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1 Introduction

Nowadays there have been developed many instruments to transfer credit risk. These

instruments are called credit derivatives. There have also been developed many model

and methods to evaluate credit risk. They range from practical market methods to theory

guided methods relying on firm value. In this note, first some well known instruments

for transferring credit risk are discussed and then, second, firm value based models on

evaluating credit risk are studied. Of course, there are other evaluation methods of credit

risk, for example, intensity based models or credit rating models but here we want to

focus on firm value based models. Those ones have a sound theoretical foundation and,

they are based on the theoretical development of the 1970, put forward by Black and

Scholes (1973) and Merton (1974). Further theoretical foundations of this approach can

be found in Schönbucher (2003), Grüne and Semmler (2005) and Grüne, Semmler and

Bernard (2006).

2 The Relevance of Credit Derivatives

The market for credit derivatives was created in the early 1990s in London and New

York and it is fastest growing derivative market at the moment. Considering only the

period between June 2001 and June 2004, the notional amounts outstanding in billions of

US dollars were 695 and 4.477 respectively according to a recent survey of the Bank for

International Settlements, Switzerland (see table 3 in the appendix). That is a growth of

more than 500 per cent in only three years.

Participants in the market for credit derivatives can be divided into five major groups.

Banks form the largest group with a fraction of about 47 per cent. The second largest

group consists of insurances and re-insurances which cover about 23 per cent of the mar-

ket’s notional outstanding. Other groups are hedge funds (8 per cent) and investment

funds (5 per cent) as well as industrials (4 per cent) of different branches.

2



Table 1 Market share by instrument type (rounded numbers)

Instrument Share (%)

Credit default swaps (including FtDs) 67

Synthetic balance sheet CDOs 12

Tranched portfolio default swaps 9

Credit-linked notes, asset repackaging, asset swaps 7

Credit spread options 2

Managed synthetic CDOs 2

Total return swaps 1

Hybrid credit derivatives 0,2

Source: Risk (Patel, 2002).

When one takes a look at the derivative market with respect to instrument types, one

can see that credit default swaps (CDS) represent about 67 per cent of all transactions

made in that field (see table 1). A reason for this may be the standards for ”plain vanilla”

CDSs developed by the International Swaps and Derivatives Association (ISDA), leading

to lower transaction costs and simplifying the whole business. Further types are discussed

later in this paper.

Purposes for using credit derivatives are, as the types of instruments themselves, man-

ifold. One can think of using credit derivatives as investments, for the credit risk manage-

ment of bond portfolios, for hedging counterparty or country risk in isolated cases, as a

funding opportunity for banks through the securitisation of loan portfolios or for portfolio

optimization for bond and loan portfolio managers. Referring to former times, a bank

could only manage its credit risk at origination. During the whole lifetime of a loan the

risk remained on the books until the loan was paid off or the obligor defaulted. With the

possibilities of these instruments, however, a bank and all the other previously mentioned

institutions are able to conduct active risk management. Due to these features and the

fact that credit is now a trading asset, the market of credit derivatives is growing and

should keep growing in the future.
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After giving a short introduction about the important role credit derivatives play in the

financial world today, the terminology of the general credit derivative is described. Next

we provide an overview of different types of credit derivatives, and give an example to show

how they are used to conduct active risk management. In the second part of the paper,

we talk about the idea of firm’s value models and their connection to credit derivatives.

In particular the Black/Scholes-Merton model and Moody’s KMV are discussed.

3 Terminology

A useful definition of credit derivatives is formulated by Phillip Schönbucher (2003):

”A credit derivative is a derivative security that has a payoff which is conditioned

on the occurrence of a credit event. The credit event is defined with respect to a refer-

ence credit (or several reference credits), and the reference credit asset(s) issued by the

reference credit. If the credit event has occurred, the default payment has to be made

by one of the counterparties. Besides the default payment a credit derivative can have

further payoffs that are not default contingent. This definition can be extended to include

derivative securities whose payoffs are materially affected by credit events and derivatives

on defaultable underlying securities.”

For most derivatives, one can use the following definitions:

• A is the counterparty which receives a payment in the event of a default

• B is the counterparty which has to make the payment in the event of a default

• C is the reference credit

• Reference entity/reference credit is the issuer of the reference obligation/reference

credit asset whose default triggers the credit event

• Reference obligations/reference credit asset is a set of assets issued by the

reference entity
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• Credit event/default event occurs e.g. for the following reasons:

– Bankruptcy

– Failure to pay with certain requirements

– Obligation default

– Ratings downgrade below given thresholds (only for ratings-triggered credit

derivatives)

• Default payment is the payment which has to be made by B if a credit event

occurs

4 Some Types of Credit Derivatives

4.1 Total Return Swaps (TRS)

In a total return swap (or total rate of return swap), A wants to change its entire payoff

from a defaultable investment (e.g. a bond, denoted by C with the entire payoff B receives

from its default-free Libor investment.

