
R documentation
of ‘iconplot.Rd’

June 12, 2018

iconplot Icon Plots for Visualization of Contingency Tables

Description

An icon plot is a graphical representation of a contingency table. iconplot(computes a icon plot
of a data matrix (matrix or data frame) or of an object of class table. Based on argument grp.xy
the data set is split into groups. Similarly the graphics region is divided into panels. Then the
elements of the groups are visualized within the associated panels.

Usage

iconplot(data
, grp.xy = 2 ~ 1
, grp.color = NULL
, grp.icon = NULL
, colors
, icons
, vars.to.factors
, panel.reverse.y = FALSE
, panel.space.factor = 0.05
, panel.prop.to.size = c(FALSE, FALSE)
, panel.margin = 0.03
, panel.frame = TRUE
, panel.adjust = c(0.5, 0.5)
, icon.horizontal = TRUE
, icon.stack.type = c("lt", "lb", "rt", "rb")[1]
, icon.cex = NA
, icon.aspect = 1
, icon.stack.len = NA
, icon.space.factor = 0.3
, icon.grey.levels = 2
, icon.frame = TRUE
, icon.draft = TRUE
, lab.side = c("bl", "br", "tl", "tr")[1]
, lab.parallel = c(TRUE, TRUE)

1

2 iconplot

, lab.cex = 1
, lab.boxes = 2
, lab.color = c("#CCCCCC", "white")
, lab.type = c("expanded", "compact")[2]
, lab.n.max = c(20, 30)
, lab.legend = c("cols","rows","skewed","horizontal","vertical")[2]
, packer = c("icons", "numbers", "panel.legend", "stars")[1]
, panel.text = NULL
, mar = rep(1, 4)
, main
, verbose = !TRUE
, ...)

Arguments

data a data matrix, a data frame or an object of class table. Note: If the column or
dimension names are elements of the following set of reserved names:
.sign, .fraction, .color, .icon, .job.no, .x0, .x1, .y0, .y1
strange results may occur; therefore, avoid these variable names.

grp.xy a formula specifying how the data set is divided into groups and defines in which
panel an element of the data is represented. The formula y1 ~ x1 means
that the data set is split according to the levels of the variables y1 and x1 into
groups. If n.level.y1 and n.level.x1 are the numbers of levels of the two
variables the plotting region is divided like a chessboard into n.level.y1 rows
and n.level.x1 columns. In this way we get n.level.y1 * n.level.x1 fields
that are called panels. In each of the panels the elements of the associated group
are represented by pictogram elements or icons.
If the argument grp.xy hasn’t been set by default the first variable of the data
set defines the grouping of the data along the x-axis and the second one the
grouping along the y-axis.
Instead of variable names the indices of the variables can be used.
The definition of recursive groupings is allowed and is expressed by operator
"+": y ~ 3 + 4 means that the horizontal range of the graphical region is split
twice: At first the segmentation of the region is computed according to variable
3, in the second step the subranges of step 1 will be divided as a function of the
levels of variable 4.
A "0" on one side of the ~ character indicates that no splitting of the correspon-
dent region is desired.

grp.color defines how the data are grouped with respect to coloring. The name of the
variable used for coloring the icons (or pictogram elements) has to be assigned
to grp.color. colors[i] defines the color of the icon belonging to the level i
of the variable fixed by grp.color.

grp.icon defines how the data are grouped with respect the associated icon. The name
of the variable used for selecting symbols or icons has to be fixed by argument
icons. The symbol (icon) representing an observation depends on its level of
the variable specified by grp.icon.
If additional variables – separated by a + character – are found the values of
these variables will be used in the call of a icon generating function. For details
see paragraph ’Details’.

colors set of colors used for pictogram elements.

iconplot 3

icons defines the icons or the set of icons used by iconplot. If icons is a vector
icons[i] is used to represent the observations whose level of the variable fixed
by grp.icon is i. There are some alternatives to define the icons or pictogram
elements:
* default: the default symbol is a rectangle.
* vector of numbers: numbers specify plotting characters of the graphics system
similar to points(..., pch = 13).
* list of raster images: the images are used as icons.
* character vector: icons[i] with an extension indicating a pnm, ppm, jpg or
png image file: iconplot tries to use the image of the file as icon.
Otherwise icons[i] is interpreted as the name of an internal icon generating
function.
* list of functions: icons[i] is interpreted as an icon generating function and is
called to compute the icon for level i.
* list of icon descriptions. For details see paragraph "Details".
Note: If an image file is defined by an internet link it is temporarily downloaded
using tempfile() and download.file().
Note: Mixtures of these alternative definition don’t work usually. Therefore, it
is recommended to use one type of definition only.

