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Abstract To decide ‘‘Where to look next ?’’ is a central

function of the attention system of humans, animals and

robots. Control of attention depends on three factors, that

is, low-level static and dynamic visual features of the

environment (bottom-up), medium-level visual features of

proto-objects and the task (top-down). We present a novel

integrated computational model that includes all these

factors in a coherent architecture based on findings and

constraints from the primate visual system. The model

combines spatially inhomogeneous processing of static

features, spatio-temporal motion features and task-depen-

dent priority control in the form of the first computational

implementation of saliency computation as specified by the

‘‘Theory of Visual Attention’’ (TVA, [7]). Importantly,

static and dynamic processing streams are fused at the level

of visual proto-objects, that is, ellipsoidal visual units that

have the additional medium-level features of position, size,

shape and orientation of the principal axis. Proto-objects

serve as input to the TVA process that combines top-down

and bottom-up information for computing attentional

priorities so that relatively complex search tasks can be

implemented. To this end, separately computed static and

dynamic proto-objects are filtered and subsequently

merged into one combined map of proto-objects. For each

proto-object, attentional priorities in the form of attentional

weights are computed according to TVA. The target of the

next saccade is the center of gravity of the proto-object

with the highest weight according to the task. We illustrate

the approach by applying it to several real world image

sequences and show that it is robust to parameter

variations.

Keywords Modeling visual attention � TVA � Proto-

objects � Static and dynamic features � Inhomogeneity �
Natural scenes � Top-down control

Introduction

‘‘Where to look next ?’’ is a central function of visual

saliency computations and attention selection. The diffi-

culty lies in capacity limitations of the primate visual

system in terms of object recognition and visuo-motor

control [54]—limitations that call for selective mechanisms

able to prioritize chunks of the fixated scene, possibly

containing the best candidates for further processing. As

human and non-human primates as well as artificial sys-

tems share this problem of limited resources, attention

modeling has become essential to explain data of visual

search and object recognition [54, 59, 61, 70] as well as for

the synthesis of computer vision or robotic gaze orienting

systems [5, 19, 42, 52, 56]. Many of the artificial systems

have thereby been inspired by the human attentional sys-

tem and tried to replicate a similar function at different

degrees of biological and psychological plausibility [24].
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However, none of the existing models comes even close to

the apparent ease with which humans integrate bottom-up

and top-down control of selective processing, e.g., for

efficient visual search informed by task and context. There

are three basic kinds of factors determining the outcome of

the attentional processing that are heavily investigated in

human and non-human primate vision and, consequently,

are also subject to computational modeling: bottom-up

low-level visual feature maps, visual proto-objects, and

top-down task-based control. Bottom-up processing com-

prises both static and dynamic features and has been

extensively studied at the computational level over the

years, while more recently object-based [55] and task-

based [35, 58] accounts of attention have been emphasized.

We discuss the respective modeling approaches in turn and

finally devise our model that combines all these aspects in a

coherent architecture.

In the human and non-human primate visual system,

static and dynamic features are processed via different

pathways. Specifically, static features are processed along

the ventral pathway while dynamic features follow the

dorsal stream, the first being mostly devoted to identifica-

tion of objects, the second to sensorimotor transformation,

although also important in recovering object shape [26,

27]. Following this distinction, modeling of static bottom-

up feature processing is inspired by the architecture of the

ventral pathway and usually leads to the production of a

saliency map from the weighted combination of different

feature maps, reflecting the retinotopic structure of the

input and considering single dimension conspicuousness at

each location [34, 61]. Established basic visual features

like intensity, color and orientation [70] are known to play

a relevant role in different aspects of low-level visual

processing that refer to segmentation and figure-ground

discrimination [45]. Many respective computational mod-

els for static features have been developed in this direction

[5, 19, 31, 32, 56] and aimed at reproducing selected facets

of human and non-human primate feature processing to

some extent, see [24] for a review. The representation as

stack of basic feature maps has been refined and improved

during the last years [41, 49, 52, 64]. Nevertheless, the

account of attentional selection, when it comes to compu-

tational modeling, is mostly pixel-wise feature- and loca-

tion-based.

In terms of the dorsal pathway that is involved in sen-

sori-motor processing [27], computational modeling has

focused on the aspect of motion perception [1, 67] and,

more recently, also on attentional selection by motion [4, 6,

30, 37]. Despite biological evidence that the ventral and

dorsal pathway share feedback connections to operate a

figure-ground segmentation [17, 54], there are only a few

approaches available that integrate both streams for the

control of spatio-temporal attention [36, 38]. Still these rely

on a pixel-to-pixel combination of the two pathways and

therefore are difficult to reconcile with the object-based

nature of attention.

Attentional selection in everyday tasks is often object-

based. We look for something, we want to grasp or

manipulate an object, or to navigate an environment while

avoiding obstacles. This object-based account of attention

has been recently substantiated by growing experimental

evidence from highly controlled laboratory studies [8, 55]

and it has also been picked up in some recent object-based

computational approaches, such as [47, 57] or [65]. They

share the idea to bind regions on the feature map level to

proto-objects based on color/edge-based segmentation or

extraction of coherent regions in one feature channel,

respectively, and partially refer to Gestalt ideas for seg-

mentation of such regions [47]. However, these approaches

do not use proto-object-based features for further pro-

cessing. The latter is proposed in the approach of [3],

where regions have medium-level features such as size,

symmetry, orientation and eccentricity. None of these

approaches has included motion features, nor devised, how

proto-objects can be included in an overall computational

architecture for top-down task-specific control of attention.

Finally, based on the growing evidence for task-dependent

control of covert and overt attention [8, 16, 35, 58], com-

putational bottom-up models have been extended, mostly

by changing the weighting of features [39, 56] or by ex-

post modification of the saliency map [43, 44]. Tsotsos’

Selective Tuning Model [62] also implements a connec-

tionist form of top-down biasing by enhancing target fea-

tures and inhibiting distractor features. However, this kind

of weighting can account only for simple preferences of

basic visual feature channels over others (‘‘look for red!’’),

but fail to model more complex tasks. On the other hand,

within the psychological literature there is the well-estab-

lished Theory of Visual Attention (TVA, [7–9]) that is

capable of explaining a large range of behavioral and

neurophysiological data on covert visual attention by

means of a relatively simple mathematical model. TVA

provides a psychologically plausible and elegant way to

combine top-down control of priorities for certain features

or categories and bottom-up computed visual information.

