ohno, Nonperturbative estimate of the heavy quark momentum diffusion coefficient, PRD92(2015)116003]

> NHR-Computational Physics Symposium 2023 Online, 03.11.2023

Motivation - Quarkonium in Heavy Ion Collisions

Charmonium+Bottmonium is produced (mainly) in the early stage of the collision

Depending on the Dissociation Temperature

- remain as bound states in the whole evolution
- release their constituents in the plasma

Motivation - Quarkonium in Heavy Ion Collisions

Charmonium+Bottmonium is produced (mainly) in the early stage of the collision

Depending on the Dissociation Temperature

- remain as bound states in the whole evolution
- release their constituents in the plasma

[Kaczmarek, Zantow, 2005]

Motivation - Quarkonium in Heavy Ion Collisions

Non-relativistic QCD using a complex heavy quark potential (pNRQCD)

- applicable at least for bottomonium
- shift of bound state masses before the states melt
- thermal broadening of the states due to Im[V]

Full relativistic calculations of charmonium and bottomonium difficult, but ongoing...

Motivation – Transport coefficients of Heavy Quarks

Light degrees of freedom can rather well be described by hydrodynamics.

How do heavy quarks propagate in the hot and dense medium?

- What is the kinetic equilibration time for heavy quarks?
- Do heavy quarks thermalize and show collective motion?
- What are the transport coefficients of heavy quarks?

Heavy quark diffusion coefficients are crucial ingredients to study these questions

- Can be calculated from current-current (vector meson) correlation functions
- Or in the heavy quark mass limit using EE or BB correlation functions
- Both methods need spectral recontruction methods to obtain spectral functions

Vector-meson spectral function – hard to separate different scales

$$G(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \rho(\omega, \vec{p}, T) K(\tau, \omega, T)$$

$$K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Different contributions and scales enter

in the spectral function

- continuum at large frequencies
- possible bound states at intermediate frequencies
- transport contributions at small frequencies
- in addition cut-off effects on the lattice

Spectral functions in the QGP

difficult to extract D_s from vector meson correlation fct.

$$G_{\mu\nu}(\tau, \vec{x}) = \langle J_{\mu}(\tau, \vec{x}) J_{\nu}^{\dagger}(0, \vec{0}) \rangle$$

$$J_{\mu}(\tau, \vec{x}) = 2\kappa Z_{V} \bar{\psi}(\tau, \vec{x}) \Gamma_{\mu} \psi(\tau, \vec{x})$$

→ narrow transport peak hard to resolve
 → large lattices and continuum extrapolation needed
 → use perturbation theory to constrain the UV behavior
 ⇒
 easier to extract heavy quark momentum diffusion

 $\stackrel{\Rightarrow}{\operatorname{coefficient}} \kappa$ in the heavy quark mass limit

 \rightarrow smooth $\omega \rightarrow 0$ limit expected

Heavy Quark Momentum Diffusion Constant κ

Heavy Quark Effective Theory (HQET) in the large quark mass limit

for a single quark in medium

leads to a (pure gluonic) "color-electric correlator"

0.5

1.5

 $q_{\rm s}$

1

2

2.5

- \rightarrow large correction towards strong interactions
- \rightarrow non-perturbative lattice methods required

Gradient flow D_{t} diffusion equation for the gauge fields along extra dimension, flow-time t

$$\mathcal{O}(x,t) \xrightarrow{t \to 0} \overline{\partial t} \sum_{k} q_{k}(t,t) \mathcal{O}_{k}^{R}(x) - \frac{\partial S_{\mathrm{YM}}}{\partial A_{\mu}}$$

$$A_{\mu}(t=0,x) = A_{\mu}(x)$$

- continuous smearing of the gauge fields, effective smearing radius: $r_{\text{smear}} \sim \sqrt{8t}$ - $ga_{uge}^{T_{uge}^{R}}$ fields $\begin{pmatrix} U_{\mu\nu}(t,x) \\ become^{+}s_{ue} \\$
- no UV divergences at finite flow-time $t \rightarrow$ operators of flowed fields are renormalized
- UV fluctuations effectively reduces \rightarrow noise reduction technique
- applicable in quenched and full QCD
- methods developed in quenched studies now applied in full QCD

What is the flow time dependence of correlation functions?

How to perform the continuum and $t \rightarrow 0$ limit correctly?