vars.to.factors

controls the transformation of variables to factors. If missing it is set to TRUE for
each of the relevant variables. If vars.to.factors is a vector and if its elements
don’t have names the variables 1:length(vars.to.factors) are transformed.
If vars.to.factors consists of named elements the names indicate the vari-
ables to be transformed.
If vars.to.factors[i] == FALSE variable i will not be transformed.
If vars.to.factors[i] == 1 variable i is transformed to a factor.
If vars.to.factors[i] < 1 the range of variable i is cut into groups in a way
that we approximately get round(1/vars.to.factors[i]) groups and each
of the groups approximately contain 100 * vars.to.factors[i] percent of
the data. If vars.to.factors[i] > 1 the range of variable i will be cut
into floor(vars.to.factors[i]) subranges of equal size and you get a factor
variable with floor(vars.to.factors[i]) levels.

panel.reverse.y

logical, if TRUE the vertical axis is reversed.
panel.space.factor

relative space inserted between the panels.
panel.prop.to.size

a vector containing two elements which controls the sizes of the panels. The
first entry determines the widths of the panels and the second one their heights.
panel.prop.to.size[1] == 0 means all panels are of the same width.
If panel.prop.to.size[2] == 0 the panels are of the same height. A value of
1 indicates that sizes should be computed proportional to the frequencies of the
levels. Otherwise the sizes of the panels are fixed proportional to:
frequencies^panel.prop.to.size.

panel.margin controls the margins around the regions of the panels. If this argument is a vector
of length four the elements refer to the four sides of the plot: bottom, left, top,
and right. If this argument is set to c(0, 0.1, 0.5, 0) we get no additional
margin below the panels and on the right-hand side. However, there will be an
upper margin of size 100 * 0.5 percent of the height of the area containing the
panels and a margin of size code100 * 0.1 percent of the width on the left-hand
is provided.

4 iconplot

panel.frame logical, if TRUE a border line is drawn around each of the panels.

panel.adjust controls the adjustment of the panels within their regions. This argument mod-
ifies the internal coordinates and do usually not change the appearance of the
plot.

panel.text vector of strings. The text panel.text[i] is written into panel[i]. The texts
can be used for short describitions of the contents of the panels. To get an idea
of the numbering of the panels you can set panel.text = 1:20.

icon.horizontal

logical, if TRUE the stacks of icons or pictogram elements are plotted horizon-
tally. This argument effects the way how icons are put into the panels.

icon.stack.type

defines the method of plotting the stacks of icons: "r" or "l" are shortcuts for
"right" or "left". "t", "b" correspond to "top" and "bottom", respectively. Note:
Fractional parts of frequencies are represented by smaller icons. Adding the
letter "s" (as a abbreviation for "shrinkage") to the argument icon.stack.type
both dimensions of the icons are reduced. If icon.stack.type is a vector its
elements define the different types of stacking for the panels.

icon.cex size of icons; this argument is similar to cex of points().

icon.aspect aspect ratio of icons: width / height.

icon.stack.len maximal number of icons gathered to build a stack. If this length is decreased
the number of stacks (rows or columns of icons) will increase.

icon.space.factor

relative space between two icons.
icon.grey.levels

controls the coloring of icons of class raster or images. If icon.grey.levels
is of length 1 and if it is an integer the argument defines the number of color- or
grey-levels of the icons. If icon.grey.levels consists of two or more values
between 0 and 1 they are interpreted as grey limits. Level 0 represents "black",
and 1 indicates the maximal brightness. The default setting generates one color
only (besides black and white).

icon.frame logical, if TRUE a border is drawn around each of the pictograms.

icon.draft logical, if TRUE raster images are generated by calling rasterImage() with the
setting interpolate = TRUE.

mar this argument is delivered to the graphics device via par() and manipulates the
margins of the plot.

main defines the title of the plot.

lab.side defines one or two sides that are used for margin information: "l" indicates the
"left" side, "b" identifies the "bottom" as well as "r" the "right" and "t" the "top"
side.