There are several effects appearing from this contract. First, B is long the C-bond

without having paid for this investment. Therefore B normally has to put collateral (this

can be the C-bond, which legally still belongs to A), depending on its creditworthiness.

Second, A has hedged its exposure to the C-bond and bears a certain counterparty risk

now, but which should be minimized because of the collateral.

Concerning the purpose of credit derivatives, A transmits the credit AND market risk

of the reference credit C to B and ensures a risk-free Libor interest rate plus a certain

spread, reflecting the creditworthiness of B.

4.2 Credit Default Swaps (CDS)

The most important difference between a TRS and a CDS is the matter of isolating credit

risk. While a TRS transfers both credit AND market risk (whereas a certain risk remains
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for counterparty A because only the risk of one of the reference credit is transferred,

not the whole default risk), the default risk of this type of credit derivative is completely

isolated.

In a credit default swap (or credit swap), B takes the default risk of A’s defaultable

asset and has to make a default payment of a credit event occurs. In exchange for

this service, A pays a fee for the default protection.

With respect to the default payment, there are several possibilities. A physical

delivery requires the delivery of the reference assets against a repayment at par. When a

cash settlement is arranged, B has to pay the difference between the post-default market

value and the face value of the asset. A default digital swap, in contrast, demands a fixed

amount of money, agreed to at the time of the contract.

Since A and B can declare any asset of C they want, they are able to widen the range

of assets so that the default risk of C is completely transferred.

According to the International Swaps and Derivatives Association (ISDA), the following

information should be part of a CDS contract:

• The reference obligor and his reference assets

• The definition of a credit event that is to be insured

• The notional of the CDS

• The start of the CDS

• The maturity date

• The credit default swap spread

• The frequency and day count convention for the spread payments

• The payment of the credit event and its settlement
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4.3 Collateralized Debt Obligations (CDO)

Collateralized debt obligations belong to the group of exotic credit derivatives as their

construction is very special. The aim of a CDO is to securitize a complete portfolio of

defaultable assets like a basket of bonds or loans in order to sell these securities and the

credit risk of the assets with them.

The way a CDO is born looks like this: first, a portfolio of defaultable assets is set

up and then sold to a company, exclusively created for this aim and denoted by special

purpose vehicle (SPV). The second step is to divide the portfolio into several tranches in

a way that every single tranche can be securitized and sold to investors with different risk

aversions and different demands for the yield, respectively. The obligations sold by the

SPV are collateralized by the underlying debt portfolio.

Bond 1

Bond 2

Bond 3

Bond n

Average yield

3,5%

Trust

Tranche 1

1st 5% of loss

Yield=35%

Tranche 2

2nd 10% of loss

Yield=15%

Tranche 3

3rd 10% of loss

Yield=7.5%

Tranche 4

Residual loss

Yield=6%

Figure 1: Collateralized debt obligation

According to the tranche an investor owns, he or she is confronted with more or less

risk. Assuming the investor has obligations of the first tranche, in the example given in

figure 1 he or she suffers already from the first 5 per cent of losses the portfolio gains. Since

the risk of losing money is very high in this case, the yield one gets os correspondingly

very high, too. Normally, it is a multiple of the average yield of the assets of the portfolio.
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An investor of the forth tranche, in contrast, is only burdened with a loss when already

more than 25 per cent of the assets of the portfolio defaulted. Of course, people investing

in this tranche have a lower expected yield than the average expected portfolio yield.

4.4 Example of a CDS with Real Quotes

The following example should give an idea how a plain vanilla credit default swap looks in

practice. Given the bid/offer quotes of a market maker in table 2, one can think through

several cases.

Table 2 Credit default swap quotes (basis points)

Maturity

Company Rating 3 years 5 years 7 years 10 years

Toyota Motor Corp AaI/AAA 16/24 20/30 26/37 32/53

Merrill Lynch Aa3/AA- 21/41 40/55 41/83 56/96

Ford Motor Company A+/A 59/80 85/100 95/136 118/159

Enron BaaI/BBB+ 105/125 115/135 117/158 182/233

Nissan Motor Co.Ltd. BaI/BB+ 115/145 125/155 200/230 244/274

Looking at Toyota, the market maker is prepared to buy three-year default protection

for 16 basis points per year and sell three-year default protection for 24 basis points per

year and so on (Hull 2002).