Gradient flow - *diffusion* equation for the gauge fields along extra dimension, *flow-time t* [M. Lüscher, 2010]

- continuous smearing of the gauge fields, effective smearing radius: $r_{
 m smear} \sim \sqrt{8t}$
- gauge fields become smooth and renormalized
- no UV divergences at finite flow-time $t \rightarrow$ operators of flowed fields are renormalized
- UV fluctuations effectively reduces \rightarrow noise reduction technique
- applicable in quenched and full QCD
- methods developed in quenched studies now applied in full QCD

What is the flow time dependence of correlation functions? How to perform the continuum and $t \rightarrow 0$ limit correctly? LO perturbative limits

for the flow-time dependence:

 $\tilde{\tau}_f < 0.1136(\tau T)^2$ $G_{\tau_F}^{\rm norm}(\tau)$ $\sqrt{8\tau_F}T =$ 0.00. cont 10^{4} 0.00. latt 0.05, cont0.05, latt 0.10, cont+0.10, latt 10^{3} 10^{2} 10^{1} τI $10^{0}_{0.0}$ 0.50.1 0.2 0.3 0.4[A.M Eller, G.D. Moore, PRD97 (2018) 114507]

2+1-flavor lattice QCD results on the flow dependence of the color-electric correlator:

Effective reduction of UV fluctuations \rightarrow good noise reduction technique Signal gets destroyed at flow times above the perturbative estimate Linear behavior at intermediate flow times

Lattice set up

2+1-flavor lattice QCD on large and fine isotropic lattices at four temperatures above $T_{\rm c}$

- HISQ action with physical strange quark mass and $m_s/m_l=5~(m_\pi \approx 300~MeV)$
- using gradient flow method to improve the signal

$T [{\rm MeV}]$	T/T_c	$a[{\rm fm}]$	β	N_{σ}	N_{τ}	$\# \operatorname{conf}$
195	1.09	0.0505	7.570	64	20	5899
		0.0421	7.777	64	24	3435
		0.0280	8.249	96	36	2256
220	1.22	0.0449	7.704	64	20	7923
		0.0374	7.913	64	24	2715
		0.0280	8.249	96	32	912
251	1.40	0.0393	7.857	64	20	6786
		0.0327	8.068	64	24	5325
		0.0280	8.249	96	28	1680
293	1.63	0.0336	8.036	64	20	6534
		0.0306	8.147	64	22	9101
		0.0280	8.249	96	24	688

[L. Altenkort, OK, R. Larsen, S. Mukherjee, P. Petreczky, H.T. Shu, S. Stendebach, Heavy Quark Diffusion from 2+1 Flavor Lattice QCD, PRL 130 (2023) 231902]

1) perform the continuum limit, $a{\rightarrow}~0~\leftrightarrow~N_t{\rightarrow}\infty$

2) perform the flow time to zero limit of the continuum correlators

3) determine κ in the continuum using an Ansatz for the spectral fct. $\rho(\omega)$

Lattice set up

2+1-flavor lattice QCD on large and fine isotropic lattices at four temperatures above $T_{\rm c}$

- HISQ action with physical strange quark mass and $m_s/m_l=5~(m_\pi \approx 300~MeV)$
- using gradient flow method to improve the signal

$T [{\rm MeV}]$	T/T_c	$a[{ m fm}]$	eta	N_{σ}	N_{τ}	$\# \operatorname{conf}$
195	1.09	0.0505	7.570	64	20	5899
		0.0421	7.777	64	24	3435
		0.0280	8.249	96	36	2256
220	1.22	0.0449	7.704	64	20	7923
		0.0374	7.913	64	24	2715
		0.0280	8.249	96	32	912
251	1.40	0.0393	7.857	64	20	6786
		0.0327	8.068	64	24	5325
		0.0280	8.249	96	28	1680
293	1.63	0.0336	8.036	64	20	6534
		0.0306	8.147	64	22	9101
		0.0280	8.249	96	24	688

[L. Altenkort, OK, R. Larsen, S. Mukherjee, P. Petreczky, H.T. Shu, S. Stendebach, Heavy Quark Diffusion from 2+1 Flavor Lattice QCD, PRL 130 (2023) 231902]

1) perform the continuum limit, $a{\rightarrow}~0~\leftrightarrow~N_t{\rightarrow}\infty$