lab.parallel logical, if FALSE margin labels are perpendicularly constructed to the axes. If
lab.parallel is a vector the first element is used for controlling the labels of
the bottom or top side and the second one specifies the orientation of the y-
labels. If one elements is set to 0.5 the labels of the last xy grouping variable are
printed perpendicularly only.

lab.legend a character string indicating the kind of legend out of the vector
c("cols", "rows", "skewed", "horizontal", "vertical").
Assigning a number of the set 1:5 to the argument is interpreted as an index of
the set of the five types of legends.

iconplot 5

"cols": vertical legends, side by side at the bottom side of the plot.
"rows": horizontal legends, line by line at the bottom side of the plot.
"skewed": horizontal legends, line by line and the level names are rotated.
"horizontal": horizontal legends, side by side at the bottom side of the plot.
"vertical": vertical legends, line by line at the right side of the plot.

lab.cex sets the size of the characters of the labels and the legends.

lab.boxes defines the types of boxes around the margin labels: lab.boxes == 0: no boxes
are drawn.
lab.boxes >= 1: small boxes around the labels are drawn.
lab.boxes >= 2: big boxes around the labels are drawn.
lab.boxes %% 1: defines the size of the separation line between the names of
the variables and the names of the levels.

lab.color The first element defines the color of the box containing the names of variables
or levels in the margins. The second element sets the color of the separation line
between the variable names and the level names within the margins.

lab.type defines the design style of margin labeling: "c" or "e" are shortcuts for "com-
pact" or "expanded".

lab.n.max is an integer vector consisting of three elements. The first element sets the
number of characters during printing the labels of the levels. The second el-
ement defines the maximal number of level names to be plotted in the margins.
lab.n.max[3] limits the number of labels of the color- or icon-legend.

packer defines the packer(s) which are used to fill the panels. If "icons" is an element
of packer the observations will be represented by icons, pictogram elements or
symbols.
If the character string "numbers" is found in packer in each of the panels the
numbers of its observations will be printed into the areas of the panels.
The packer "panel.legend" plots the level combinations into the panels. This
may be a useful feature as long as the number of the panels is small. Other-
wise the texts of level combinations will overlap each other. The argument cex
controls the size of the text strings.

verbose logical, if TRUE internal information is printed during the computation.

... arguments that will be passed to the graphics functions and suitable ones to the
icon generating functions.

Details

iconplot() constructs an icon plot of a data matrix and a contingency table. In an icon plot each
observation of the data set is represented by a small symbol or an image called pictogram or icon.
A cell of a contingency table is visualized by a set of icons. The icons of a cell are plotted within
a rectangular region which we call panel and an icon plot consists of a lot of panels containing the
icons of the cells.

Similar to the layout of contingency tables the set of panels are arranged in a grid-like manner.
Considering a high dimensional contingency table you can concentrate on some of the variables and
can construct suitable margin tables. Equivalently you can build a lot of icon plots to emphasize
your viewpoint. By varying the actual arguments of iconplot() a huge set of appearances of plots
results and the nicest one for your purpose can be choosen. table, matrix or data frames can be
used as data input of iconplot(). Tables are allowed to have fractional or negative entries; these
cases may occur by computing the difference of two tables or by changing the units of counting.
Internally a table will be expanded to a data matrix. Fractional numbers are coded in a data matrix

6 iconplot

by the additional column or variable .fraction, to handle negative numbers the new variable .sign
is added.

The argument grp.xy of iconplot defines the variables used for grouping and splitting the data
dependent on the levels of the specified variables. Each group is represented within a panel as
stated above. Let’s have a look at an example: Consider you have a 2x3 contigency table and
would like to represent it by an icon plot. So a plot to be constructed should have 2x3 panels and
the number of icons of the panels should be given by the cell entries. To get an icon plot with
desired panel structure you define the xy-grouping by grp.xy = 1 ~ 2. This means: The data
set has to be split according to the two levels of the first variable and the y-range of the plot has
to be divided in two rows of panels. On the other side the second variable defines the grouping
concerning the the x-range and three columns of panels appear. As a result a icon plot is generated
that consists of six panels arranged in two rows and three columns. The panels of a fixed level of
the first variable are placed side by side, whereas the panels of a fixed level of the second variable
are stacked one upon the other and a layout known from a chessboard results. As an example try:
x <- as.table(matrix(1:6, 2, 3)); iconplot(x, grp.xy = 1 ~ 2) grp.xy = 0 ~ 1 + 2
leads a double grouping on the x-axis and no vertical grouping. grp.xy = 1 + 2 ~ 3 + 4
presums four or more variables and splits the graphics region twice along the x- and twice along the
y-direction.

