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Abstract—Machine-learning-based stress detection systems 

differ with respect to the ground truth used for training the 

algorithms. It is unclear how models trained on different facets 

of the stress reaction (e.g., biological, psychological, social) can 

be compared, interpreted and applied. In this study, we 

investigate the influence of the stress label on the performance 

of machine learning models trained on either vocal 

characteristics or facial expressions extracted from videos. We 

collected videos from 40 male participants while being exposed 

to the Trier Social Stress Test (TSST) and assessed self-

reported, live observed, video-annotated and neuro-

endocrinological stress levels. We train three standard machine 

learning models to separately predict different stress labels 

using either voice or facial cues. Analyzing the relationships of 

different stress facets we found that observers’ annotations 

were significantly positively associated (live vs. video 

annotated, ρs = .53).  Similarly, the neuro-endocrinological 

stress indices correlated with each other (cortisol vs. sAA , ρs = 

.39). Machine learning experiments resulted in predictions that 

were positively associated with panel-annotated stress levels 

showing significantly stronger correlations in voice-based 

models (ρs = .54 vs. ρs = .30). Predictions of self-reported stress 

were positively related to ground truth values for face-based (ρs 

= .24) but not for voice-based models. There was no evidence for 

successful predictions of video-annotations or endocrinological 

stress levels in both settings. We provide evidence that machine 

learning models trained on different stress assessments 

perform differently and should be interpreted and applied 

accordingly. Implications and recommendations for future 

work on video-based stress detection are discussed. 

Index Terms—stress detection, facial expressions, voice, 

video, TSST, machine learning 

I. INTRODUCTION  

Advances in computational technologies and data 
availability have inspired approaches to automatically detect 
emotional states [1], [2], including psychological distress [3], 
[4]. Systems detecting stress aim to do so unobtrusively 
based on the analysis of verbal and non-verbal behavior in 
video and/or audio data, e.g., for monitoring a driver's stress 
level [5] or helping individuals to reduce their daily stress 
[6]. 

The application potential of such systems relies on the 
properties and quality of the underlying datasets, highlighting 
the relevance of a concrete stress definition, reliable stress 
induction and valid assessment of stress states. In particular, 
the “stress label” used as ground truth for training machine 
learning algorithms determines how the predictions of such a 
system can be interpreted. Importantly, the definition and 
respective assessment of this stress label differs based on 
one’s perspective [7]–[9]. 

Most stakeholders from the health sector focus on the 
biological stress dimensions (i.e., effects on the 
cardiovascular, gastrointestinal and musculoskeletal 
systems). Many psychologists take into account the negative 
relationship between the subjective feeling of being stressed 
and psychological well-being [10], [11]. In interaction 
research, the detection expressed acute stress as a social 
signal to the interaction partner can be considered the most 
important aspect to focus on when investigating stress [12], 
[13]. 

Despite these conceptually important differences, most 
studies aiming for the development of automated stress 
detection systems, typically assess the stress label using 
either physiological measurements (e.g., saliva cortisol, heart 
rate, breathing rate) or subjective self-reports (i.e., stress 
questionnaires) or subjective ratings from external observers. 
Nevertheless, the final systems are often interpreted and 
applied from a general stress detection perspective rather 
than explicitly pointing to the stress dimension underlying 
the algorithm development. It is unclear if systems trained on 
different facets of stress can be applied equally. As a 
potential consequence, stress detection algorithms based on 
externally annotated videos may not be valid for predicting 
self-perceived stress in daily life nor for the biological 
consequences of acute stress. 

In this study, we investigate the influence of the 
underlying ground truth for developing machine learning 
based stress detection frameworks using video data. This 
paper has three main contributions: First, we build an 
audiovisual dataset of the gold standard laboratory stress 
paradigm the Trier Social Stress Test (TSST) [14]–[16] by 
assessing conceptually different stress responses of the 
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participants. Second, we evaluate the performance of 
standard machine learning methods, depending on whether 
subjectively perceived, externally observed or the neuro-
endocrinological stress responses are used as ground truth 
and compare all analyses for audio and visual modality. 
Third, we discuss implications for future studies on video-
based stress detection. 