2) perform the flow time to zero limit of the continuum correlators

3) determine κ in the continuum using an Ansatz for the spectral fct. $\rho(\omega)$

Gradient Flow method – 1) $a \rightarrow 0$ limit at fixed flow time

- cut-off effects get reduced with increasing flow time
- continuum limit, $a \rightarrow 0$ ($N_t \rightarrow \infty$), at fixed physical flow time:

well defined continuum correlators for different finite flow times
 next step: flow time to zero extrapolation of continuum correlators

Gradient Flow method – 1) $a \rightarrow 0$ limit at fixed flow time

- cut-off effects get reduced with increasing flow time
- continuum limit, $a \rightarrow 0$ ($N_t \rightarrow \infty$), at fixed physical flow time:

well defined continuum correlators for different finite flow times
 next step: flow time to zero extrapolation of continuum correlators

Continuum limit, $a \rightarrow 0 (N_t \rightarrow \infty)$, Flow time limit, $t \rightarrow 0$, followed by at fixed physical flow time: for each distance: 0.250.250.300.30 G_E G_E $\sqrt{8 au_{
m F}}/ au_{
m F}$ 10^{-10} Inorm $\gamma_{\rm norm}$ au T**1**0.500 9 τT **1**0.472 6 **1**0.500 **I** 0.444 8 **I** 0.458 **I** 0.417 **1**0.417 **I** 0.389 **I** 0.375 7**I** 0.361 5**I** 0.333 **I** 0.333 **1**0.292 6**I** 0.306 **I** 0.250 **I** 0.278 **I** 0.250 54 T=293MeV T=195MeV $8\tau_{\rm F}/\tau^2$ $8\tau_{\rm F}/$ 40.05 0.000.05 0.000.100.10

 \rightarrow well defined continuum and flow time extrapolation

 \rightarrow well defined renormalized correlation function

Continuum extrapolated correlation function

Continuum extrapolated color-electric correlation function from

2+1-flavor lattice QCD at four temperatures above T_c

Determine κ in the continuum using various Ansätze for the spectral function $\rho(\omega)$ fitted to the continuum extrapolated correlation functions

$$G(\tau, \vec{p}, T) = \int_{0}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \rho(\omega, \vec{p}, T) K(\tau, \omega, T) \qquad K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Models for the spectral function

Spectral function models with correct asymptotic behavior

 $\rho_{\rm uv}(\omega) = \frac{g^2(\bar{\mu}_\omega)C_F\omega^3}{6\pi}$ $\rho_{\rm ir}(\omega) = \frac{\kappa\omega}{2T}$

modeling corrections to ρ_{IR} in various ways

Label	$ ho_{ m model}$	μ	Fit parameters
\max_{LO}	$\max(\Phi_{ID}, \Phi_{ID})$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
\max_{NLO}	$\max(\Psi_{\mathrm{IR}},\Psi_{\mathrm{UV}})$	$\max(\mu_{\mathrm{eff}}, \mu_{\mathrm{opt}})$	<i>n/1</i> , n
$\mathrm{smax}_{\mathrm{LO}}$	$\sqrt{\Phi^2 + \Phi^2}$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
$\mathrm{smax}_{\mathrm{NLO}}$	$\bigvee \Psi_{\rm IR} + \Psi_{\rm UV}$	$\max(\mu_{ ext{eff}},\mu_{ ext{opt}})$	n/1, n
$plaw_{LO}$	$\theta(\omega_{\rm IR}-\omega)\Phi_{\rm IR}+$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
$plaw_{NLO}$	$ heta(\omega - \omega_{ m IR}) heta(\omega_{ m UV} - \omega) p(\omega) +$	$\max(\mu_{ ext{eff}},\mu_{ ext{opt}})$	n/1, m
	$ heta(\omega - \omega_{\mathrm{UV}})\Phi_{\mathrm{UV}}$		

using continuum extrapolated lattice correlators

to fit the models and extract κ

$$G_{\text{model}}(\tau) \equiv \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \rho_{\text{model}}(\omega) \frac{\cosh\left(\frac{1}{2} - \tau T\right)\frac{\omega}{T}}{\sinh\frac{\omega}{2T}}$$

error estimates using fully bootstrapped analysis

$$\kappa/T^3 = \lim_{\omega \to 0} \frac{2T\rho_{\rm E}(\omega)}{\omega}$$

Heavy Quark Momentum Diffusion Constant – spectral reconstruction 18

Heavy Quark Momentum Diffusion Constant – spectral reconstruction 19

Spatial heavy quark diffusion coefficient

close to T_c charm quark kinetic equilibration appears to be almost as fast as that of light partons.