Supposing that a bank had several hundred million dollars of loans outstanding to

Enron and was concerned about its exposure. It could buy a $100 million five-year CDS

on Enron from the market maker for 135 basis points or $1.35 million per year. This

would shift part of the bank’s Enron credit exposure to the market maker (Hull 2002).

Another possibility could be an exchange in the bank’s credit risk. If the bank is

interested in shifting part of its credit risk to another industry, it could, for example, sell

a five-year $100 million CDS on Nissan for $1.25 million per year while buying a similar

CDS on Enron at the same time. The net cost of this strategy would be 10 basis points
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or $100,000 per year. So the bank had changed part of its credit risk from Enron for a

certain credit risk of Nissan. Due to the differences in these industries, one can say that

the bank has diversified its credit exposure (Hull 2002).

5 Firm Value Based Models and Black and Scholes

So far we have talked about the characteristics of credit derivatives in general and how to

use them as tools for active risk management. Now we will focus on the pricing of credit

derivatives using a specific modeling approach: the approach of firm’s value models.

To be able to price credit derivatives, we have to know something about the default

risk (credit risk) of the underlying asset. Modeling the default risk is the aim of credit

derivatives pricing models such as intensity and spread-based models. Compared to those,

firm’s value models use a much more fundamental approach to valuing defaultable debt

and in addition try to provide a link between the values of equity and debt of the firm.

Firm’s value models assume a fundamental process V , denoting the total value of the

assets of the firm that has issued the bonds in question. V is described as a stochastic

process, influenced by the prices of all securities issued by the firm. A very important

point of this type of model is that all claims on the firm’s value are modelled as derivative

securities with the firm’s value as underlying.

Black and Scholes 1973) and Merton (1974) were the first people modeling credit risk

with what we know today as a firm’s value model. Modeling credit risk means modeling

default probability. In their consideration a default could only occur at maturity of the

debt, i.e. if the difference firm value V minus outstanding debt at maturity is negative, a

default happens, otherwise the firm continuous to exist. Mertion (1974) explicitly treated

the corporate liability from the perspective of derivative pricing. We will come to another

and more realistic view later. For further theoretical development see, Schönbucher (2003),

Grüne and Semmler (2005) and Grüne, Semmler and Bernard (2006).

As already mentioned above, the value V of the firm’s assets is described as a stochastic

process. Fischer Black, Myron Scholes and Robert C. Merton set up for V the following
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geometric Brownian motion:

dV = µV dt + σV dW (1)

or

dV

V
= µdt + σdW (2)

where the variable σ is the volatility of firm value, the variable µ is the expected rate

of return and DW as a Wiener process (for the derivation of this equation see Hull 2002,

11.3).

From now on in this model, the prices of both debt B(V, t) and shares S(V, t) are

functions of the firm’s value V and the time t. What Black and Scholes (1973) and

Merton (1974) did was a breakthrough. They showed that both equity and debt of the

firm can be seen as derivative securities on the value V of the firm’s assets. The payoff

structure of these derivative securities looks like this (D is the exercise price):

B(V, t) = min(D,V ) (3)

S(V, t) = max(V − D, 0) (4)
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Figure 2: Payoffs of shares and bonds at t = T for D = 60

As we are interested in pricing equity and debts of the firm and credit derivatives,

respectively, we set up a risk-neutral portfolio by hedging one bond with ∆-shares. The

value of the portfolio is:

Π = B(V, t) + ∆S(V, t) (5)

The change in value can be derived from Ito’s lemma (see appendix 11A in Hull 2002)

and is:

dΠ = dB∆dS (6)

=

(

∂B

∂t
+

1

2

∂2B

∂V 2
+ ∆

∂S ′

∂t
+

1

2
∆

∂2S ′

∂V 2

)

dt

+

(

∂B

∂V
+ ∆

∂S

∂V

)

dV

To be fully hedged and to have a predictable return, the number of shares must be:
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∆ = −∂B/∂V

∂S/∂V
(7)

This leads to the well known Black-Scholes partial differential equation:

∂

∂t
S +

1

2
σ2V 2 ∂2

∂V 2
S + rV

∂

∂V
S − ΓS = 0 (8)

Now we can compute the value of a share with the Black-Scholes formula CBS for a

European call option on V . The expiry date is denoted by T , the exercise price by D, the

underlying volatility by σ and the interest rate by rf :

S(V, t) = CBS(V, t; D, σ, rf ) (9)

= V N(d1) − e−rf (T−t)DN(d2) (10)

where

d1 =
ln(V/D) +

(

rf − 1
2
σ2(T − t)

)

σ
√

T − t
(11)

and

d2 = d1 − σ
√

T − t (12)

Note that in the risk neutral case the V in equ. (10) refers to the current value of the

firm, but of course it is determined by the discounted future income stream of the firm.