Importantly, TVA assumes that visual units or proto-

objects have been already formed when attentional control

is computed. In other words, TVA implies an object-based

account of visual attention. Surprisingly, TVA has neither

been included in any computational attention model yet,

nor has been subjected to stand-alone computational

modeling. Hence, we present a computational model of

attention centered around proto-objects to integrate all

discussed factors of priority control: bottom-up static and

dynamic features, object-based features in form, size,

extension, orientation and location of proto-objects, and
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task-dependent priority computation through TVA (see

Fig. 1). The computation of proto-objects is the key step

in this respect: proto-objects represent discrete units of

attention, labeled by the features computed within their

boundaries and by their position and extension in the field

of view, and provide the input for the TVA stage. As we

consider static and dynamic features that can actually be

related to the same object, we have to create a single

proto-object from different types of overlapping or con-

flicting proto-objects that we derive separately from the

dorsal (dynamic) and ventral (static) computations. This is

an instance of the binding problem and specifically tou-

ches the ’property’, ’part’ and ’location’ binding types, as

in the classification proposed by Treisman in [60]. The

three types of binding consider respectively how to bind

different object properties, how to bind different object

parts and how to bind objects and locations. These issues

are the focus of the section ‘‘Fusion of Ventral and Dorsal

Proto-Objects’’, where we suggest a possible integration

of objects and features. In the last step, according to the

weight equation of TVA [7], an attentional weight

(attentional priority) is computed for each proto-object.

The weight determines the degree of priority in perceptual

processing. We add the assumption that weights deter-

mine also where-to-look-next. The proto-object with the

highest weight will be the target of the next saccade [10,

69]. Attentional weights depend on bottom-up influences

such as the sensory evidence for visual features and on

top-down influences such as the current task. Weights are

represented in an attentional priority (saliency) map. It

should be noted that the restriction of visual feature and

weight computation to regions of proto-objects is com-

putationally efficient and in contrast to pixel-based sal-

iency maps: where there are no proto-objects, features do

not have to be computed. Importantly, the proto-object

with the highest attentional weight receives highest pri-

ority in perceptual processing and simultaneously

becomes the target for the next saccade or camera shift

[54]. Since any combination of low-level visual and

medium-level proto-object features such as size or ori-

entation of the principal axis can be included, relatively

complex tasks like search for a ‘‘big red moving object’’

can be performed by our model. In other words, task-

based control of attention is enhanced by allowing med-

ium-level visual features to be part of the priority

computations.

Fig. 1 Schematic overview of

the model: A sequence of

camera images is acquired as

input. The model separately

computes static and dynamic

features, which allow for the

static and dynamic proto-object

detection, respectively. In the

next step, proto-objects of both

processing paths are merged

into a combined map of proto-

objects o. At this point, the

static and dynamic low-level

features j of the proto-objects

o and the task-driven pertinence

values p are available; that is,

all input needed to compute

attentional weights for proto-

objects using the TVA weight

equation. The outcome is the

attention priority map of proto-

objects holding candidate

locations for saccades and

possibly further object

recognition. The camera system

then saccades to the center of

gravity of the proto-object with

the maximum weight and the

next processing cycle starts
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Static Features and Proto-objects

This section describes the low-level feature processing and

the subsequent proto-object formation based on static

image features, which reflects the ventral pathway of pro-

cessing. Figure 2 illustrates the corresponding part of the

model, a more detailed description has been published by

Wischnewski et. al [69].

Inhomogeneous Retinal/V1 Feature Processing

Starting from the retina up to higher brain areas, the human

visual processing system is spatially inhomogeneously

organized. This affects, on the one hand, the density of the

retinal photoreceptors which decreases with increasing

angle of eccentricity [48]. On the other hand, spatial

inhomogeneity affects the filters of the brain area V1 where

we can find simple cells for bar and edge detection. With

increasing angle of eccentricity, the size of the receptive

fields and the distance between adjacent fields increase,

whereas their spatial frequency decreases.

We model inhomogeneity by positioning filter centers in

retina-like concentric rings (see Fig. 3, left). This structure

relies on the physiological color/intensity space with the

dimensions red/green, blue/yellow and black/white [65].

Following a model of findings in V1 developed by Watson

[66], we scale the filters’ receptive fields and vary the

parameters (size, distance and frequency) with respect to a

scaling factor s:

s ¼ 1þ k � e; ð1Þ

where the factor s is linearly proportional to a scaling

parameter k and e is the filter angle of eccentricity in

degrees. In the human visual system, k is estimated to be

around 0.4 [66] (see Fig. 3, right).

Feature maps are computed for orientation (5 different

angles), color (R/G and B/Y) and intensity (B/W) as Gabor

filters comprising a cosine function overlaid by a Gaussian,

where h represents the angle of orientation and / the phase:

f ðx; yÞ ¼ e
�4 lnð2Þðx2þy2Þ

w2 cosð2pf ðx cos hþ y sin hÞ þ /Þ: ð2Þ

For the color and intensity maps, the filter operations are

restricted to the Gaussian part of the equation. To cover the

relevant frequency range, we use eight layers of these

maps, each with a different parameter setting (see [69] for

details). In total, we obtain 64 feature maps. The retinal

model provides the data for all subsequent filter operations

in the static (ventral) processing path.

We provide an open source C?? library called IIP

(Inhomogeneous Image Processing), including a graphical

frontend, which we used for all feature map computations.1

Fig. 2 An illustration of the processing pathway of static image

features. First, a single frame from an input sequence is transformed

into a retina-like inhomogeneous pixel grid. This grid serves as input

for subsequent feature map computations, which are equally spatially

inhomogeneous. On the one hand, these maps provide their data

directly as static features j for the TVA weight equation. On the other

hand, depending on simulated time pressure, we chose one of the

eight layers and use its corresponding color/intensity maps as input

for the static proto-object detection algorithm. The computed

proto - objects os represent hypotheses about regions of real world

objects

Fig. 3 Left An input image section of 4� 4 pixels, where black dots

mark the inhomogeneous pixels grid positions. Right The first five

rings surrounding the central Gabor filter with fcenter = 1 and k = 0.4.

The axes of abscissae and ordinate reflect the angle of eccentricity.

For illustration, the filter size was reduced

1 http://www.uni-bielefeld.de/psychologie/ae/Ae01/IIP/.
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Proto-object Formation and Selection

The pivotal units in our architecture are the proto-objects;

that is, ellipsoidal visual units in a multidimensional fea-

ture space that already have the medium-level features of

position, size, shape and orientation of the principal axis

while still not being recognized as objects. We describe a

static proto-object os formally by a location vector l and an

inertia matrix I:

os ¼ fl; Ig ð3Þ

The eigenvectors and eigenvalues of the inertia matrix

denote the axes of the ellipse and therefore its shape, ori-

entation and size. To determine the ellipsoid proto-objects,

we apply a standard multidimensional hierarchical cluster

approximation algorithm developed by Forssén [21] that,

like all pixel cluster algorithms, relies on distances in the

respective feature space. Consequently, it operates on a

homogeneous feature map pixel grid in the three-dimen-

sional color/intensity space.