20

Spatial heavy quark diffusion coefficient

Next steps:

- determine the quark mass correction:
- correction may be important for charm
- extend to physical 2+1 flavor QCD
- $\kappa \simeq \kappa_E + rac{2}{3} \langle v^2
 angle \kappa_B$, $\langle v^2
 angle pprox rac{3T}{M_{kin}} \left(1 rac{5T}{2M_{kin}}
 ight)$

[L. Altenkort, OK, R. Larsen, S. Mukherjee, P. Petreczky, H.T. Shu, S. Stendebach,

[A. Bouttefeux, M. Laine, HEP 12 (2020) 150] [M. Laine, JHEP 06 (2021) 139]

- determine charm and bottom quark diffusion coefficient from vector meson correlators

21

previous project: 81 TB gauge field configurations

$96^3 x N_{\tau}$ lattice

64 ³ xN $_{ au}$ lati	ices
----------------------------------	------

$N_{ au}$	36	32	28	24	20
T [MeV]	195	220	251	293	352
# conf.	2256	912	1680	688	2488

~55.000 gauge field configurations with m_{π} = 320 *MeV*

[MeV]	β	am_s	am_l	N_{τ}	# conf.
195	7.570	0.01973	0.003946	20	5899
	7.777	0.01601	0.003202	24	3435
220	7.704	0.01723	0.003446	20	7923
	7.913	0.01400	0.002800	24	2715
251	7.857	0.01479	0.002958	20	6786
	8.068	0.01204	0.002408	24	5325
293	8.036	0.01241	0.002482	20	6534
	8.147	0.01115	0.002230	22	9101

Generated on supercomputing resources Perlmutter, JUWELS, Marconi

current project: ~200 TB gauge field configurations

 128^3 xN_{τ} and 96^3 xN_{τ} lattices with physical pion masses compute projects on Frontier and LUMI-G ~ 8 Mio GPU-hours for one year

All gauge field configurations will be stored in the International Lattice Data Grid (ILDG)

Measurement of observables on GPU HPC systems

Operators and correlation functions need to be calculated on each gauge field configuration

Needs optimized multi-GPU code measurement routines in SIMULATeQCD

Measurement of correlation functions on Bielefeld GPU Cluster

Measurement of fluctuations and correlations of charm and conserved charges on Noctua 2

https://github.com/LatticeQCD/SIMULATeQCD https://doi.org/10.5281/zenodo.7994982 https://arxiv.org/abs/2306.01098

SIMULATEOCD: A simple multi-GPU lattice code for OCD calculations

Lukas Mazur^{a,*}, Dennis Bollweg^{b,*}, David A. Clarke^{e,*}, Luis Altenkort^d, Olaf Kaczmarek^{d,*}, Rasmus Larsen^e, Hai-Tao Shuf, Jishnu Goswami^g, Philipp Scior^b, Hauke Sandmeyer^d, Marius Neumann^d, Henrik Diek^d, Sajid Ali^{d,h}, Jangho Kimⁱ, Christian Schmidt^d, Peter Petreczky^b, Swagato Mukherjee^{b,*},

(HotQCD collaboration)

^aPaderborn Center for Parallel Computing, Paderborn University, Paderborn, Cermany ^bPhysics Department, Brookhaven National Laboratory, Upton, New York, United States ^cDepartment of Physics and Astronomy, University of Utah, Salt Lake City, Utah, United States ^dFakultät für Physik, Universität Bielefeld, Bielefeld, Germany Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany ⁹RIKEN Center for Computational Science, Kobe 650-0047, Japan ^hGovernment College University Lahore, Department of Physics, Lahore 54000, Pakistan ⁴Institute for Advanced Simulation (IAS-4), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

un Abstract

2023

-The rise of exascale supercomputers has fueled competition among GPU vendors, driving lattice QCD developers to write code that supports multiple APIs. Moreover, new developments in algorithms and physics research require frequent 0 updates to existing software. These challenges have to be balanced against constantly changing personnel. At the same , time, there is a wide range of applications for HISQ fermions in QCD studies. This situation encourages the development of software featuring a HISQ action that is flexible, high-performing, open source, easy to use, and easy to adapt. In this technical paper, we explain the design strategy, provide implementation details, list available algorithms and modules, _ and show key performance indicators for SIMULATEQCD, a simple multi-GPU lattice code for large-scale QCD calculations, The mainly developed and used by the HotQCD collaboration. The code is publicly available on GitHub.