II. RELATED WORK 

A. Ground Truth in Stress Videos 

Most video-based stress detection frameworks use videos 
obtained from experimental stress induction settings to train 
machine learning models, e.g., deep neural networks [3], 
[17]–[19]. The majority of these studies incorporate 
classification designs in which the final ground truth is based 
on the assumption of successful stress induction in the 
experimental versus a control group rather than direct stress 
assessments (e.g., physiological measurements) [3]. 
Although this might be plausible for a general stress state 
detection, the underlying stress dimension (e.g., subjective, 
observed or biological) that the models learn remains 
unclear. Previous work has outlined the complexity of 
different systems, such as the sympathetic nervous system 
(SNS) and hypothalamus-pituitary-adrenal axis (HPA), and 
cognitive-emotional experiences, involved in the stress 
response and their interplay [20], [21]. A recent review of 36 
studies [9] found a significant positive association between 
self-reported stress and cardiovascular measure in 28% of 
studies but also highlighted the heterogeneity in measures 
and methods as a limitation for comparability. Similarly, a 
prior review on the psychological and physiological 
responses to the Trier Social Stress Test reported a 
significant positive association between cortisol and 
perceived emotional stress variables in 25% of the studies 
[22]. Taken together, this implies that stress detection 
frameworks based on stress induction experiments cannot be 
interpreted in a general way but should be considered in 
dependence of its ground truth dimension of stress. 

In many studies on machine-learning-based affect 
detection, external annotation methods are used as the 
underlying ground truth. A recent review investigating biases 
in 130 audiovisual datasets for emotion recognition showed 
that emotion labels were derived from external annotators in 
the majority of studies [23]. Similarly, stress levels of 
participants in videos have been externally annotated with 
different methods. For example, in [24] two annotators rated 
the participants’ stress levels in videos of a stressful driving 
scenario whereas Aigrain and Spodenkowiecz used a crowd-
sourcing platform for annotating the stress levels in their 
video dataset [7], [8]. Because of inconsistencies in the 
composition of annotators (e.g. gender, number, age), used 
questionnaires and rating aggregation across studies [23], the 
quality of the ratings and the interrater-agreement should be 
considered when developing, interpreting and applying stress 
detection models. Furthermore, there can be large differences 
between self- and observer-ratings, as shown for emotional 
experience [25], sleepiness [26] and reported stress levels [7], 
[8]. Taking the divergence between subjective, biological and 
observer-rated stress responses [27], it remains elusive which 
kind of stress is actually detected by machine learning 
models trained on videos of stressed people. 

B. Multidimensional Stress Detection in Videos 

Several studies have applied classical machine learning 
methods (incl. deep neural networks) to detect stress in 
videos using combinations of facial [17], [18], [28]–[31], 
posture [8], [32], linguistic [33] and voice [19], [34] data. 
However, empirical work comparing assessments of 
conceptually different stress dimensions as the underlying 
ground truth for stress detection models is scarce. In two 
studies [7], [8], the authors acquired a video dataset where 
participants annotated their stress levels after watching their 
own videos, videos were externally annotated using the 
crowd-sourcing platform AMT and experts rated the 
physiological stress level based on heart rate variability 
(HRV). Aigrain et al. (2018) applied several SVMs for 
classification of different stress dimensions and compared 
behavioral with physiological features regarding their 
classification performance for different stress dimensions [8]. 
Spodenkowiecz et al. (2018) later used the same data and 
methods to compare self versus externally annotated stress 
[7]. While both studies analyzed the interplay of different 
stress dimensions and differences in predictive physiological 
and behavioral features, the influence of the underlying stress 
label on the model performances was not investigated. 
Moreover, the continuous stress labels were transformed to 
binary stress classes using self-defined thresholds which 
diminishes the informative value for the different stress 
dimensions. Heart rate variability used as the physiological 
stress label in this study can be an important indicator of the 
SNS involved in the stress response but is not covering the 
HPA system. Additionally, both studies focused on visual 
and sensor-derived physiological features, leaving the 
potentials of voice data for stress prediction open. 

The recently published MuSe challenge dataset [35] of 
TSST videos annotated with externally annotated emotional 
labels (valence, arousal) and various physiological 
measurements (heart rate and respiration) has been used for 
the prediction of emotional states and an EDA-derived stress 
label. While in this dataset various physiological and 
externally annotated stress labels are available, information 
on the subjective and neuro-endocrine stress responses of the 
participants is missing.  Baird et al. (2022) recently 
combined several datasets of the TSST (one being the MuSe 
dataset) and applied support vector regressors (SVR) as well 
as an LSTM architecture to predict physiological (e.g., 
cortisol levels, heart rate, respiration) and externally 
annotated emotional (e.g., valence and arousal) stress 
responses [19]. They modeled different dimensions of stress 
focusing on speech-derived and to some extent on facial 
features. However, analyses with respect to subjectively 
perceived stress as well as more pronounced facial feature 
analyses are not part of this work. 