Unfortunately, the inhomogenous spacing of filters does

not allow a straightforward clustering of feature map pix-

els, because – due to the particular spacing – close to the

fovea several filters may have their center on the same

pixel while other pixels in the periphery may not receive

any filter values at all. If filters are spaced densely enough

(e.g. in the example in Fig. 3), one option is to average

filter responses over all filters per pixel. However, this is

generally not the case, in particular not if a level with lower

resolution is chosen for the initial filtering. We therefore

proceed by virtually increasing the resolution of the image

until the pixel distance is equal to the smallest possible

distance of two filter positions in the highest resolution

filter set, which is found between the central filter and the

innermost ring. The large number of empty feature map

pixels is then filled according to a next neighbor principle:

each pixel receives the filter value of its next neighbor in

the inhomogeneous set of actually computed filters. These

thereby become centers of a Voronoi cell in the high-res-

olution grid. Figure 4 (middle) shows an exemplary input

image processed by lower resolution filters and the

respectively processed feature map, where the Voronoi

effect is clearly visible in the periphery.

After this preprocessing of the feature map grid, Forssén’s

algorithm [21] (or any other algorithm that delivers ellipsoid

approximations of multidimensional clusters), can be

applied to generate the proto-objects. Which clusters, i.e.

respective proto-objects, are found depends on the configu-

ration and parameters of the algorithm. Table 1 gives the

standard values and Fig. 5 shows how the proto-object

configuration depends on value changes. Forssén’s algo-

rithm iteratively builds a hierarchy of labeled regions, where

dmax and mthr govern the region formation: regions r1 and r2

are merged if jjRGBr1
� RGBr2

jj\dmax, where RGB is the

vector of rgb-values in ½0; 1�3, and if the number of common

boundary pixels is larger than mthr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

minðsizer1
; sizer2

Þ
p

. The

parameter cmin determines the tendency to fuse regions of

layers in the hierarchy, and the number of iterations deter-

mines noise reduction.

Forssén also uses a final filtering process to discard too

large or small ellipsis, which we substitute taking into

account the inhomogeneity again. We count the number of

Voronoi cells nvc that a proto-object covers to filter with

respect to a combination of physical size and angle of

eccentricity. Only proto-objects with nvc in a range

nvcmin
� nvcðosÞ� nvcmax

ð4Þ

are retained. Larger ellipses can become proto-objects in

the periphery because the number of Voronoi cells that are

covered by these proto-objects decreases proportionally to

the peripherally increasing size of the Voronoi cells.

Our experiments reveal that dmax is the most critical

value and needs to be chosen with care (see Fig. 5);

Fig. 4 Formation of static proto-objects for one frame of a video

sequence (left). Due to the simulated time pressure we use the color

and intensity features of just one layer to create the pixel-based

voronoi cell mapping (middle). Subsequent color blob detection [21]

yields the ellipsoid static proto-objects

Table 1 The standard parameters of the proto-object detection

algorithm, see [21] for details

Par. Value Effect of variation

dmax 0.2 Higher values result in less regions.

cmin 0.5 Higher values result in smaller regions.

mthr 0.5 Facilitates merging of overlapping regions.

miter 5 More iterations reduce noise.

330 Cogn Comput (2010) 2:326–343
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however, the standard setting of Table 1 yields good results

over a large range of input images (see Fig. 6). A further

example of the overall performance after merging with the

dynamic proto-objects is given in the results section.

Efficient Processing and the ‘‘Global Effect’’

The inhomogeneity of the filter maps implies an implicit

filtering mechanism because with decreasing resolution of

the filters adjacent objects tend to become indistinguishable

in the periphery of the visual field. This fusion effect in the

periphery simulates the so-called ‘‘global effect’’ [20] in eye

movement control: saccadic eye movements to two nearby

objects in the periphery tend to land on the center of gravity

of these objects. In our model, this corresponds to the landing

of the gaze on a single proto-object, which is formed from the

homogeneous answer of the low-resolution peripheral filter

that covers both objects (see details in [69]).

In human vision, the ‘‘global effect’’ appears only under

time pressure. In the model, the choice of the layer can

Fig. 5 Parameter variations. For an explanation of the parameters see

Table 1. The values were varied as strongly as necessary to observe a

clear difference to the outcome of the standard parameter setting. The

image shows a playground scenario with a seesaw from the IIT-KGP

Visual Saliency Data [22, 31, 32, 53] (http://www.facweb.iitkgp.

ernet.in/*jay/VS/Groundtruth.html). A useful proto-object repre-

sentation of real world objects is characterized by (a) producing not

too many proto-objects for a nearly homogeneously colored region

(like the right seat of the seesaw). Too small values for dmax as well as

too high values for mthr yield an undesirable result. (b) producing not

too many proto-objects for small regions, especially nearby the foveal

area, like for too small values of dmax and cmin as well as for too high

values for mthr. (c) producing not too small proto-objects for larger

regions (like the handle of the right seat of the seesaw) which is

missing for too high values of cmin and mthr. As a variation of the

parameter miter has no effect on the proto-object configuration, it is

skipped. In summarizing it can be stated that the proto-object

detection algorithm works robustly because the modification of the

parameters values only affects the outcome in detail but does not

produce unreasonable results
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simulate to what extent the system is under time pressure,

because high-resolution layers take longer to be processed:

the greater the time pressure, the lower the resolution of the

chosen layer. This is also reasonable from the viewpoint of

computational efficiency. The system effectively has to

compute features only on the given resolution level and to

generate the proto-objects w.r.t. that level. Computation of

additional features for different resolutions can be restric-

ted to the regions of those proto-objects that enter the

attentional priority map after merging and further filtering

on the proto-object stage.

The Dynamic Pathway

The extraction and processing of dynamic features in our

architecture is described in this section and forms the

equivalent of the dorsal stream of processing in the human

visual system. Traditionally, motion is assumed to attain to

the ‘‘where’’ pathway in human vision, hence defining

spatial localizations required for action [26]. Nevertheless,

there is also growing evidence that the ventral and dorsal

streams share feedback connections to operate a figure-

ground segmentation [17], which we functionally imple-

ment by a further information fusing stage that will be

discussed in the section ‘‘Fusion of Ventral and Dorsal

Proto-Objects’’.