Within a panel the entry of one cell is represented. Several arguments control the way how the icons
are placed in a panel. The absolute size of the icons can be defined by icon.cex. icon.aspect
fixes the aspect ratio of the pictograms (width / height). The elements in a panel are assembled into
stacks; the maximal length of these stacks can be set by icon.stack.len; horizontal stacks are
plotted if icon.horizontal is TRUE. Framing icons and spacing between them is controlled by the
arguments icon.frame and icon.space.factor.

The icons or pictogram elements may be colored dependent on the levels of a variable. The variable
has to be established by argument grp.color. A set of colors can be defined by argument colors.
Accordingly, the symbols or images are determined by grp.icon and icons.

An icon or pictogram element can be generated by an icon generating function. The result of an
icon generating function describes a standardized icon by a set of segments, polygons, splines and
texts which are combined in a list. segments: segments are defined by a matrix or a data frame
of 5 or 6 columns: Columns 1 to 4 keep the coordinates of the starting and ending points of the
segments: x.0, y.0, x.1, y.1.
The 5th column contains the widths of the segments. The coordinates and the widths have to be
choosen in a way that the icon fits pretty well into a plotting field of size 100mm x 100mm assuming
the coordinates of the world window defined by: usr = c(0, 100, 0, 100).
If the 6th column is available it defines the coloring of the segments. A value of "0" codes the color
"white" and the other values are interpreted as usually: "1" means "black" and any other color is
processed as col in points, for example. An NA value instead of a color instructs iconplot() to
color the segment dependent on the associated level of the variable fixed by grp.color. Segment
objects must have the class attribute "segments".

polygon: Polygons are defined by a matrix or data frame of 2 or 3 columns. Colums 1 and 2 store
the coordinates of the vertices of the polygon. A third column fixes the coloring of the polygon.
The class attribute of this kind of element has to be set to "polygon".

spline: Splines are defined by a matrix or data frame of 3 or 4 columns. Colums 1 and 2 store the
coordinates of the points which form the basis of the spline. The third column keeps the line width
of the curve. The optional fourth column shows how to color the spline. Splines are identified by
class attribute "spline".

text: Text elements of a generated icon are defined by a data frame of 3, 4 or 5 columns. The first
two columns of the object store the coordinates of the positions of the text(s). The third element
stores the text information and the fourth is used to set the size of the characters. The fifth fixes the

iconplot 7

coloring of the text. The class attribute of a text element is "text". There are some internal icon
generating functions. Here is a list of them:
BI, TL, cross.simple, cross, circle.simple, circle, car.simple, car, nabla,
walkman, smiley.blueeye, smiley.normal, smiley, smiley.sad, mazz.man, bike,
bike2, heart, bend.sign, fir.tree, comet, coor.system.

Value

iconplot() returns a list consisting of three elements. The first element is the matrix jobs whose
lines show some attributes of the panels. In a row of this matrix you find the number of the panel
.job.no and the location of the panel (in user coordinates: xmins, xmaxs, ymins, ymaxs).
The second element is a copy of the modified data matrix which is used for the construction of
the icon plot: Besides the data delivered by the user there are columns showing the colors, icons
and coordinates of the pictogram elements. The third element contains the output of par() and
describes the graphics device during the computation; this list differs from the parameter settings
after leaving iconplot() because the state of graphics parameter before calling iconplot() is
restored. These three lists may be helpful if you want to add further graphical elements to the plot.

Note

Remark: the version of iconplot of this package is an experimental version. Therefore, in the
future some of the features may be changed and it is not sure that the function works as described
on all types of graphics devices. In case of errors feel free to write a mail. Additional information
and examples are found on the web page
http://www.wiwi.uni-bielefeld.de/lehrbereiche/statoekoinf/comet/wolf/wolf_aplpack.