Yet in the risk free case we can have

S(V, t) = CBS(V, t; D, σ, rf )

= e−rf (T−t)(V N(d1)e
rf (T−t) − DN(d2))

A Gauss computer program for the above evaluation of corporate debt from the per-

spective of derivative pricing is available.1 Schönbucher (2003, ch.) extends the model

1available upon request
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by also taking into account a safety covenant acting as a default barrier. He also intro-

duces bankruptcy cost, and a time varying interest rate, following a Brownian motion, for

example, co-varying with stock market shocks. The firm value approach tries to model

the whole obligor at once through linking the debt and equity with a hedge. A large and

important disadvantage of the model is that one does not observe the process V with its

driving factors.

6 Computing Firm Value and Creditworthiness

In Grüne and Semmler (2005) the firm value is derived from an intertemporal behavior

of firms. There, however, only for the deterministic case. Yet, in Grüne, Semmler and

Bernard (2006) the stochastic case is also considered.

We give a formal presentation of the deterministic model. We can say in the bilaterial

contract between a creditor and debtor there are two problems involved. The first pertains

to the computation of debt and the second to the computation of the debt ceiling. The

first problem is usually answered by employing an equation of the form

Ḃ(t) = θB(t) − f(t), B(0) = B0

where B(t) is the level of debt2 at time t, θ the interest rate determining the credit

cost and f(t) the net income of the agent. The second problem can be settled by defining

a debt ceiling such as

B(t) ≤ C, (t > 0)

or less restrictively by

sup
t≥0

B(t) < ∞

2Note that all subsequent state variables are written in terms of efficiency labor along the line of

Blanchard (1983).
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or even less restrictively by the transversality condition

lim
t→∞

e−θtB(t) = 0. (13)

The ability of an obligator to service the debt, i.e. the feasibility of a contract, will

depend on the obligator’s source of income. Along the lines of intertemporal models of

borrowing and lending3 we model this source of income as arising from a stock of capital

k(t), at time t, which changes with the investment rate j(t) at time t through

k̇(t) = j(t) − σ (k(t)) , k(0) = k0. (14)

In our general model both the capital stock and the investment are allowed to be

multivariate. As debt service we take the net income from the investment rate j(t) at

capital stock level k(t) minus some minimal rate of consumption.4 Hence

Ḃ(t) = θB(t)) − f (k(t), j(t)) , B(0) = B0 (15)

where θB(t) is the credit cost. Note that the credit cost is not necessarily a constant

factor (a constant interest rate). We call B∗(k) the creditworthiness of the capital stock

k. The problem to be solved is how to compute B∗.

If there is a constant credit cost factor (interest rate), θ = H(B,k)
B

, then, it is easy to

see, B∗(k) is the present value of k or the asset price of k:

B∗(k) = Max
j

∫ ∞

0

e−θtf (k(t), j(t)) dt − B(0) (16)

3Prototype models used as basis for our further presentation can be found in Blanchard (1983),

Blanchard and Fischer (1989) or Turnovsky (1995).

4In the subsequent analysis of creditworthiness we can set consumption equal to zero. Any positive

consumption will move down the creditworthiness curve. Note also that public debt for which the Ricar-

dian equivalence theorem holds , i.e. where debt is serviced by a non-distortionary tax, would cause the

creditworthiness curve to shift down. In computing the ”present value” of the future net surpluses we

do not have to assume a particular interest rate. Yet, in the following study we neither elaborate on the

problem of the price level nor on the exchange rate and its effect on net debt and creditworthiness.
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s.t.

k̇(t) = j(t) − σ (k(t)) , k(0) = ks (17)

Ḃ(t) = θB(t) − f (k(t), j(t)) , B(0) = B0. (18)

The more general case is, however, that θ is not a constant. As in the theory of credit

market imperfections we generically may let θ depend on k and B, see below.5 Employing

a dynamic model of the firm6 we can use the following net income function that takes

account of adjustment investment and adjustment cost of capital.

f(k, j) = kα − j − jβk−γ (19)

where σ > 0, α > 0, γ > 0 are constants.7 In the above model σ > 0 captures both

a constant growth rate of productivity as well as a capital depreciation rate. Blanchard

(1983) used β = 2, γ = 1 to analyze the optimal indebtedness of a firm (see also Blanchard

and Fischer 1989, Chap. 2).