Motion Feature Extraction

In our system, the motion sensing relies on an extension of

the energy model by [1] that was introduced in [4]. The

overall sketch of the motion processing pathway is depic-

ted in Fig. 7. The basic idea is that coherent motion can be

selected within an intensity frame buffer by filtering the

diagonal oriented edges and bars produced by objects

moving in the spatiotemporal volume and computing their

energy (while vertical and horizontal edges correspond to

static and flickering objects, respectively, see [68]). Energy

features have been shown to represent a simple and bio-

logically plausible model of how our visual system can

identify features like edges and corners in static images. In

these points, the energy function, given by the root square

of the responses to quadrature pairs of linear oriented fil-

ters, squared and summed, has its local maxima [40].

Fig. 6 Resulting proto-objects for different natural scenes using the

standard parameters (see Table 1). The images come from the same

image library as used in Fig. 5

Fig. 7 The processing flow for motion extraction and moving object

formation. First, a frame buffer is filtered by a purposely designed

Gabor filter bank and direction-based feature maps are obtained.

Afterward, horizontal and vertical components of motion energy are

computed, and, from those, energy magnitude and phase are achieved.

This allows extraction of proto-objects to be further merged with

static objects and weighted for attentional selection

332 Cogn Comput (2010) 2:326–343
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Equivalently, the energy can be used in spatiotemporal

planes to extract moving edges.

To this end, we employ a Gabor filter bank to extract

motion information at different spatio-temporal scales (3

frequency bands) and velocities/directions (4 filter orienta-

tions). Thereby we generate features to represent motion in

the spatiotemporal frequency domain included in the win-

dow u, v [ [0, 0.5] cyc/pixel, in order to comply with the

sampling theorem. Gabor filters have long been known to

resemble orientation sensitive receptive fields present in our

visual cortex and to represent band-pass functions conve-

niently localized both in the space and in the frequency

domain [13]. ICA (Independent Component Analysis) basis

learning on natural image sequences has also produced

receptive fields resembling 3D Gabor filters at different

orientations and scales [28], similar to those of motion

sensitive neurons [15]. 3D Gabor and log-Gabor features are

established motion descriptors already used for optical flow

and motion segmentation computations [18, 29]. Here, we

code each voxel in a Gabor wavelet space, according to its

oriented energy response to the 12 filters. 2D filters are

convolved with horizontal and vertical spatio-temporal

planes, in order to give a measure of rightward/leftward

energy and upward/downward energy, respectively. Filter-

ing is carried out on a bidimensional basis for the sake of

computational load due to convolution operations. The fre-

quency and orientation bandwidths determine the dimension

of the filters and the central frequencies. Considering

s = h for filtering along the row-temporal (horizontal)

planes, and s = v for filtering along the column-temporal

(vertical) planes, we obtain thus, for a given frame buffer, 24

3D feature maps, for some specific frequency and orienta-

tion bandwidths (in this case bf = 1 octave and bh ¼ 30�):

Es;f ;hðx; y; tÞ where

s ¼ fh; vg
f ¼ f0:0938; 0:1875; 0:3750g
h ¼ fp=6; p=3; 2=3p; 5=6pg

8

<

:

Thereby, we tessellate the frequency domain so to span

different ranges of velocities and spatiotemporal scales with

a finite number of filters. Motion opponency is then used to

recover direction by comparison of opponent filter pairs (i.e

filters with same slope but opposite orientation, h and (p -

h)). Right-sensitive filters (hr ¼ fp=6; p=3g) span the

second and the fourth quadrant in the frequency domain,

while left-sensitive filters (hl = {(p - p/6), (p - p/3)})

span the first and the third quadrant. A measure of the total

rightward (leftward) energy at a specific frequency can hence

be obtained by summing rightward (leftward) energy across

velocities:

Rf ¼
X

i

Eh;f ;hri
� Eh;f ;hli

Eh;f ;hri
þ Eh;f ;hli

�

�

�

�

�

�

�

�

�

�

	 0

ð5Þ

Lf ¼
X

i

Eh;f ;hri
� Eh;f ;hli

Eh;f ;hri
þ Eh;f ;hli

�

�

�

�

�

�

�

�

�

�

� 0

ð6Þ

where the �j j operator selects points greater/less than zero,

corresponding to rightward/leftward motion. The same can

be done for upwards (downwards) energy computation, by

taking s ¼ v; hu ¼ hr and hd ¼ hr. In this way we obtain 4

feature volumes R, L, U, D at different frequencies.

At this point, we have an effective motion feature

detector, but no attentional modulation, as in other motion

detection models. Therefore, we apply normalization and

center-surround operators to the frames of each feature

buffer. This is again motivated by the findings in the

human visual system, where ganglion cells have been

described as firing more strongly whenever a central

location is more contrasted with respect to its surroundings

[14]. This holds in the motion domain as well, as shown by

[45] and [51], and it has been shown to occur at a very

early stage even in some retina ganglion cells of rabbits,

and probably of primates too [46]. Center-surround filter-

ing is performed by taking the difference between each

location and the mean of its neighborhood at different

scales (see [23]).

Normalization to the same range and weighting

according to the number of occurring local maxima is

realized in a biological plausible manner by iteratively

filtering the feature frames with a DoG (Difference of

Gaussians) filter and taking each time just the non-negative

values [31]. By doing so, feature maps with few activation

peaks are enhanced, as most informative. Mono-directional

features are then combined and summed across frequencies

to obtain a measure of horizontal and vertical energy:

Eh ¼
X

f

ðN ðCSðRf ÞÞ þ N ðCSðLf ÞÞÞ ð7Þ

Ev ¼
X

f

ðN ðCSðUf ÞÞ þ N ðCSðDf ÞÞÞ ð8Þ

Here, Nð�Þ and CSð�Þ denote the normalization and center-

surround operators, respectively, applied to each x -

y frame of the feature buffers.

Eh and Ev can be regarded as the projection on the x and

y axes of the salient motion energy present in the frame

buffer. Hence, from these components we can achieve, for

every voxel, magnitude and phase of the salient energy:

jEðx; y; tÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ehðx; y; tÞ2 þ Evðx; y; tÞ2
q

ð9Þ

\Eðx; y; tÞ ¼ atan2ðEvðx; y; tÞ;Ehðx; y; tÞÞ ð10Þ

The energy magnitude represents the overall strength of

the receptive fields responses to the moving stimulus, while

the phase gives an idea of the stimulus direction on the 2D

plane of the frame.
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Proto-Object Construction and Selection

So far, we have shown how to obtain a saliency map

enhancing relevant motion zones. Such a map is yet pixel-

based and, in the perspective of perception for action, an

object-based map would best help subsequent processing

for object recognition and action selection. We need to

evaluate the priority of an object as a whole and with

respect to the surrounding background, not just by con-

sidering each single pixel it is composed of. Indeed, as

said, attentional processes can modulate segregation and

grouping of the visual input into ’’object tokens’’ across

both the dorsal and the ventral pathways [54].