Author(s)

Hans Peter Wolf

See Also

mosaicplot, pairs, puticon

Examples

HairEyeColor data, grouping by color
iconplot(HairEyeColor,

grp.color = 1,
grp.xy = NULL,
colors = c("black", "brown", "red", "gold"),
icon.space.factor = 0,
icon.aspect = 2,
main = "grouping by color")

HairEyeColor data, grouping by color and symbols
iconplot(HairEyeColor,

grp.icon = "Sex",
grp.color = "Hair",
grp.xy = NULL,
colors = c("black", "brown", "red", "gold"),
icons = 18:17,
icon.frame = FALSE,
lab.cex = 0.8,
icon.space.factor = 0,
lab.parallel = !FALSE,

http://www.wiwi.uni-bielefeld.de/lehrbereiche/statoekoinf/comet/wolf/wolf_aplpack

8 iconplot

main = "grouping by color and icons")
HairEyeColor data, grouping by x and color
iconplot(HairEyeColor,

grp.xy = "0 ~ 1",
grp.color = 2,
colors = c("black", "brown", "red", "gold"),
icon.stack.type = "tr",
icon.space.factor = c(0, 0.4),
lab.cex =0.7,
main = "grouping by x and by colors")

2-dim, 1 split in y, 1 split in x, grouping by color
iconplot(HairEyeColor,

grp.xy = "1 ~ 3",
grp.color = 2,
colors = c("brown", "blue", "brown3", "green"),
panel.frame = FALSE,
icon.stack.type = "bl",
lab.cex = 0.7,
main = "grouping by x and y and by colors")

3-dim, 2 splits in x, 1 split in x, margin labs on the right
iconplot(HairEyeColor,

grp.xy = "2 ~ 1 + 3 ",
grp.color = 2,
panel.space.factor = c(0, .1),
panel.margin = c(.05,.03,.03,.01),
icon.stack.type = "lb",
icon.stack.len = 7,
icon.frame = FALSE,
icon.space.factor = .0,
lab.parallel = c(TRUE, FALSE),
lab.color = c("lightblue","green"),
lab.side = "br",
lab.boxes = 0.2,
lab.type = "compact",
lab.cex = 0.8,
main = "grouping: 2~1+3 and by color, margin labs variations")

3-dim, 3 splits in y, icon.aspect = NA
iconplot(HairEyeColor,

grp.xy = "3 + 2 ~ 1",
grp.color = 3,
panel.margin = 0,
panel.space.factor = 0.1,
icon.stack.type = "lb",
icon.horizontal = TRUE,
icon.stack.len = 5,
icon.space.factor = c(.1, .3),
icon.aspect = NA,
icon.frame = FALSE,
lab.boxes = 0.3,
lab.color = "grey",
lab.side = "tl",
lab.parallel = TRUE,
lab.cex = 0.7,
lab.type = "compact",
main = "grouping: 3 + 2 ~ 1 and by color")

3-dim, plotting characters as icons
data <- as.table(array(0:23, 2:4))

iconplot 9

iconplot(data,
grp.xy = 1 + 2 ~ 3,
grp.color = 3,
grp.icon = 2,
icon.aspect = 2,
icon.horizontal = TRUE,
icons = 15:18,
icon.stack.type = c("lb", "lt", "rb","rt")[3],
icon.frame = FALSE,
lab.cex = .6,
lab.type = "compact",
main = "1+2 ~ 3")

3-dim contingency table: panels of different sizes, 1 split in y, 2 in x
packer numbers

because of computation time
iconplot(Titanic,

grp.xy = 1~3+2,
grp.color = 1,
packer = c("icons", "numbers"),
panel.prop.to.size = 0.5,
panel.frame = !TRUE,
panel.margin = .01,
icon.aspect = 0.15,
icon.stack.type = "lt",
icon.space.factor = 0.0,
icon.frame = FALSE,
lab.side = c("bl","br","tl","tr")[1],
lab.type = "compact",
lab.cex = 0.8,
lab.boxes = 1.1,
lab.color = "lightgreen",
lab.parallel = TRUE,
main = "different sizes of panels")