The maximization problem (16)-(18) can be solved by using the necessary conditions

of the Hamiltonian for (16)-(17). Thus we maximize

Max
j

∫ ∞

0

e−θtf(k(t), j(t))dt

s.t. (17).

The Hamiltonian for this problem is

5The more general theory of creditworthiness with state dependent credit cost is provided in Grüne,

Semmler and Sieveking (2004). Note that instead of relating the credit cost inversely to net worth, as in

Bernanke, Gertler and Gilchrist (1998), one could use the two arguments, k and B, explicitly.

6The subsequent model can be viewed as a standard RBC model where the stochastic process for

technology shocks is shut down and technical change is exogenously occurring at a constant rate.

7Note that the production function kα may have to be multiplied by a scaling factor. For the analytics

we leave it aside here.
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H(k, x, j, λ) = max
j

H(k, x, j, λ)

H(k, x, j, λ) = λf(k, j) + x(j − σk)

.
x =

−∂H

∂k
+ θx = (σ + θ) x − λfk(k, j).

We denote x as the co-state variable in the Hamiltonian equations and λ is equal to

1.8 The function f(k, j.) is strictly concave by assumption. Therefore, there is a function

j(k, x) which satisfies the first order condition of the Hamiltonian

fj(k, j) + x = 0 (20)

j = j(k, x) = (
x − 1

k−γ · β )
1

β−1 (21)

and j is uniquely determined thereby. It follows that (k, x) satisfy

·

k = j(k, x) − σk (22)

·
x = (σ + θ)x − fk(k, j(k, x)) (23)

The isoclines can be obtained by the points in the (k, x) space for β = 2 where
·

k =0

satisfies

x = 1 + 2σk1−γ (24)

and where
·
x = 0 satisfies

x± = 1 + ϑk1−γ ±
√

ϑ2k2−2γ + 2ϑk1−γ − 4αγ−1kα−γ (25)

where ϑ = 2γ−1(σ + θ). Note that the latter isocline has two branches.

If the parameters are given, the steady state – or steady states, if there are multiple

ones – can be computed and then the local and global dynamics studied. We scale the

production function by α. 9

8For details of the computation of the equilibria in the case when one can apply the Hamiltonian, see

Semmler and Sieveking (1998), appendix.

9We have multiplied the production function by a = 0.30 in order to obtain sufficiently separated

equilibria, and take c = 0. We employ the following parameters: α = 1.1, γ = 0.3, σ = 0.15, θ = 0.1.
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There is another solution technique which allows one to solve for firm value by using

a dynamic programming approach. The alternative solution method uses the Hamilton-

Jacobi-Bellman (HJB) equation.

In this appendix we present the solution technique of how to find the solution of the

HJB-equation. We describe an algorithm which enable us to compute the asset price

of the firm for the HJB equation of a type such as (1) which will give us the present

value borrowing constraint. We show of how one can explicitly compute firm value using

modern dynamic decision theory.

The HJB-equation for our problem reads

θV = max
j

[kα − j − j2k−γ + V ′(k)(j − σk)] (26)

Using the HJB equation we also can compute the steady state equilibria.

For the steady state, for which 0 = j − σk holds, we obtain:

V (k) =
f(k, j)

θ
(27)

V ′(k) =
f ′(k, j)

θ
=

∂
∂k

(kα − σk − σ2k2−γ)

θ
(28)

Using the information of (27)-(28) in (26) gives, ater taking the derivatives of (26)

with respect to j, the steady states for the stationary HJB equation:

−1 − 2jk−γ +
αkα−1 − σ − σ2(2 − γ)k1−γ

θ
= 0 (29)

Note that hereby j = σk10. Given our parameters the equation may admit multiple

steady states.

We specify the company’s technology parameters to be σ = 0.15, A = 0.29, αi =

0.7, βi = 2, γ = 0.3 and θ = 0.1. The remaining parameters are specified below.

