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The study

Change in associative and recognition memory across the adult age range,
particularly with regards to strategy use.

Longitudinal study with 5 waves – though actually 8 waves!

Within wave, participants shown two lists of 26 word pairs, and tested on
recognition of individual words (items) and pairs of words (associations).
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Longitudinal timeline
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Before each of the 3 waves with the short, 2 week interval, deep encoding
intervention:

Participants asked to generate, for each pair, a sentence relating the two
words to each other during the study portion, and use that sentence to aid
recognition of words and pairs.

Individual variation in timing too...
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Descriptive plots
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Modelling - hierarchical Bayesian continuous time dynamic model.

Subject level latent dynamics driven by stochastic differential equation:

dη(t) =

(
Aη(t) + b + Mχ(t)

)
dt + GdW(t) (1)

Observations for each subject are described by:

y(t) = Λη(t) + τ + ε(t) where ε(t) ∼ N(0c ,Θ) (2)

Possible via:

wide, SEM approach.
long, Kalman-filter.

Frequentist SEM allows individual variation in intercepts,

With Bayesian formulation, everything can vary.
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Modelling – take 2

Four latent memory factors asfa, ashr, itfa, ithr, each measured by two
noisy indicators per wave.

Change over time in these latent factors is modelled with an initial
intercept, a linear slope, and a stochastic portion to account for
meaningful but unpredictable (according to our model) change.

On top of this, we estimate an intervention process, and the effect of this
process on each of the four memory factors.
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What do we gain with such an approach to interventions?

Continuous time accounts for variability in time interval between
observations.

Intervention as dynamic process allows estimating unknown shape /
persistence parameters.

Hierarchical approach accounts for, allows understanding of, individual
variability.
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Results
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Sig. intervention improvement for asfa, ashr, itfa.

Unclear if intervention effect persists across years – probably not in general.

Intervention gives greater gains for worse performers.
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Individual differences - age effects
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Discussion points - different shapes of intervention effect
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Discussion points - interventions on a trend
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Discussion points - system identification
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Discussion points - absolute model fit

Fits are better than saturated covariance structure.

Are there formalised approaches for model fit with person specific mean
and or covariance?

Is absolute fit actually important?
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Summary

The effect of interventions can change in time, and across people.

Analyses and plots via ctsem R package.

Chapter: Understanding the time course of interventions with continuous
time dynamic models.

Thanks!
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