3-dim contingency table: panels of different sizes, 3 splits in y
because of computation time

iconplot(Titanic,
grp.xy = "4 + 3 + 1 ~ 0" ,
grp.color = 4,
colors = c("green", "red"),
packer = c("icons", "numbers"),
panel.frame = FALSE,
panel.margin = .01,
panel.prop.to.size = .3,
panel.space.factor = 0.05,
panel.reverse.y = TRUE,
icon.space.factor = 0.5,
lab.side = "l",
lab.type = "compact",
lab.parallel = c(FALSE, TRUE),
lab.cex = 0.7,
main = "Titanic data, different sizes of panels")

3-dim contingency table: panels of different sizes
because of computation time

iconplot(Titanic,
grp.xy = "0 ~ 4 + 3 + 1 " ,

10 iconplot

grp.color = 4,
colors = c("green", "red"),
panel.frame = FALSE,
panel.margin = .01,
panel.prop.to.size = .2,
panel.space.factor = 0.05,
panel.reverse.y = TRUE,
icon.space.factor = 0.5,
lab.side = "b",
lab.type = "compact",
lab.boxes = 0.2,
lab.parallel = c(FALSE, TRUE),
lab.cex = 0.6,
lab.color = c("lightblue"),
main = "Titanic data, different widths of panels")

3-dim contingency table: panels of different sizes, 3 splits in x
because of computation time

iconplot(Titanic,
grp.xy = 3 + 2 ~ 1,
grp.color = 2,
panel.prop.to.size = 0.66,
icon.space.factor = 0.4,
panel.space.factor = 0.1,
lab.type = "c",
lab.cex = 0.7,
lab.boxes = 1.2,
lab.color = c("lightblue"),
main = "Titanic: panel.prop.to.size = 0.66")

comparing iconplot and mosaic plot
par(mfrow = 2:1)
iconplot(HairEyeColor,

grp.xy = 2 ~ 1 + 3 ,
lab.parallel = c(TRUE, TRUE),
colors = "red",
panel.reverse.y = TRUE,
panel.prop.to.size = TRUE,
icon.space.factor = 0.5,
icon.aspect = 2,
lab.cex = .6,
lab.boxes = 1,
lab.color = "grey",
lab.side = "lt",
panel.margin = c(0.00,.035,0.0,.050),
main = 'HairEyeColor: grp.xy = 2 ~ 1 + 3')

mosaicplot(HairEyeColor)
par(mfrow = c(1,1))
relative frequences
data <- as.table(Titanic / max(Titanic))
iconplot(data,

grp.xy = 1 ~ 2 + 3,
grp.color = 4,
panel.frame = FALSE,
panel.space.factor = 0.05,
icon.horizontal = !TRUE,
icon.space.factor = 0.103,

iconplot 11

icon.stack.type = "b",
icon.aspect = 0.5,
main = "Titanic: relative frequencies", colors = c("black", "green"))

negative and fractional cell entries
because of computation time

data <- HairEyeColor; Exp <- margin.table(data, 1)
for(d in 2:length(dim(data))){

Exp <- outer(Exp, margin.table(data, d)) / sum(data)
}
Diff <- Exp - data
cat("observed:\n"); print(data)
cat("expected:\n"); print(round(Exp, 3))
cat("deviation: expected - observed:\n"); print(round(Diff,3))
iconplot(Diff,

grp.xy = 1 + .sign ~ 2 + 3,
grp.color = ".sign",
colors = c("red", "green"),
panel.reverse.y = TRUE,
panel.frame = FALSE,
icon.stack.type = c("t","b"),
lab.boxes = 1.2,
lab.color = "lightgreen",
main = "deviations from expectation: HairEyeColor")

relative differences of expectations, split according sign
data <- margin.table(Titanic, c(2,1,4)); pT <- prop.table(data)
eT <- outer(outer(margin.table(pT,1), margin.table(pT,2)), margin.table(pT,3))
data <- as.table(pT - eT); data <- data / max(data)
iconplot(data,

grp.xy = Survived + Sex + .sign ~ Class,
grp.color = ".sign",
panel.frame = FALSE,
panel.reverse.y = TRUE,
panel.space.factor = 0.05,
icon.horizontal = !TRUE,
icon.stack.type = rep(c("t","b"), 2),
icon.aspect = 2,
icon.space.factor = 0.1,
lab.boxes = 1.2,
lab.color = "lightgrey",
main = "Titanic: difference to expectation")