10Note that this gives us the same equilibria as using the Hamiltonian approach.
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As for the numerical procedure an example was computed for different k′s in the

compact interval [0.2], using dynamic programming with control range j ∈ [0, 0.25]. The

dynamic programming algorithm (DP) used here is builton the HJB equation and is

explained in Grüne and Semmler (2004). From this algorithm we obtain the figure below

which approximates the present value curve V (k) representing firm value.

We have considered our deterministic formulation above. In this case, debt is issued,

but with no default premium. Thus, the credit cost is given by H(k,B) = θB. We

have used the above mentioned DP algorithm in order to solve the discounted infinite

horizon problem (16)-(18). Figure 3 shows the corresponding value function representing

the present value curve, V (k). The present value curve represents the asset value of the

company for initial conditions k(0) and thus its creditworthiness.

-0.100

0.000

0.425

0.949

1.474

1.898

2.523

V

k

0.400 0.800 1.200 1.600 2.000

k=0.996

Figure 3: Present Value of Company’s Capital Assets

The debt control problem is solved whenever debt is below the firm’s asset value, so

that we have V −B ≥ 0. The optimal investment strategy is not constrained and thus the

asset value which represents the maximum debt capacity V , is obtained by a solution for
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an unconstrained optimal investment strategy, represented by the present value curve in

Figure 3. For initial values of the capital assets above or below k∗, the optimal trajectories

tend to the domain of attraction k∗ = 0.996. For all initial conditions, the debt dynamics

remain bounded as long V −B ≥ 0, thus allowing the company’s equity holders to exercise

the option of retiring the debt. Any initial debt above the present value curve will be

explosive and the company will lose its creditworthiness, since it will not be able to pay

its obligations.

For the more general case where a default premium is to be paid we can use the

following function to represent risk premia:

H(k(t), B(t)) =
α1

(

α2 + N(t)
k(t)

)µ θB(t)

For the model (16)-(18) with a risk premium included in the company’s borrowing cost,

it is not possible to transform the model into a standard infinite horizon optimal control

problem. This results because debt is now an additional constraint on the optimization

problem. Hence, we need to use another method firm value and one can undertake ex-

periments for different shapes of the credit cost function representing different alternative

functions for the risk premium. An important class o functions for risk premia is defined

by the steepness of the slope defined by the parameter α2, for details, see Grüne, Semmler

and Bernard (2006). There are also results reported as to what extent the value of this

company is affected by a default premium.

7 Moody’s KMV

Due to the difficulties in computing the present value for firm value models11 a practical

implementation has been developed which comes with solutions to this problem. The

KMV model, named after the founders Kealhover, McQuown and Vasicek (2001), models

credit risk and the default probability of a firm as follows.

11A more practical methodic of computing firm value is proposed in Benninga (1998, chs. 2-3).
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7.1 The Distance-to-Default

The model states that there are three main elements determining the default probability

of a firm:

• Value of assets is the market value of the firm’s assets.

• Asset risk is the uncertainty or risk of the asset value. This is a measure of the

firm’s business and industry risk.

• Leverage is the extent of the firm’s contractual liabilities. It is the book value of

liabilities relative to the market value of assets.

As in equs (3) and (10) the default risk of the firm increases when the value of the

assets approaches the book value of the liabilities. The firm defaults when the market

value of the assets is smaller than the book value of the liabilities.

According to Peter Crosbie and Jeff Bohn (2003) who wrote the paper Modelling

Default Risk for Moody’s, their studies do not confirm this thesis in general. Not all

the firms which reach the point where the asset value goes below the book value of their

liabilities default. There are many which continue and serve their debt. The reason for this

can be found in the long-term liabilities which enable the firms to continue their business

until the debt becomes due. The firms may also have credit lines at their disposal.

Crosbie and Bohn draw the conclusion that the default point, the asset value at which

the firm will default, generally lies somewhere between total liabilities and short-term

liabilities. The relevant net worth of the firm is therefore defined as:

[Market Net Worth] = [Market Value of Assets] - [Default Point] (30)

If the market net worth of a firm is zero, the firm is assumed to default. To measure

the default risk, one can combine all three elements determining the default probability

in a single measure of default risk, the distance-to-default:
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(31)

[Distance-to-Default] =
[Market Net Worth]

[Size of One Standard Deviation of the Asset Value]

=
[Market Value of Assets]-[Default Point]

[Asset Volatility]
(32)

The distance-to-default is the number of standard deviations the asset value is way

from default The default probability can then be computed directly from the distance-to-

default if the probability distribution of the asset value is known.