This overview shows the need for a holistic analysis 
combining exploration and comparisons of conceptually 
different stress dimensions and their influence on stress 
detection modeling across video modalities. Meta-analysis 
comparing highly differing datasets (e.g., different ground 
truth labels) and methods (e.g., video processing, feature 
extraction, modeling steps and evaluation reports) may lead 
to inconclusive interpretations across studies. In the 
following, we describe our methods to tackle the open 
question of how classical machine learning model 
performances and predictive features differ when trained on 
different stress labels on either facial or voice data extracted 
from the same underlying dataset. 
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III. METHODS 

To acquire a video dataset capturing stress-related non-
verbal behavior, we recorded participants undertaking the 
gold standard stress induction paradigm Trier Social Stress 
Test (TSST [15], [16], [36]). For each participant, we 
assessed the subjective (i.e., self-reported stress levels), 
externally observed (i.e., live vs. post-hoc annotated stress 
levels) and two neuro-endocrine dimensions (i.e., saliva 
cortisol and alpha amylase) of the acute stress responses. 
Finally, we use this dataset to train separate standard machine 
learning models for the prediction of subjective, observed 
and neuro-endocrine stress. We compare the different model 
performances across facial and voice data extracted from the 
videos. In this concept paper, we do not aim to improve the 
state-of-the-art stress detection methods. In contrast, we use 
frequently used methods to analyze the role of different stress 
ground truth for detection of stress in video recordings of a 
standardized stress test. Code will be publicly available via 
GitHub. 

A. Data Collection 

Forty healthy participants were recruited for the study. As 
commonly done in stress studies, we only recruited male 
participants to exclude confounding factors resulting from 
general sex differences and menstrual cycle effects on 
cortisol and emotional responsivity [37], [38]. Three 
participants could not complete all measurements, leaving 37 
participants (M = 24.2 years, SD = 3.8 years) for the final 
evaluation. Each participant performed a slightly modified 
version of the Trier Social Stress Test (see [39] for general 
procedure). Participants were instructed to prepare a five 
minute speech to be presented in front of a mixed panel (one 
male, one female) dressed in white coats. Panel members 
were German speaking working students trained to not give 
or show any feedback during the whole procedure. After 
giving the interview, participants were asked to perform a 
mental arithmetic task for another three minutes and were 
prompted to start over when failing. During the whole 
procedure, participants were filmed via a camera placed 
behind the panel. Participants were able to see their own live 
recordings on a TV screen next to the panel. After finishing 
the stress induction procedure, the stress assessments (see 
next section) were conducted and participants were 
subsequently debriefed. The local ethics committee of the 
Faculty of Psychology at Ruhr University Bochum approved 
the experimental protocol and each volunteer signed an 
informed consent beforehand.  

B. Stress Assessments 

To evaluate which dimensions of stress can be predicted 
using the stress test videos, we obtained several stress 
measurements (subjective, observed, neuro-endocrine). 

Subjective Stress: Participants were asked to rate the 
amount of stress they perceived during the stress test on a 
standard visual analogue scale (VAS) [40] directly after 
finishing the stress test. Participants indicated their stress 
level ranging from 0 (“not at all stressful”) to 100 
(“extremely stressful”).  

Externally Observed Stress: Similarly, both panel 
members (male and female, between 20 and 30 years old) 
were asked to separately rate the amount of stress they 
believed the participant had perceived during the stress test. 
We used the mean value of both evaluations as the label for 
live observed stress. Additionally, four German speaking 

researchers (two female, aged 22-31 years) individually rated 
the participants’ stress levels after watching the video 
recordings in randomized order. To get used to the task, all 
researchers first rated four similar videos which are not part 
of the current dataset. This resembles a typical data 
annotation procedure for machine learning and enables the 
investigation of rater coherence as well as the exploration of 
the differences between live observed and video observed 
stress levels. We used the mean value of the four ratings as 
the label for the externally annotated stress label as 
commonly done in other studies using videos with externally 
annotated emotions [41]. 