Proto-object patches can be extracted by relying only on

motion features if we define them as blobs of consistent

motion in terms of module and direction. This is consistent

with the Gestalt law of common fate, stating that points

moving with similar velocity and direction are perceptually

grouped together in a single object. We take the middle

frame of the filtered buffers (magnitude and phase), as the

one containing the maximal response to the filters. After-

ward, the magnitude map |E(x, y)| is thresholded to discard

points with too low energy. Null energy points are given a

phase value outside the interval (- p, p]. The thresholding

is done retaining only points having a saliency amount

equal to a share henergy of the maximum. Increasing henergy

from 10% up to 30% reduces the spreading of the objects

due to center-surround operations but can also deliver just

parts of a moving object. We chose a threshold of 0.2 as

standard value, since it delivers most refined object regions

without splitting objects or limiting the region to the pixels

cumulating the maximum of Gabor responses. Effects of

modulation of this parameter along with a static one are

presented in the results section.

Finally, the mean shift algorithm is applied upon mod-

ule, phase, and locations data. The mean shift algorithm is

a kernel-based mode-seeking technique, broadly used for

data clustering and segmentation [12]. Being non-para-

metric, it has the advantage that it does not need the

number of clusters to be specified previously, even though

a scale factor in the form of the dimension of the kernel

window must be indicated. After segmentation, points

lying in a connected neighborhood with conspicuous

motion energy and coherent motion direction are clustered

together.

To the aim of combination of dynamic and static

objects, the clusters formed via Mean Shift segmentation

can again be approximated by ellipses. Like previously

described for the static proto-objects, we compute for every

cluster the inertia matrix I from the covariance matrix and

the mean l of the points forming the cluster. Each object od

is further characterized by the mean energy of its points

and the mean direction weighted w.r.t. the energy

magnitude:

od ¼ fl; I; xdg ð11Þ

where xd ¼ fj �Ej;\ �Eg. An example of the whole process-

ing from energy computation to object extraction is given

in Fig. 8. The motion saliency system is tested again some

sequences of the dataset for spatiotemporal saliency used in

[37]. First, the motion saliency map is presented (Fig. 8,

second column). The threshold for the motion energy

allows to obtain clusters that most correspond to the real

object shape (third column in the figure) and hence ellip-

soids, which do not extend too much over the real object

boundaries (fourth column). Ground truth (fifth column) is

given by mask frames corresponding to foreground object

segmentation manually annotated by human subjects. Even

though the task for the subjects was different from that of

attentional selection, where only significant moving things

are retained, while uninteresting are discarded or inhibited,

we computed a ROC curve on the motion saliency maps at

different thresholds. Although our motion selection

mechanism, indeed, does not distinguish between fore-

ground and background motion or between self and relative

motion, thus a high rate of false positives could be gen-

erated, the overall performance was quite good. In Fig. 9 it

is shown that when most of the salience is retained, almost

Fig. 8 Saliency maps and selected objects. Two sequences of the

dataset presented in [37]. From the left, the central frame of the frame

buffer, the corresponding saliency map, the segmentation results, and

the extracted objects are shown. In the last column, the ground truth,

as segmented by human subjects performing foreground object

segmentation, is shown
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all the points selected by humans are also enhanced in the

saliency map. The three curves were produced by taking

different frequency bandwidths for the filter bank (namely

0.8, 1, and 1.2 octaves). The best classification perfor-

mance, i.e an AUC (Area-Under-the-Curve) of 0.8751, was

obtained by taking bf = 1 octave; thus, we chose this value

for the experiments in the following sections.

Fusion of Ventral and Dorsal Proto-Objects

After the formation of static and dynamic proto-objects, it

remains to decide which of these candidates shall be

evaluated by the TVA weight equation. This task lends

itself to a more detailed investigation into the nature of

proto-objects. In our model, proto-objects are homoge-

neous regions in the feature space, which are approximated

by ellipses. A set of TVA features is assigned to each

proto-object (see ‘‘Task Dependency by Means of TVA

(Theory of Visual Attention)’’ for an overview). These

features refer to the proto-objects as a whole. So there is no

difference how the filter responses, e.g. for color, are dis-

tributed within a proto-object region - the model computes

an arithmetic mean for every feature. This means, on the

one hand, that our proto-objects are more than just a set of

pixels extracted from a number of (possibly weighted)

features, as usual in standard saliency models [39, 43],

because they have an ellipsoid shape including a variety of

filter responses for each feature. On the other hand, they are

much coarser than required as input for proper object

recognition algorithms, which have to analyze the data in a

more detailed and therefore more time-consuming way

(e.g. [50]). This status ‘‘in between’’ is characteristic as

well as essential for proto-objects. The complexity level of

proto-objects enables to quickly compute sufficiently

complex hypotheses on real world objects. Hence, the idea

of proto-objects is to optimize the trade-off between

latency and accuracy of object-based covert visual atten-

tion and related saccadic eye movements. In a way, our

proto-objects attain to the second scheme for perceptual

representation proposed in [11], e.g. the one between

‘‘feature-placing’’ and ‘‘full-blooded objects’’. The merg-

ing of ventral and dorsal proto-objects has to respect this

condition: computation still has to be fast and no infor-

mation shall be lost. Our filtering and merging algorithm

complies with these conditions in a two-stage process.

Stage 1

A moving object often consists of different color regions

that are treated as separate proto-objects in the static pro-

cessing stream. Similarly, just a single part of one object

could be moving, while the rest is static. In this case, we

can obtain multiple static proto-objects located within the

region of one dynamic proto-object, or viceversa, one or

more moving objects can lie within a bigger static object or

overlap it substantially. Our model merges dynamic proto-

objects with strongly overlapping static proto-objects, or

viceversa, to a new elliptical dynamic proto-object.

Afterward, all old proto-objects, which have been merged

to new proto-objects, are deleted. That is, we discard proto-

objects that represent only parts of a real world object and

decrease the computational load by decreasing the overall

number of proto-objects.