using a foto as icon, rentals of flats in Goettingen 2015/12
rentels <-
structure(list(Rooms = c(2, 3, 2, 2, 3, 2, 2, 3, 2, NA, 2, 2,
3, 4, 4, NA, 3, 2, 3, 2, 4, 2, 1, 2), qm = c(43.13, 86, 48, 66.62,
76, 49, 59, 97, 45, 87, 46.39, 71, 65, 100, 75, 178, 94.07, 56,
97, 70, 132, 43, 24, 48), Eur = c(365, 480, 480, 660, 500, 410,
440, 1200, 450, 696, 420, 710, 747.5, 1300, 450, 990, 900, 520,
1020, 1005, 924, 610, 375, 420)), class = "data.frame",
row.names = c(NA, 24L))

fname <- system.file("src", "tm1.jpg", package="aplpack") # fname <- "tm1.jpg"
print(fname)
iconplot(rentels,

grp.xy = Eur ~ qm,
vars.to.factors = c(1, .5, .3),
panel.frame = FALSE,
panel.space.factor = 0.2,

12 iconplot

panel.prop.to.size = 0.7,
icons = fname,
icon.frame = FALSE,
icon.space.factor = 0.05,
lab.parallel = c(TRUE, TRUE),
lab.legend = "cols",
main = "rentels of flats in Goettingen 2015/12")

size by .fractions, color by rooms
data <- cbind(rentels, .fraction = (rentels[,3] / max(rentels[,3]))^.5)
iconplot(data,

grp.xy = Eur ~ qm,
grp.color = Rooms,
vars.to.factors = c(1,.5, .3),
panel.frame = FALSE,
panel.space.factor = 0.1,
panel.prop.to.size = 0.7,
icons = fname,
icon.stack.type = "s",
icon.frame = FALSE,
icon.space.factor = 0.05,
lab.cex = 0.8,
main = "size fby .fractions, color by rooms")

jpg files as icons
because of computation time

data <- as.table(Titanic[2:3,,,,drop=FALSE]) / 10
fname1 <- system.file("src", "walkman-r.jpg", package="aplpack") # fname1 <- "walkman-r.jpg"
fname2 <- system.file("src", "pw-esch.jpg", package="aplpack") # fname2 <- "pw-esch.jpg"
p.set <- c(fname1, fname2)
iconplot(data,

grp.xy = 2 ~ 3+1,
grp.color = 1,
grp.icon = 3,
icons = p.set,
colors = c("blue", "green"),
panel.space.factor = 0.05,
panel.prop.to.size = c(.5, .5, 1),
icon.aspect = 1,
icon.space.factor = .10,
icon.horizontal = TRUE,
icon.draft = FALSE,
icon.stack.type = c("lb", "lt", "rb","rt")[1],
icon.grey.levels = list(2, 10),
lab.side = "t", lab.cex = .7,
main = "walkman and pw icons, scaled subset of Titanic")

files of different types as icons
because of computation time

fname3 <- system.file("src", "pw-esch.ppm", package="aplpack") # fname3 <- "pw-esch.ppm"
fname4 <- system.file("src", "pw-esch.png", package="aplpack") # fname4 <- "pw-esch.png"
p.set <- c(fname2, fname3, fname4)
iconplot(trees,

grp.xy = Girth ~ Height,
grp.icon = Height,
grp.color = Volume,
vars.to.factors = c(Volume = 4, Girth = 3, Height = 3),
panel.space.factor = 0.05,
panel.prop.to.size = c(.7, .45),

iconplot 13

panel.frame = FALSE,
icons = p.set,
icon.cex = 14,
icon.grey.levels = 6, icon.space.factor = 0.05)

using raster graphics objects as icons
data <- as.table(Titanic[1:2,,,,drop=FALSE])/10
image1 <- as.raster(matrix(c(1,0,1,1,0,1,1,0,1), ncol = 3, nrow = 3))
image2 <- as.raster(matrix(c(1,0,1,0,0,0,1,0,1), ncol = 3, nrow = 3))
iconplot(data,

grp.xy = 2 ~ 4+1,
grp.color = 1,
grp.icon = 4,
colors = c("blue", "green"),
icons = list(image1, image2),
icon.aspect = 1,
icon.space.factor = .10,
icon.horizontal = TRUE,
icon.draft = FALSE,
icon.stack.type = c("lb", "lt", "rb","rt")[1],
icon.grey.levels = list(2, 10),
lab.side = "t", lab.cex = .7, main = "some Titanic data")