Neuro-endocrinological Stress: For the evaluation of 
physiological stress, we obtained measurements of saliva 
cortisol concentrations and alpha amylase (sAA). Salivary 
cortisol is known to be a strong indicator for biological 
stress, reflecting the activation of the HPA system and is 
used for physiological stress evaluation [42]. Alpha amylase 
levels have been discussed to indicate sympathetic activity 
associated with psychosocial stress and has shown faster 
increases compared to the cortisol response [43], [44]. Four 
measurements were taken: 2 minutes before the TSST 
(baseline) as well as 2 minutes, 15 minutes and 55 minutes 
after completing the TSST. Following the findings from 
Miller [45], we used the peak reactivity (peak level minus 
baseline level) for measuring cortisol reactivity and applied 
the same index to sAA.  

C. Preprocessing, Feature Extraction and Transformation 

We recorded a video of each participant (shoulder close-
up) performing the TSST including the voices of participants 
and panel members. As the interview parts reflect more 
natural situations and less interruptions from the panel, we 
only used this part for our video analysis. Mean duration of 
the interview parts was 305s (SD = 20s), recorded with 25 
frames per second. We used standard frame-based feature 
extraction methods on video and audio data separately, and 
transformed the extracted features to reduce the 
computational cost and capture the time-series property of 
the dataset.  

Audio Data: We first extracted the audio data from the 
video files and then performed preprocessing: We converted 
the signal to a mono, 16 khz, 16 bit uncompressed signal and 
normalized it to the same volume level as done in [19] and 
[34]. In order to distinguish spoken parts of the participant 
from spoken parts of panel members and non-spoken parts, 
we used the python module inaSpeechSegmenter [46] and 
segmented the preprocessed audio signal into 1) participant 
speaking, 2) panel speaking, and 3) no speaking activity. As 
we were interested in the prediction of stress from non-verbal 
voice features of the participant, we excluded panel 
interventions and reconnected the remaining segments for 
low-level voice feature extraction. 

We used the open source toolkit openSMILE to extract 
the eGeMAPS feature set [47] which has been used for 
similar tasks, including cortisol level and emotion prediction 
[19], [34], [35]. The eGeMAPS feature set contains 88 
functional features (e.g., mean pitch, mean shimmer) and has 
been extracted for every participant’s processed. 

Facial Video Data: To predict stress from facial features, 
we used the open source toolkit OpenFace 2.2.0 [48] to 
extract  facial action unit features as previously done for 
similar tasks [35], [49]. Facial action units (AU) are obtained 
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by integrating abstract facial movements into 44 observable 
muscle movements (e.g. AU 10: upper lip raiser) using the 
Facial Action Coding System (FACS). These are widely used 
in behavioral science and automatic facial expression 
analysis. OpenFace extracts the presence (binary) as well as 
the intensity in the range [0,5] of 18 AU (except for AU28 
for which only presence is extracted) from each video frame. 
For every AU, we computed several feature functionals that 
summarize the information of facial activity over the frame 
series data. We computed all features separately for parts of 
the video where the participant is speaking and where the 
participant is not speaking using automatic speech 
segmentation [46]. Specifically we used the mean, standard 
deviation, kurtosis, skew and Shannon entropy of the 
OpenFace intensity features and the number of activations of 
the binary features over the whole interview for silent and for 
speaking parts. Additionally, we computed the standard 
deviation of time intervals between adjacent peaks of the 
intensity features for the complete video. Overall, this 
resulted in 223 features per video. 

D. Machine Learning Models 

We used classical machine learning models that have 
been applied previously for similar tasks [3]: For each 
modality (voice and facial expression), we apply regression 
tasks on the different stress dimension labels using separately 
trained support vector regressors (SVR), random forest 
regressors (RFR) and elastic nets (EN), as well as standard 
baseline models (dummy regressors using mean or random 
prediction strategies). SVRs were tuned using grid search 
with nested cross validation (see section below and [50]) for 
the choice of the kernel (linear, radial basis function, 
polynomial; used in [7], [8], [19]) with kernel coefficient 
gamma = (nfeatures * var(X))-1 for not-linear kernels and 
degree = 3 for polynomial kernel, and regularization 
parameters (Ɛ = [0.001,0.01,0.1,0, 1, 10], C = [0.001, 0.01, 
0.1, 0.5, 1]). For RFR, we tuned the maximal depth of trees 
(d = [2, 8, 16, 32]) and the minimum number of samples per 
leaf (n = [1, 2, 4, 8]) in a forest with 1000 trees accordingly. 
ElasticNets were tuned for the regularization penalties (l1/l2 
ratio = [0, 0.5, 1]). All models were tuned separately for each 
modality and label using the same grids, to ensure fair 
comparisons. We z-standardized the features within the 
model pipeline. In order to be able to compare the models 
across stress dimensions, we used scaling-invariant 
evaluation metrics (see section below). 