We devise two criteria, for merging overlapping proto-

objects: First, if the center of a static/dynamic proto-object

is located within the boundaries of a dynamic/static proto-

object. Secondly, if the midpoint between the centers of

both proto-objects is located within the larger proto-object

and one proto-object is significantly smaller than the other:

Aðo1Þ\Aðo2Þ � th1 with 0\th1 
 1 ð12Þ

where Að�Þ denotes the area of the proto-object within the

visual field and th1 denotes the threshold parameter for

stage 1.

Stage 2

Because of the merging process in stage one, some of the

dynamic proto-objects may have changed their shape. This

can lead to a strong overlap of two dynamic proto-objects.

Because a real world object cannot have two different

mean directions of motion in this overlapping region at the

same time, one of the two proto-objects is deleted. Two

criteria determine if a strong overlap exists. First, the center

Fig. 9 ROC curves of the motion saliency maps against ground truth

for the whole dataset of [37]. For different frequency bandwidths the

system performs always reasonably, yet the best classification rate is

obtained for a bandwidth of 1 octave
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of the dynamic proto-object A is located within the region

of the proto-object B. Second, A is significantly smaller

than B:

Aðod1
Þ\Aðod2

Þ � th2 with 0\th2 
 1 ð13Þ

Due to our strong overlap criteria, it is likely that 1 and 2

refer to the same real world object. So we lose no

information about the spatial formation of real world

objects by deleting the dynamic proto-object 1. Moreover,

we again decrease the computational load by decreasing

the number of proto-objects. Figure 11 illustrates the

mechanisms of both stages. An example, based on a

sequence of natural frames, is shown in Fig. 10.

Furthermore, in the result section is shown that this

merging heuristic produces robust results in terms of the

search task target, even for different parameter values used

for the static and dynamic proto-object detection.

Finally, we obtain a combined map of ventral (static)

and dorsal (dynamic) proto-objects. At this point, as the

number of proto-objects and their elliptical shapes are

fixed, the features for each proto-object can be computed,

where the dynamic properties, energy and direction, are set

to zero for all static proto-objects. For each proto-object,

we obtain the geometric features location, size, shape and

orientation. Geometric orientation here denotes the orien-

tation of the principal axis whereas static orientation

denotes an averaged response of all Gabor filters that are

located within the region of a proto-object. Formally, each

resulting proto-object comprises a center vector l, an

inertia matrix I, a vector of dynamic properties xd, a vector

of static properties xs and a vector of geometric properties

xg:

o ¼ fl; I; xd; xsxgg ð14Þ

These remaining proto-objects serve as arguments for

the subsequent TVA computations and thus as potential

candidates for the next saccade landing point.

Task Dependency by Means of TVA (Theory of Visual

Attention)

With the merging of proto-objects and the respective fea-

ture computation, all bottom-up computations are com-

pleted. The combined map of proto-objects provides a set

O of static and dynamic proto-objects. Each element

Fig. 10 Merging and filtering

to obtain the combined map of

proto-objects. Top left: a single

frame of the input sequence.

Top right: Blobs represent static

proto-objects whereas ellipses

represent dynamic proto-

objects. Bottom left: Dynamic

proto-objects have been merged

with strong overlapping static

proto-objects (blue colored).

Bottom right: The smaller one

of two dynamic proto-objects,

which overlap strongly, is

deleted

Fig. 11 Merging/deleting of proto-objects. Left: in stage one, two

proto-objects are merged if the center of one proto-object (light) is

located within the other (dark) and one of both proto-objects is static

and the other one dynamic. In stage two, if both proto-objects are

dynamic, the light proto-object would be deleted if it is significantly

smaller than the dark one. Right: If we assume that one of both proto-

objects is static and the other one is dynamic, then, if the midpoint of

the two proto-object centers is located within the region of the bigger

proto-object and the other proto-object is significantly smaller, both

proto-objects are merged
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(proto-object) o [ O consists of a set of properties serving

as input for the subsequent TVA computations.

The Weight Equation

In the following step, the model computes a task-dependent

attentional weight wo for each proto-object based on a

modified version of the weight equation of TVA [7]:

wo ¼
X

j2R

rðoÞgðo; jÞpj ¼ rðoÞ
X

j2R

gðo; jÞpj ð15Þ

Each wo value is computed as the sum over all features

j which are elements of R, the set of the task features.

g(o, j), called the sensory evidence, denotes to what extent

the proto-object o has the feature j weighted by top-down

task-dependent pertinence pj. The g(o, j) values thus

restrict feature computation to proto-object regions, while

the pj implement a standard feature channel weighting as

also present in other saliency models.

The modification of the TVA equation concerns the

sensory evidence, which not only depends on the aver-

aged filter output (the g value) but also on the size and

location of a proto-object. The larger and the more

foveally located a proto-object, the higher the sensory

evidence. Based on the inhomogeneous structure of the

static feature maps (see Fig. 2), both criteria (size and

eccentricity) can likewise be quantified by the number of

static filters located in the area of a proto-object, which

leads to the r value:

rðoÞ ¼ f ðoÞi ð16Þ

where f(o) denotes the number of static filters and i deter-

mines how strong the number of these filters influences the

sensory evidence. The influence can be eliminated by set-

ting i to zero or we obtain a linear dependence if i equals

one. We chose i to be 0.2.

Defining a TVA-Based Task

In total, our model provides nine different TVA features,

which fall into three categories:

• static (low-level): color, orientation and intensity

• dynamic (low-level): energy and direction

• geometric (medium-level): location, size, shape and

orientation

Formally, we define a task as a set of quadruples

T ¼ fj;lj;Rj; pjg. j denotes a task-relevant TVA feature

(e.g. color or energy). lj and Rj are mean and variance of a

Gaussian, defining the value searched for and a tolerance

interval. Two features, color and location, are represented

by 2D variables; hence, in this case, l and R are mean and

variance of a bivariate Gaussian. The degree to which the

proto-object o has the feature j is now expressed as

gðo; jÞ ¼ pðxoj
jlj;RjÞ; ð17Þ

where pð�jlj;RjÞ is the normalized Gaussian probability

obtained by dividing the Gaussian function by its maxi-

mum; that is, the g values are confined to the range [0..1].

This is important because the weighting between features

shall be limited to the pertinence values. The parameter xoj

denotes the value of the feature j of object o. This proba-

bilistic computation of the evidence for ‘‘o having j’’ is

motivated by experimental evidence showing that Gaussian

tuning curves are in general a good approximation of

cortical neurons’ response behavior in the visual system

[25] (Fig. 12).

To implement a certain task, some features and their

pertinence values have to be selected to highlight the object

the system is looking for. Each TVA feature can be used

several times. For instance, the use of two location features

jloc1 and jloc2 makes it possible to prioritize two different

locations if the system is unsure where to find an object.