using internal generator "fir.tree"
because of computation time

data <- trees
iconplot(data,

grp.color = 3,
grp.xy = 1 ~ 2,
vars.to.factor = c(5, 5, 8),
icons = "fir.tree",
colors = rainbow(8, start = .1, end = .5),
icon.frame = FALSE,
lab.legend = 2,
lab.cex = 0.7,
main = "grouping by vars and by colors")

using different internal generators
data <- trees
iconplot(data,

grp.color = 1,
grp.xy = 1 ~ 2,
grp.icon = 2,
colors = c("orange", "green", "orange", "red"),
icons = c("nabla", "BI", "walkman", "car.simple", "bike", "circle"),
vars.to.factor = c(3,6),
lab.legend = 2,
lab.cex = 0.7,
main = "grouping by vars, by icons and by colors")

Traveller plot proposed by M. Mazziotta and A. Pareto
Mazzi.Pareto <-
structure(list(Region = c("Piemonte", "Valle d'Aosta", "Lombardia",
"Trentino-Alto Adige", "Veneto", "Friuli-Venezia Giulia", "Liguria",
"Emilia-Romagna", "Toscana", "Umbria", "Marche", "Lazio", "Abruzzo",
"Molise", "Campania", "Puglia", "Basilicata", "Calabria", "Sicilia",
"Sardegna"), Mean = c(98.74, 104.07, 101.38, 106.1, 104.38, 105.55,
102.76, 103.62, 101.84, 103.52, 102.05, 97.88, 102.9, 91.43,
94.12, 96.78, 93.55, 92.59, 96.29, 100.45), Penalty = c(0.43,

14 iconplot

4.23, 0.64, 0.63, 0.77, 0.34, 0.29, 0.46, 0.27, 0.22, 0.15, 0.82,
1.3, 1.02, 0.37, 0.21, 2.37, 0.51, 0.31, 0.76), MPI = c(98.3,
99.84, 100.74, 105.47, 103.61, 105.21, 102.47, 103.16, 101.57,
103.3, 101.9, 97.06, 101.6, 90.42, 93.75, 96.58, 91.18, 92.08,
95.98, 99.69)), .Names = c("Region", "Mean", "Penalty", "MPI"
), row.names = c(NA, -20L), class = "data.frame")

dm <- cbind(Mazzi.Pareto,
col = as.factor(rep(1:4, 5)), # as.factor!!
row = as.factor(rep(1:5, each = 4))) # as.factor!!

iconplot(dm, verbose = !TRUE, x.text = 60, y.text = -10, #t3s
grp.xy = row ~ col,
grp.icon = 0 + Mean + Penalty + Region,
vars.to.factor = FALSE,
icons = "mazz.man",
panel.reverse.y = TRUE,
icon.space.factor = 0,
icon.frame = FALSE,
lab.parallel = TRUE,
lab.side = c("",""),
main = "Traveller plot")

definition of a check list, tally or 'Krebholz'
check.list <- function(x, colors = rainbow(length(x))){

num.split <- function(x, div = 5){
x.name <- as.character(substitute(x))
xn <- lapply(x, function(x)

c(rep(div, x %/% div), if(0 < (h <- x %% div)) h)
)
len <- max(sapply(xn, length))
xn <- lapply(xn, function(x) c(x, rep(0, len - length(x))))
xn <- matrix(unlist(xn), ncol = len, byrow = TRUE)
xn <- as.table(xn)
dimnames(xn) <- list(seq(along = x), 1:len)
names(dimnames(xn)) <- c(x.name, "Blocks")
xn

}
x.split <- num.split(x)
rownames(x.split) <- paste(sep = ":", 1:length(x), x)
iconplot(x.split,

grp.xy = 1 ~ 2,
grp.col = 1,
colors = colors,
panel.space.factor = c(0.4, 0.3),
panel.frame = FALSE,
icon.stack.len = 5,
icon.space.factor = c(0.4, 0),
icon.asp = NA,
icon.frame = FALSE,
lab.side = "l",
lab.cex = 0.7,
main = paste("score of", substitute(x)))

x.split
}
set.seed(13); data <- sample(1:50, size = 15)
check.list(data)

Index

∗Topic graphics
iconplot, 1

iconplot, 1

15

	iconplot
	Index