Evaluation Process: To obtain an overall robust 
performance evaluation of the different models across 
modalities and labels, we applied nested cross validation with 
a 10-fold outer and a 5-fold inner loop as suggested in [50]. 
The differentiation between higher and lower stress with 
respect to a certain stress dimension can be seen as the 
primary goal of this study and allows for better comparison 
across potentially differently distributed and scaled stress 
labels. Therefore, we calculate Spearman’s rank correlation 
coefficient (ρs) between the predicted values and the true 
values and report the mean value after 100 iterations as the 
overall performance metric for each model and stress label. 
We report only on average positive associations, as we 
consider negative correlation coefficients as artifacts of the 
cross validation scheme resulting from models not learning 
predictive information as described in [51]. To further 
compare the performance of models yielding positively 
correlated predictions across dimensions, we computed the 
percentage decrease from mean absolute error of the two 

baseline (random and mean) regressors’ MAE separately and 
tested for significance using one-sample t-tests. In order to 
compare differences in performances between modalities, we 
analyzed the mean correlation coefficients over all iterations 
using the non-parametric Mann-Whitney-U-test. 

IV. RESULTS 

In this section, we describe the acquired dataset, 
including inter-rater agreements, distribution and correlation 
of the different stress labels over all participants, and report 
the voice feature-based and facial feature-based model 
performances. 

A. Stress Assessments (Ground Truth) 

To assess the inter-rater agreement, Spearman correlation 
between the separate ratings was calculated showing strong 
agreement in the panel members’ ranking of the participants’ 
stress levels (ρs = .75 , p < .001) and low agreement between 
external raters (mean pairwise ρs = .23). Descriptive statistics 
of the participants’ stress levels according to the five 
different stress assessments are given in Table I. Stress 
assessments highly differed both, in scale and distributions 
with subjective stress ratings (self-reported, panel and video-
annotated) being mainly left-skewed whereas neuro-
endocrinological stress indices are right-skewed. The 
observed stress labels (live panel annotated and video 
annotated) were associated positively (ρs = .53, p < .001), as 
well as the neuro-endocrinological stress labels (cortisol and 
sAA , ρs = .39, p = .018). Self- and panel ratings were 
marginally significantly correlated (ρs = .31, p = .061). There 
was no evidence for other significant associations among the 
stress labels. 

TABLE I.  DESCRIPTIVE STATISTICS OF THE STRESS ASSESSMENTS  

 M SD Median Min Max Skew 

SELF 67.0 22.9 80.0 14.0 100.0 -0.8 

PANEL 60.4 17.9 60.0 15.0 100.0 -0.3 

ANNOT 47.5 11.8 46.8 19.3 70.5 -0.3 

CORT 2.9 3.4 2.5 0.0 14.4 1.7 

sAA 94.6 85.3 65.9 0.0 380.1 1.7 

SELF, PANEL, ANNOT refer to self-reported, panel-annotated and video-

annotated stress levels. CORT and sAA refer to cortisol and sAA peak 

reactivity stress indices. 

B. Model Performances 

Voice-based Prediction: The average positive mean 
Spearman correlation coefficients over all iterations are 
shown in Fig. 1A. Voice-based models achieved best 
correlated predictions for the annotations of the live panel (ρs 
= .54  ±  .04 for SVR). The SVR model increased the random 
regressor baseline performance significantly by 73% (SD = 
22%, p < .001) and the mean predicting baseline performance 
by 20% (SD = 6%, p < .001) with respect to MAE. Model 
predictions for self- reported, video annotated, sAA and 
cortisol stress levels were not strongly positively correlated 
(all ρs < .01) with respective ground truth values.  