We take only task-relevant features into account because

all non-relevant features have a pertinence value of zero.

The variances Rj determine how accurately the search is

performed. A small variance implies to exactly search for

‘‘that red’’ given by the mean value. Such a strict search

carries the risk of getting a very low attentional weight for

all proto-objects making the system too sensitive to noise

Fig. 12 An example of g-value computation. The figure shows a

solid blue (l = 10;r = 1.5) and a dashed red (l = 15; r = 5) one-

dimensional Gaussian each reflecting a size feature of TVA. The

measure for size is the area a proto-object covers within the visual

field in square degree of visual angle. Both Gaussians are divided by

their maximum to obtain a range of [0..1]. Now, the g-values can

easily be computed as gðo; sizeÞ ¼ pðxosize
j10; 1:5Þ and gðo; sizeÞ ¼

pðxosize
j15; 5Þ where xosize

is the size feature value of object o
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in the input data. On the other hand, too large variance

makes it difficult for the system to distinguish between

relevant and non-relevant proto-objects and therefore also

produces an undesired behavior.

Finally, the pertinence values have to be defined. As the

absolute value of the attentional weights wo is of no rele-

vance, the pertinence values can be chosen on a relative

scale like psize ¼ 2 � pcolor.

The Attention Priority Map

The computed wo values of the weight equation (15) are

stored in a retinotopically organized attention priority map

(APM). The proto-object with the highest attentional

weight (priority) within this map serves as next camera

saccade target. After the saccade has been executed, the

next processing cycle can be started.

Results

In this section, we present some results by elucidating the

whole computational process step by step. For illustration,

we first use a sequence from the Caviar surveillance data

set.2 This real world sequence provides rich and typical

data: there are people moving or staying and different

objects at different scales. Even without a particular task,

our gaze orienting system must therefore deal with multiple

stimuli competing for selection. In the selected sequence, a

man leaves a shop while some other people are walking in

the distance.

The whole process consists of the following steps as

shown in Fig. 13:

• Image buffer acquisition. n frames are acquired and

buffered. The middle frame is fed into the static feature

processing thread, while the whole buffer is used in the

dynamic feature processing thread.

• Static feature processing. The input frame undergoes

foveation. Color, intensity and orientation responses are

computed on the foveated image. The color and

intensity feature maps of one layer provide the input

for the subsequent blob detection algorithm. Size

filtering delivers the most plausible blobs as static

proto-objects. In our example sequence, one brown

thick ellipse is produced for the man in foreground,

while the three small dark ellipses on the background

correspond to the three people further away.

• Dynamic feature processing. The whole frame buffer is

spatio-temporally filtered by the Gabor filter bank.

Directional motion energy features are used to enhance

locations of conspicuous motion. Proto-object forma-

tion is obtained via segmentation upon energy and

direction on the last frame of the buffer. Dynamic blobs

are labeled with their mean energy and direction. One

bigger blob is produced for the man in foreground,

while a smaller ellipse corresponds to the bag of the

woman moving away. Just these two objects are

distinguished because of their motion contrast with

respect to the surroundings.

• Object combination and fusion. At this point, static and

dynamic proto-objects possibly corresponding to the

same entity are merged. This delivers a combined map,

where a single bigger ellipse has subsumed the static

and the dynamic ones corresponding to the man leaving

Fig. 13 An example of the

model data flow - starting with

the input sequence up to the

task-dependent priority maps.

The rectangle in the attention

priority maps marks the proto-

object with highest priority

2 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.
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the shop. Each object is labeled with its features, static,

dynamic and geometric.

• TVA weighting computation and APM production. By

setting a task, different sets of features can now be

taken into account to compute the weights of the proto-

objects according to TVA. From the same combined

map, hence, different priority maps can be generated.

For example, in task 1, we set the Gaussian parameters

of the sensory evidence for the features intensity,

energy, area and orientation. Proto-objects ranking is

visualized through luminosity; hence, the man in

foreground wins the competition. In the second case,

right on the top of Fig. 13, the task was defined upon

energy and area, so the blob of the swinging bag

obtains the highest priority. Table 2 shows the task

parameters in detail.

In Fig. 14, a second sequence is presented, taken from a

fixed camera in a football stadium3. The scene shows a

throw-in for the red team and players trying to get free

from their opponents. In task 1, we wanted to find the

player who was more likely to get the ball, hence the

reddish one with a consistent energy amount, that is red

color and energy get a high priority. In the second case, the

task was defined so to find the referee, that is, motion is not

a relevant feature anymore, whereas intensity gets a high

priority, since the referee is usually dressed in black.

Table 3 was used to define the task parameters.

A further sequence is presented in Fig. 15. The

sequence stems from the dataset presented in [2]4 for

crowd flow segmentation. Here, different sized vehicles,

cyclists and pedestrians are moving in a crossroad. We

tested robustness of our system by varying parameter

configuration. As discussed in previous sections, dmax and

henergy are the most critical parameters for proto-object

formation. Higher values of both parameters lead to

smaller and fewer objects as depicted in the right lower

part of the maps matrix presented in Fig. 15. The given

task is formalized in the table of the same figure and

corresponds to ‘‘look for a bright moving van’’; that is, the

target is characterized by two low-level features (one static

and one dynamic) and by one medium-level feature (area).

In two thirds (16/24) of the cases, the winning proto-object

refers to the same real world object as the proto-object in

the central map that was produced with the standard

parameter setting. Also, the remaining cases show similar

results by selecting other bright moving cars. So the model

shows robustness as its functionality is not limited to our

standard parameters.

Table 2 The task parameters for the surveillance camera sequence

presented in Fig. 13

Task 1 Task 2

l r p l r p

Intensity 0.9 0.3 1 –

Energy 40 10 2 30 10 2

Area 5 2.5 1 0.33 2.5 1

Orientation 90 30 1 —

Both thresholds th1 and th2 of the combining stage are equal to 0.1

Fig. 14 The relevant data flow

images of a sequence recorded

in a football stadium. We cut the

lower half of the images to

accentuate the important areas.

The labels are identical to those

in Fig. 13

Table 3 The task parameters for the football stadium sequence pre-

sented in Fig. 14, with th1 = th2 = 0.1

Task 1 Task 2

l r p l r p

Intensity – – – 0.0 0.3 1

Color 1.0/0 0.5/0.5 1 - – –

Area 0.6 0.4 1 0.1 0.05 1

Energy 30 10 2 – – –

3 testing, camera 3, ftp://ftp.pets.rdg.ac.uk/pub/VS-PETS/. 4 http://www.cs.cmu.edu/*saada/Projects/CrowdSegmentation/.
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Discussion

We introduced a computational model of attention that is

strongly inspired and constrained by experimental findings

and theories from neuroscience and psychology (for over-

views, see [8, 54, 60]) and that contains a number of novel

ingredients and novel combinations of known ingredients.