Keywords: lattice QCD, CUDA, HIP, GPU

Name	Size		Communities:	
Files (5.3 Mil)		~	Supplement to https://github.com/Latte //reselv1.6.1	eQCO/SIMULATEQCD
			Related identifiers:	
- Discription of based		13.610	NAME & GOD, CLEAR, HERE SIMU	
Crastantine Med		27.2 kB	Keyword(s):	
D as callings that		18.619	DOI 10.5281/mondo 791	14963
Grenc.tent		17.8 x8	DOI:	
 C0_sppications 		17.010	June 1, 2023	
 D timer herei 		16.2 kB	Publication date:	
 Dissting total 		15.7 KB		
 IterminaliO.html 		17.5 xB		
D templates.html		8.0×8	1000	
DimutiCPU.ren/		12.9 kB	Open	
DimemoryAlocation html		23.1 88	()000	
DispectPlacemeter html		27.7 kB	-	
Cust tan		7688	Indexed M-	
 L1 contributions html D) does streament on hims 		12.0 +8		
CodeStyle.html		21.0 kB		IUD
CodeStructure.html		13.6 x8	(-17)	Hun
 C2_contributions 			C:+	
Preview		×		
and an branch constraints be constraints			Autoren	
BMULATEQCD is a multi-GPU Lattice QCD frame-	work that makes it easy for physicists	to implement lattice QCD formulas		
ter Tao, Goswami, Johnu, Soor, Philipp, Sandme Ichmidt, Christian, <mark>©</mark> Petreczky, Peter, <mark>©</mark> Mukhe	yer, Hauke; Neumann, Manua; Dick, H (re, Swagato	enrik, 😑 Ali, Sajat, 😑 Kim, Janghe, 😑		
Mazur, Lukas; 🗿 Bollweg, Dennis; 😗 Clarke, De	wid A.; O Altenkort, Luis O Kaczman	ek, Olaf, Larsen, Rasmut; 🧿 Shu	See mon	e details
LatticeQCD/SIMUL	ATEQUD: VI.U.			A downloads
	AT-000-10		61	0
SPR 1, AVGJ		Enformer Open Access		

- Developed by HotQCD collaboration (Bielefeld, Brookhaven,...)
- Highly optimized lattice QCD code for multi-GPU (Nvidia and AMD GPUs)
- Optimized for supercomputing resources
- Currently used on Frontier, LUMI-G, Leonardo, Summit, Perlmutter, JUWELS. Noctua2....
- SIMULATeQCD selected for EuroHPC JU extraordinary support program (ESP) (with AMD and HPE for LUMI-G)

All analysis performed on Bielefeld compute server

All data and lattice and analysis software as well as a workflow (bash/python)

of the project published as open access

https://doi.org/10.4119/unibi/2979080

All raw and derived data is already openly available gauge field configurations will be published soon on ILDG

All data and analysis software of this project is openly available

Y main - Y1 branch ⊗0 tags	9.	Go to file Add file + Code	About
😨 clarkedavida corporate branding, improve integration wrappers		✓ 21597a8 4 days ago ③254 commit	A set of Python tools for analyzing physics data, in particular targeting
applications	reorganize speed-up methods incl	reorganize speed-up methods including parallet_function_eval; rem, 2 weeks ago add Christian rat_approx plot main last month add Christian rat_approx plot main last month corporate branding, improve integration wrappers 4 days ago	
docs	add Christian rat_approx plot main		
docs_src	add Christian rat_approx plot main		
latqcdtools	corporate branding, improve integr		
scripts	fixed bug in install script	3 months ag	o ☆ 14 stars o ⊙ 2 watching
testing	corporate branding, improve integr	ation wrappers 4 days ag	
gitattributes	.gitattributes	last yea	Y Z forks Report repository
	added if main syntax to all tests; added main_get8eta 3 months ago		
LICENSE	Initial commit	2 years ag	Releases
README.md	SU3 average	SU3 average 2 weeks ago	
developerRequirements.txt	SU3 average	2 weeks ag	Create a new refease
requirements.txt	SU3 average	2 weeks ag	•
			Packages