Face-based Prediction: The highest positive correlations 
between facial feature-based model predictions and ground 
truth labels were achieved for panel-rated (ρs = .30 ± .08 for 
EN) and self-rated (ρs = .27 ± 0.1 for EN) stress levels (see 
Fig. 1B). On average, optimized elastic nets increased the 
random regressor baseline model performance by 41% (SD = 
17%, p < .001) w.r.t. MAE when predicting panel-rated and 
28% (SD = 17%, p < .001) when predicting self-rated stress 
levels.  
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A) Voice-based Predictions 

 
B) Face-based Predictions 

 

Fig. 1. Mean Spearman correlation coefficients between model predictions 

and ground truth values for the stress labels using voice (A) or facial (B) 

features extracted from the videos. For each iteration (n = 100), models 

were evaluated using 10-fold shuffled cross validation applying nested grid 
search. Error bars indicate standard deviation of the iteration results. 

Negative averaged correlations are set to zero, as they are representing 

predictions of models not learning any predictive information.   

Both models did not substantially increase the mean 
predicting baseline performance regarding MAE (< 5%).  

Similar to voice feature based models, predictions for 
self-reported, video annotated, sAA and cortisol stress levels 
were not strongly positively correlated (all ρs < .02) with 
respective ground truth values. The panel ratings could be 
predicted better with voice-based than with face-based 
models, evident in a Mann-Whitney-U test of the respective 
predictions‘ correlation with the ground truth (U = 9985,      p 
< .001). In contrast, only face-based models were able to 
predict self-reported stress.  

V. DISCUSSION 

In this study, we explored conceptually different stress 
dimensions in an audiovisual dataset of TSST participants 
and investigated how the choice of the stress label might 
influence the predictive performance in machine learning 
pipelines. We found that video-based stress ratings were 
annotator-specific and showed that self-reported, observable 
and neuro-endocrinological stress assessments differed 
within participants. Voice and facial-feature-based models 
allowed a meaningful prediction of externally observable 
stress while self-reported stress levels were only partially 
predictable. We were not able to predict neuro-
endocrinological stress levels. In the following, we discuss 
these results and tackle practical implications for future 
work.  

A. Stress Ratings  

First, stress ratings showed heterogeneity with respect to 
inter-rater agreement and measurement type. Whereas there 
was high agreement between live panel raters, inter-rater 
agreement between video annotators was poor. Nevertheless, 

aggregated live panel and video annotator ratings were 
significantly correlated indicating an overall agreement 
within stress level observations based on observation. The 
participants’ self-reported stress levels were marginally 
significantly associated with live panel ratings whereas there 
was no evidence for associations with video annotations. 
Differences between ratings within each annotation 
procedure might be caused by personal, cultural and social 
backgrounds of the annotators as well as situational aspects 
[52], [53]. Annotation procedures highly differ regarding 
“involvement” (i.e., live vs. video), composition (e.g., 
gender), data aggregation and reported statistical measures of 
inter-rater agreements [23]. The higher agreement between 
live-annotators might be caused by the possibility to align by 
exchanging information on participants’ presentations. On 
the other hand, live panel members might perceive additional 
signals that are not observable in videos and also allow for 
capturing the participants’ actual stress feeling. This is 
supported by previous work showing differences in emotion 
processing for personal and non-personal contact [54]. In our 
study, four behavioral researchers rated the videos in 
randomized orders after watching the same example videos. 
Their high disagreement indicates the heterogeneity in one’s 
perception of affects, especially when transmitted via screens 
only.  

Importantly, variances in annotations might lead to 
inconsistent and none reproducible results across studies. 
Using aggregated ratings from several raters with a high level 
of disagreement as the ground truth puts the validity for 
generalized application of such algorithms in question and 
points to the necessity of personalized approaches. With 
external video annotations still forming the lion’s share in 
dataset labeling for affect recognition [23], we argue for 
using robust annotation procedures including a higher 
number of annotators and additional briefings. Annotators 
might be chosen according to a systems’ future applications’ 
target group (e.g., age-group, cultural group). Additionally, 
annotation results should be reported and discussed explicitly 
with respect to potential applications when developing stress 
detection systems. 

In our experiments, model predictions of panel-rated 
stress levels were positively correlated with ground truth 
values both, for voice and facial-feature-based approaches 
but no meaningful associations were found for predictions of 
video-annotated stress levels. This supports our assumption 
that machine learning model performances differ with respect 
to the external annotations used as ground truth for 
observable stress. Despite predictive information for 
evaluating the external stress appearance captured in and 
detected from participants’ non-verbal behavior, the high 
inter-rater disagreement between video annotators might lead 
to models that are not useful for different users. Comparing 
voice and facial feature based models, the former achieved 
significantly higher correlation coefficients in predicting the 
panel-rated stress levels. Similarly, [19] and [35] reported 
higher performances when using voice features for the 
prediction of externally annotated emotional labels, 
suggesting that the social signal of stress is mainly perceived 
via vocal indicators. 