First, inhomogeneous processing of visual features is a

main feature of the primate visual system [63] that has been

hardly implemented in computational models of attention.

Exceptions are presented in [33, 47, 57]. Humans and other

primates move their eyes several times per second because

the retina is not homogeneous and potential interesting

objects of the environment have to be analyzed by the

fovea, the high-resolution part of the retina. A peripheral

representation of an object is often not sufficient for effi-

cient object recognition. Inhomogeneous processing in our

model extends beyond the visual feature level up to the

level of proto-objects within the attentional priority map.

Second, most computational models of attention are

restricted to processing of static visual features and fol-

lowing priority computation (e.g., [23, 32, 43]). Recently,

dynamic features such as motion have been modeled within

the saliency map framework [4, 6, 30, 37] and a very few

combinations of static and dynamic features for determin-

ing saliency and attentional priorities have been devised

[36, 38] on a pixel-wise basis.

Third, the integration of static and dynamic features

occurs in our model at the level of proto-objects that are

used for determining attentional priorities in an object-

based way. Despite converging evidence for the necessity

of such an object-based account of visual attention, and

more precisely, for the necessity of an attentional priority

(saliency) map that contains medium-level visual proto-

objects [8, 55], just a few computational models imple-

mented this important ingredient of attentional control [47,

57, 65]. Our model introduces and implements proto-object

computations in a number of novel ways. Proto-objects

refer to a medium level within the hierarchy of the visual

system at which dynamic and static feature processing are

combined for the first time for a common priority-based

representation of the visual environment. Moreover, com-

putation of these proto-objects implies a new type

of medium-level visual features, that is, location of

Fig. 15 Resulting attention priority maps depending on the values of

the parameters dmax (static) and henergy (motion). Each parameter was

varied fivefold. The central map of the 5� 5 matrix shows the

outcome for the standard parameters. In the left-bottom corner of

every map, the total number of present proto-objects is indicated. The

winning proto-object is highlighted by a rectangular box. The task

consists of two low-level (one static, one dynamic) and one medium-

level feature. In the given scenario, the task definition complies with

the search for a bright moving van. The results are relatively robust

against even strong changes of the parameters. The parameter setting

was discussed in ‘‘Static Features and Proto-Objects’’ and ‘‘The

Dynamic Pathway’’
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proto-objects within a priority map, their size and rough

shape including orientation of the principal axis of the

ellipsoids. Rough shape means, for instance, that a circular

object can be distinguished from an elongated one.

Fourth, a further new aspect of proto-object computation

refers to modeling attentional processes according to the

well-established and prominent ‘‘Theory of visual Atten-

tion’’ [7, 9] that implies a relatively sophisticated form of

task-based control. TVA presupposes that attentional pri-

orities for perceptual processing are computed at the level

of proto-objects within a priority (saliency) map. A pixel-

based representation of attentional priorities that is stan-

dard in most computational models would not allow to

implement such an object-based account of attention.

Object-based attention means in TVA that attentional

weights are computed for proto-objects. The weight

determines the degree of priority of these objects and their

features in perceptual processing. Our model adds the

assumption that the proto-object with the highest weight

will be the target of the next saccade [10, 69]. Following

TVA, attentional weights depend on bottom-up influences

such as the sensory evidence for visual features and on top-

down influences such as the current task [7]. Weights are

represented in an attentional priority (saliency) map [9]. In

terms of a computational model of attention, the restriction

of visual feature and weight computation to regions of

proto-objects is computationally efficient and in contrast to

pixel-based saliency maps. Moreover, following [54], our

model assumes that the proto-object with the highest

attentional weight receives highest priority in perceptual

processing and simultaneously becomes the target for the

next saccade or camera shift (see, also, [16]).

Importantly, the novel medium-level features of proto-

objects such as size or rough shape allows a more

sophisticated form of task-based control of attention. Tra-

ditional computational models of attention (e.g., [5, 39,

43]) allow only to specify the current task at the level of

low-level basic visual features such as color, motion, ori-

entation. Depending on the task and the corresponding

search target, these basic feature channels are weighted.

For instance, when the task is to find a human face, then

those color channels that match skin color are weighted

higher than other channels. Our model adds a further and

novel level of task-based control of selective vision by

computing medium-level features of proto-objects such as

size or rough shape of the proto-object. Consequently,

more complex task-dependent search tasks can be specified

and these are able to influence the computation of atten-

tional priorities for perception and sensori-motor actions

such as saccadic eye movements. Specifying the size or the

rough shape of an object – in our model in terms of the

ratio of the axes of the ellipsoids (e.g, distinguishing a

circle from a stripe) – adds a further constraint for finding

task-relevant information. The search task of Fig. 15

(traffic scene with 3 search features and 2 parameters

varied) implemented such a scenario by involving size as a

further task-relevant medium-level feature. Models that

rely on low-level features could not use this size infor-

mation and will therefore show a less efficient search

behavior.

The results and examples show that despite its apparent

complexity the overall architecture delivers very good

results with respect to a large variety of real world images

and image sequences for standard parameters, where we

have resorted to benchmark sequences provided by several

other authors. The main parameter sensitivity is hidden in

the clustering algorithm that is the basis for proto-object

formation. In principle, any clustering scheme that delivers

compact regions approximable by ellipsoids may be used

and future work could aim at learning a respective function

from experience. However, we have used previously pro-

posed standard algorithms that have not been specifically

tailored toward our problem, which again shows the

robustness of the overall approach. Our answer to ‘‘Where

to look next ?’’: to the proto-object with the highest TVA-

based attentional priority.
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17. Domijan D, Šetić M. A feedback model of figure-ground

assignment. J Vis. 2008;8(7):1–27.

18. Dosil R, Fdez-Vidal XR, Pardo XM. Motion representation using

composite energy features. Pattern Recognit. 2008;41(3):1110–23.

19. Driscoll J II, RP Cave K. A visual attention network for a

humanoid robot. In: Proceedings of the IEEE/RSJ international

conference on intelligent robots and systems, 1998. p. 12–6.

20. Findlay JM. Global visual processing for saccadic eye move-

ments. Vis Res. 1982;22(8):1033–45.

21. Forssén PE. Low and medium level vision using channel repre-

sentations. Ph.D. thesis, Linköping University, Sweden, SE-581
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