P main - P1branch Q1t	ag	Go to file Add file -	↔ Code -	About
luhuhis add release tag to do_	everything_hisq	dfe8814 on May 20	3 445 commits	No description, website, or to provided.
idea .idea	update		2 months ago	Activity
correlator_analysis	supress warning		last month	☆ 0 stars
multi-level	refactor ML cont extr a bit		2 months ago	Y 0 forks
perturbative_corr	added citation		2 months ago	Report repository
spf_reconstruction	update do_everything_hisq and r	emove unused spf models in spf_r	last month	
🗋 .gitignore	completely update folder structur	e and remove old files	6 months ago	Releases 1
do_everything.sh	fix plot_integrand		2 months ago	S Initial release Latest
do_everything_hisq.sh	add release tag to do_everything	hisq	last month	
Ib_process_data.py	fix warning when plotting		last month	Packages
🖞 template.py	refactor		5 months ago	No packages published

Analysis Software developments

Analysis Toolbox Software development

https://github.com/LatticeQCD/AnalysisToolbox

Heavy quark diffusion analysis based on this

https://github.com/luhuhis/correlators flow

In leading order in 1/M the quark mass dependence of κ depends on another transport coefficient, $\kappa_{\rm B}$,

$$\kappa \simeq \kappa_E + \frac{2}{3} \langle v^2 \rangle \kappa_B$$

$$\langle v^2 \rangle \approx \frac{3T}{M_{kin}} \left(1 - \frac{5T}{2M_{kin}} \right)$$

 $\kappa_{\rm B}$ can be determined from the color-magnetic correlator

$$G_B(\tau, T) = \sum_{i=1}^{3} \frac{\langle \operatorname{ReTr} \left[U(\beta, \tau) B_i(\mathbf{x}, \tau) U(\tau, 0) B_i(\mathbf{x}, 0) \right] \rangle}{3 \langle \operatorname{ReTr} U(\beta, 0) \rangle}$$

and the corresponding spectral function

$$G_B(\tau, T) = \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \ \rho_B(\omega, T) \frac{\cosh[\omega \tau - \omega/(2T))]}{\sinh[\omega/(2T)]}$$

Problem: In contrast to G_E , G_B has a non-trivial anomalous dimension and the renormalization and continuum extrapolation is more involved.

[A. Bouttefeux, M. Laine, HEP 12 (2020) 150] [M. Laine, JHEP 06 (2021) 139]

- Gradient flow serves as a non-perturbative renormalization scheme and the continuum extrapolated correlators are renormalized at the scale $\mu_F = 1/\sqrt{8\tau_F}$
- The renormalization group invariant physical correlators can be obtained via oneloop pQCD matching

$$G_B^{\text{phys.}}(\tau, T) = \lim_{\tau_{\text{F}} \to 0} Z_{\text{match}}(\bar{\mu}_T, \bar{\mu}_{\tau_{\text{F}}}, \mu_{\text{F}}) G_B(\tau, T, \tau_{\text{F}}).$$

- This involves three components:
 - matching from gradient flow to \overline{MS} scheme at a scale $\bar{\mu}_{\tau_F}$
 - matching from \overline{MS} to the heavy quark effective theory at a scale $\overline{\mu}_T$
 - running of the anomalous dimension of the operator from $\bar{\mu}_T$ to $\bar{\mu}_{\tau_F}$
- Estimate uncertainties from unknow higher-order effects by varying the scales

$$\bar{\mu}_T = 2\pi T \dots 19.18T$$
 and $\bar{\mu}_{\tau_F} = \mu_F \dots 1.4986\mu_F$