The predictions of the live panel-rated stress levels were 
significantly better correlated with ground truth values than 
all other predictions, including the prediction of self-reported 
stress levels, which were positively (but not significantly) 
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associated with ground truth values only for models using 
facial features. This is in line with [7] and [8] who found 
higher classification performances for predicting video 
annotated stress levels than for predicting self-reported stress 
from non-verbal behavioral features. We find that models 
seem to perform better for predicting annotations based on 
observable behavior than for self-reported ratings. This might 
be attributed to the fact that the models actually “see” the 
same non-verbal behavioral clues as human observers and 
struggle the same way when predicting actual perceived 
stress. This has some important implications for applying 
such algorithms. For example, a driver-monitoring system 
developed based on external annotations as in [24] might be 
able to detect the driver appearing stressed (similarly as a co-
driver might evaluate) but the actual underlying (subjective 
and physiological) stress state might still be overlooked and 
potential interventions (e.g., driver alarms) mistargeted. In 
the same way, stress prevention or treatments based on 
automatic stress detection might just detect the outer 
appearance of being stressed and therefore not be beneficial 
for its user. On the other hand, emotional suppression [55] 
might lead to systems overlooking users’ stress and 
misplacing possible interventions. 

B. Neuro-endocrinological Stress 

We also assessed the predictability of two important 
biomarkers of stress using facial or voice features extracted 
from stress test videos. In our experimental dataset cortisol 
and sAA indices were significantly correlated but did not 
show significant associations to other stress assessments 
(self-reported, observed stress levels). This is in line with 
some previous works on the interplay of physiological and 
subjective stress [21], [27], [56] and on studies of 
multidimensional stress detection [8], whereas other studies 
did find significant associations [57], [58]. 

While in our study model predictions for live panel-rated 
stress levels were positively correlated with ground truth 
values and self-ratings could be partially predicted, predictive 
performance for the neuro-endocrinological stress labels was 
poor across both modalities. This implies that in the same 
way human stress evaluations differ from actual neuro-
endocrinological processes, models did not learn meaningful 
information from the voice and facial features. Systems 
promising to detect stress aspects relevant for (mental) health 
(e.g., release of stress hormones, blood pressure changes or 
stress feelings) in videos but developed using external stress 
annotation should be seen critically. 

Although associations between facial [32] and voice [59] 
characteristics with respect to biological stress markers, 
including cortisol, were found in previous work and 
additionally some studies used machine learning models for 
predicting such markers [19], [34], only using non-verbal 
behavioral features from video recordings seems to be 
difficult. Baird et al. showed that correlations differ with 
respect to the time point of cortisol measurements with 
highest correlations between model predictions based on 
TSST voice samples and cortisol values (ρs = .421) 20 
minutes after the stress test [34]. In [19], they achieved 
correlations of ρs = .770 based on voice samples using 
LSTMs, suggesting that sampling methods and more 
complex models might be able to capture physiological stress 
relevant information. On the other hand, their results might 
also be influenced by gender-dependent stress and voice 
characteristics. Additionally, we transformed the raw cortisol 

values to a stress index as recommended by [45] and did not 
predict cortisol levels at different time points which impedes 
a direct comparison of the study results. 

Aigrain et al. showed that including physiological 
features improved model performances for classifying HRV-
derived biological stress [8]. Indeed, many studies 
incorporate sensor-derived physiological signals to predict 
stress and achieve better results [4]. Based on the findings of 
these previous studies and the results of our work obtained 
with standard methods and robust cross validation evaluation 
schemes, we conclude that detecting biological consequences 
of acute stress using only facial and voice features from 
videos needs to be questioned. Including other potentially 
stress-relevant cues (e.g., head-pose, posture, eye-gaze, 
linguistic features) from the videos, applying feature 
selection methods, and using more complex models might 
improve the results. Still, the health promises of current 
systems should be viewed with caution. 