7.2 The Probability of Default

Crosbie and Bohn (2003) give 6 variables that determine the default probability of a firm

over some horizon, from now until time H (see figure 4):

1. The current asset value

2. The distribution of the asset value at time H

3. The volatility of the future assets value at time H

4. The level of the default point, the book value of the liabilities

5. The expected rate of growth in the asset value over the horizon

6. The length of the horizon, H
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The probability of default (expected default frequency or EDFvalue) can be com-

puted with the aid of the measure we calculated above and data on historical default and

bankruptcy frequencies. The database that Mody’s usses consists of more than 400,000

company-years of data and more than 4,900 incidents of default or bankruptcy (see figure

4). From this data, a frequency table can be generated which relates the likelihood of

default to the distance-to-default measure.

For example, a firm that is 7 standard deviations away from default has an expected

default frequency (EDF value) of 5 per cent which leads to a rating of AA. In this case,

Moody’s analysis the default history of the fraction of firms which were 7 standard devia-

tions away from the default point and defaulted over the next year. According to Crosbie

and Bohn (2003), Moody’s tested the relationship between distance-to-default and default

frequency for industry, size, time and other effects and has found that the relationship is

constant across all of these variables.
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Those relationships can be developed in mathematical terms. According to the Black-

Scholes model and as above in equ. (1) presumed, the market value of the firm’s underlying

assets is described by the following stochastic process:

dVA = µVAdt + σAVAdz (33)

where

VA, dVA are the firm’s asset value and change in asset value

µ, σA are the firm’s asset value drift rate and volatility

dz is a Wiener process

The probability of default that the market value of the firm’s assets will be less than the

book value of the firm’s liabilities by the time the debt matures:

pt = Pr[V t
A ≤ Xt | V 0

A = VA]

= Pr[lnV t
A ≤ lnXt | V 0

A = VA] (34)

where

pt is the probability of default by time t

V t
A is the market value of the firm’s assets at time t

Xt is the book value of the firm’s liabilities due at time t

The change in the value of the firm’s assets is described by (16), so the value at time

t, V t
A, given that the value at time 0 is VA, is:

lnV t
A = lnVA +

(

µ − σ2
A

2

)

t + σa

√
tε (35)

where

µ is the expected return on the firm’s asset

ε is the random component of the firm’s return
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Equation (18) describes the asset value path shown in figure 3. Combining (17) and (18),

one can write the probability of default as:

pt = Pr

[

lnVA +

(

µ − σ2
A

2

)

t + σA

√
tε ≤ lnXt

]

(36)

or

pt = Pr



−
lnVA

Xt
+

(

µ − σ2

A

2

)

t

σA

√
t

≥ ε



 (37)

Since the Black-Scholes model assumes that ε is normally distributed, one can write

the default probability as:

pt = N



−
lnVA

Xt
+

(

µ − σ2

A

2

)

t

σA

√
t



 (38)

Since the distance-to-default measure is nothing else than the number of standard

deviations that the firm is away from default, one can write this measure with the Black-

Scholes notation as:

[Distance-to-Default] =
lnVA

Xt
+

(

µ − σ2

A

2

)

t

σA

√
t

(39)

Given an example that we compute a distance-to-default from equation (22) that

equals 3.0, the probability of default using equation (21) will then be 13 basis points or

13 per cent. In practice, this distance-to-default measure is adjusted to include several

other factors which play a role in measuring the default probability.

8 Empirical Evidence for Firm Value Based Models

There are several advantages and disadvantages that firm value based models have in

practice. The predictions of firms value based models on the dynamics of share and debt

prices of firms, are discussed briefly in this section. After a few empirical papers are

discussed the general importance of these models will be evaluated.
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While the majority of firm value based models predict a hilly shape for the term

structure of credit spreads, Litterman and Iben (1991) showed that this is only true for

rating classes of firms with bad rating. For other classes, like investment-grade rating

classes, they observed increasing credit spreads rather than hilly ones.

The aim of another empirical work the one by Lardic and Rouzeau (1999), was to

reproduce the risk ranking of obligors using firm value models. The test was designed not

to study the real market value of the firms but to derive the risk level of firms in such a

way that allowed to differentiate between riskier and less risky assets. The results however

showed that the models were not able to reproduce the risk ranking of obligors. Instead,

they were only able to recognize changes in the credit quality of the same obligor.

Longstaff and Schwartz (1995) investigated credit spread movements. With their

tests using Moody’s corporate bond yield averages, they found that there is a negative

correlation between spreads and rates, meaning that firm value based models cannot be

used for hedging purposes.