[L. Altenkort, D. de la Cruz, OK, et al., arXiv:2311:01525]

$$G_B^{\text{phys.}}(\tau, T) = \lim_{\tau_{\rm F} \to 0} Z_{\text{match}}(\bar{\mu}_T, \bar{\mu}_{\tau_{\rm F}}, \mu_{\rm F}) G_B(\tau, T, \tau_{\rm F}).$$

$$\ln Z_{\text{match}} = \int_{\bar{\mu}_T^2}^{\bar{\mu}_{\tau_F}^2} \gamma_0 g_{\overline{\text{MS}}}^2(\bar{\mu}) \frac{d\bar{\mu}^2}{\bar{\mu}^2} + \gamma_0 g_{\overline{\text{MS}}}^2(\bar{\mu}_T) \left[\ln \frac{\bar{\mu}_T^2}{(4\pi T)^2} - 2 + 2\gamma_{\text{E}} \right] - \gamma_0 g_{\overline{\text{MS}}}^2(\bar{\mu}_{\tau_F}) \left[\ln \frac{\bar{\mu}_{\tau_F}^2}{4\mu_{\text{F}}^2} + \gamma_{\text{E}} \right]$$

The *B*-field correlators in the gradient flow scheme for different temperatures calculated on the finest (open symbols) and coarsest lattices (filled symbols)

Lattice spacing dependence and continuum extrapolation

[L. Altenkort, D. de la Cruz, OK, et al., arXiv:2311:01525]

Flow time extrapolation

T dependence of $G_R^{phys.}$

Spectral function models with correct asymptotic perturbative behavior

$$\rho_B^{\rm uv,LO}(\omega,\mu) = \frac{g_{\rm \overline{MS}}^2(\mu)C_{\rm F}\omega^3}{6\pi},$$

$$\rho_B^{\rm uv,NLO}(\omega,\mu) = \frac{g_{\rm \overline{MS}}^2(\mu)C_{\rm F}\omega^3}{6\pi} \left\{ 1 + \frac{g_{\rm \overline{MS}}^2(\mu)}{(4\pi)^2} \left(N_c \left[\frac{5}{3} \ln \frac{\mu^2}{4\omega^2} + \frac{134}{9} - \frac{2\pi^2}{3} \right] - N_f \left[\frac{2}{3} \ln \frac{\mu^2}{4\omega^2} + \frac{26}{9} \right] \right) \right\},$$

multiplied with $c_B^2(\mu, \bar{\mu}_T) = \exp\left(\int_{\bar{\mu}_T^2}^{\mu^2} \gamma_0 g_{\overline{MS}}^2(\bar{\mu}) \frac{d\bar{\mu}^2}{\bar{\mu}^2}\right)$ to go from \overline{MS} to physical scheme

modeling corrections to $\rho_{\rm \tiny IR}(\omega) = \frac{\kappa\omega}{2T}$ in various ways

Label	$ ho_{ m model}$	μ	Fit parameters
\max_{LO}	$\max(\Phi_{ID}, \Phi_{IUI})$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
\max_{NLO}	$\max(\Psi_{\mathrm{IR}},\Psi_{\mathrm{UV}})$	$\max(\mu_{\mathrm{eff}}, \mu_{\mathrm{opt}})$	n/1, R
$\mathrm{smax}_{\mathrm{LO}}$	$\sqrt{\Phi^2 + \Phi^2}$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
$\mathrm{smax}_{\mathrm{NLO}}$	$\int \Psi_{\rm IR} + \Psi_{\rm UV}$	$\max(\mu_{ ext{eff}},\mu_{ ext{opt}})$	n/1, R
$plaw_{LO}$	$\theta_{(\omega_{\rm IR}-\omega)}\Phi_{\rm IR}+$	$\max(\mu_{ ext{eff}},\omega)$	$\kappa/T^3 K$
$plaw_{NLO}$	$ heta(\omega - \omega_{\mathrm{IR}}) heta(\omega_{\mathrm{UV}} - \omega) p(\omega) +$	$\max(\mu_{ ext{eff}},\mu_{ ext{opt}})$	n/1, n
	$ heta(\omega-\omega_{ m UV})\Phi_{ m UV}$		

Fitting
$$G_{\text{model}}(\tau) \equiv \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \rho_{\text{model}}(\omega) \frac{\cosh\left(\frac{1}{2} - \tau T\right)\frac{\omega}{T}}{\sinh\frac{\omega}{2T}}$$
 to obtain $\kappa_B/T^3 = \lim_{\omega \to 0} \frac{2T\rho_B(\omega)}{\omega}$

Fit results for κ_B using various models and various scales to estimate systematic uncertainties

T=195 MeV

T=293 MeV

Spatial Diffusion coefficient for charm and bottom quarks