C. Limitations and Future Work 

Many stress detection studies are limited with respect to 
the quality and size of datasets [3], [19]. We exceeded 
several previous attempts [7], [8], [60] and collected videos 
capturing each five minutes of 37 participants undergoing the 
gold standard stress induction paradigm TSST including 
continuous and directly assessed stress markers instead of 
mere “stress vs. non-stress” classification labels [7], [18], 
[28]. Still, bigger sample sizes or data augmentation methods 
(e.g., sampling) and an additional control group may improve 
the stress detection. Nevertheless, we applied best practices 
for working with small datasets and reported conservative 
and robust evaluation metrics across the stress dimensions 
[50].  

The stress assessments we obtained in this study have 
been used previously as ground truth for building stress 
detection models [3], [8], [19], [27], [34]. While these 
assessments reflect important aspects of the complex 
processes underlying the stress responses, some fine-grained 
information is not focused on in this study. For example, the 
SNS assessment through sAA might be enhanced by 
measurements of the heart rate and heart rate variability. 
Subjective evaluations (self-reports and annotations) as well 
as biological stress consequences differ from moment to 
moment. Thus, in future work, we plan to include additional 
continuous assessments and time-dependent analyses. We 
also pointed to the difficulties when using annotators' 
aggregated evaluations as the ground truth of observable 
stress. Insights from studies that investigate the relationships 
between annotator composition, aggregation scheme, inter-
rater agreement and model performances could help to 
design more robust and real-world applicable models in the 
future. 

VI. CONCLUSION 

Video-based stress detection is one key focus in the 
affective computing domain and carries potentials to 
unobtrusively monitor drivers’ stress or improve daily stress 
prevention programs. Most studies differ with respect to the 
methods and the underlying data that are used for developing 
such algorithms. In this paper, we explored different stress 
dimensions and investigated how the choice of the stress 
label might influence the predictive performance in machine 
learning pipelines. We showed that among subjective, 
externally annotated and neuro-endocrinological stress labels, 
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model predictions were only positively associated with 
ground truth for annotated stress labels. Few or no predictive 
information were learned by models trained on neuro-
endocrinological stress indices. Based on the findings, we 
conclude three main recommendations for future studies on 
video-based stress detection using machine learning 
methods:  

First, researchers should report and interpret results of 
video-based stress detection models keeping in mind the 
underlying ground truth stress dimension used for algorithm 
development. This includes explicit discussions on the 
application potential of such algorithms, in particular when 
it’s not clear which stress dimension is actually detected (i.e., 
no direct stress assessment). In this case, we suggest to      
(re-)evaluate the algorithm regarding the stress dimension of 
interest. Secondly, we advise future studies to separately 
investigate, report and interpret model performances with 
respect to more than one stress dimension. This comprises 
conducting experiments with direct assessments of multiple 
stress dimensions (subjective reports, observer reports, 
physiological markers) repeatedly over the experiments. 
Lastly, we opt for keeping the quality and reliability of the 
underlying dataset as a key aspect when developing 
algorithms. Optimally, experiments should follow literature-
proven protocols and measurements. Additionally, annotators 
should be chosen with the specific use-case in mind, and 
specifics of the annotation process and inter-rater 
disagreements evaluated, reported and discussed.   

ETHICAL IMPACT STATEMENT 

Despite its beneficial application potentials, automated 
and unobtrusive stress detection systems should be discussed 
critically. Video recordings might be analyzed without prior 
consent or even without individuals being aware of it, 
especially in the context of surveillance. Sensitive 
information on individuals' mental health might be exploited 
and used for deceptive purposes as for hiring decision or 
insurance policy making. Systems applied for beneficial 
purposes such as driver monitoring, must work reliably, 
deliver valid assessments and users must be aware of a 
systems’ limitations.  

In our work, we did not focus on improving stress 
detection algorithms or specific applications. In contrast, we 
highlighted the importance and implications of the 
underlying stress dimension and argued for a re-evaluation of 
algorithms before applying systems to specific use cases. 
Promises of existing applications should be taken with 
caution. Similar to many other stress studies, our results need 
to be interpreted with the limited and biased sample (i.e., 
consisting of young male and single-cultured participants) in 
mind. We favored conservative evaluations but still advise 
that stress detection algorithms’ performances might differ 
even more when applied with other genders and/or different 
cultures. 

We hope that our study inspires future research groups to 
critically review stress datasets and carefully plan 
experiments before inducing stress in participants. Secondly, 
we advise potential users to take promises of (existing) 
applications with caution and be encouraged to inform 
themselves on a system’s underlying ground truth. Lastly, we 
hope that our study motivates developers to grasp basic 
research before designing actual real world applications. 
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