Concerning the pricing accuracy of firm value based models, Eom et al. (2000) run a

test where they priced corporate bonds using the current share prices and balance sheet

data of firms that issued the bonds. According to this test where the dynamics of the

spreads were not included, it was found that there are pricing errors in all models.

Approximating data on fundamental is an essential strength of firm value based mod-

els, but defining the actual firm value can be really an complex issue. The problems can

quickly become too complex to be handled by empirical tests. Despite all the compli-

cations one has to deal with when using firm value models, a more practical approach

like Moody’s KMV shows that one can obtain acceptable results and a better pricing

performance with some pragmatic approach (see section 7).
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Appendix 1

Table A1

OTC derivatives market1

Triennial Central Bank Survey of Foreign Exchange and Derivatives Market Activity

Amounts outstanding in billions of US dollars

Notional amounts Gross market values

End-June End-June End-June End-June

2001 2004 2001 2004

GRAND TOTAL 99,659 220,058 3.045 6,394

A. Foreign exchange contracts 20,434 31,510 967 1,118

Outright forwards

and forex swaps 13,275 16,764 548 483

Currency swaps 4,302 7,939 339 506

Options 2,824 6,806 80 150

Other 33 7 0 0

B. Interest rate contracts2 75,813 177,432 1,748 4,581

FRAs 7,678 14,399 32 211

Swaps 57,220 137,277 1,531 3,978

Options 10,913 25,756 185 393

Other 2 0 0 0

C. Equity-linked contracts 2,039 5,094 220 321

Forwards and swaps 373 774 55 72

Options 1,666 4,320 164 249

D. Commodity contracts3 674 1,354 88 177

Gold 278 360 25 47

Other 396 995 63 130

Forwards and swaps 235 541 – –

Options 162 453 – –



1 All figures are adjusted for double counting. Notional amounts outstanding have been adjusted by

halving positions vis-a-vis other reporting dealers. Gross market values have been calculated as the sum

of the total gross positive market value of contracts and the absolute value of the gross negative market

value of contracts with non-reporting counterparties.

2 Single currency contracts only.

3 Adjustments for double-counting partly estimated.

4 Gross market values after taking into account legally enforcable bilateral netting agreements.

5 Sources: FlOW TRADEdata, Future industry Association; various futures and options exchanges.
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Appendix 2: The Numerical Solution of the Model

We here briefly describe the dynamic programming algorithm as applied in Grüne and

Semmler (2004) that enables us to numerically solve the dynamic model as proposed in

section 3. The feature of the dynamic programming algorithm is an adaptive discretization

of the state space which leads to high numerical accuracy with moderate use of memory.

Such algorithm is applied to discounted infinite horizon optimal control problems of

the type introduced in section 3. In our model variants we have to numerically compute

V (x) for

V (x) = max
u

∫ ∞

0

e−rf(x, u)dt

s.t. ẋ = g(x, u)

where u represents the control variable and x a vector of state variables.

In the first step, the continuous time optimal control problem has to be replaced by a

first order discrete time approximation given by

Vh(x) = max
j

Jh(x, u), Jh(x, u) = h

∞
∑

i=0

(1 − θh)Uf(xh(i), ui) (A1)

where xu is defined by the discrete dynamics

xh(0) = x, xh(i + 1) = xh(i) + hg(xi, ui) (A2)

and h > 0 is the discretization time step. Note that j = (ji)i∈N0
here denotes a discrete

control sequence.

The optimal value function is the unique solution of a discrete Hamilton-Jacobi-

Bellman equation such as

Vh(x) = max
j

{hf(x, uo) + (1 + θh)Vh(xh(1))} (A3)

where xh(1) denotes the discrete solution corresponding to the control and initial value

x after one time step h. Abbreviating
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Th(Vh)(x) = max
j

{hf(x, uo) + (1 − θh)Vh(xh(1))} (A4)

the second step of the algorithm now approximates the solution on grid Γ covering a

compact subset of the state space, i.e. a compact interval [0, K] in our setup. Denoting

the nodes of Γ by xi, i = 1, ..., P , we are now looking for an approximation V Γ
h satisfying

V Γ
h (X i) = Th(V

Γ
h )(X i) (A5)

for each node xi of the grid, where the value of V Γ
h for points x which are not grid

points (these are needed for the evaluation of Th) is determined by linear interpolation.

We refer to the paper cited above for the description of iterative methods for the solution

of (A5). Note that an approximately optimal control law (in feedback form for the discrete

dynamics) can be obtained from this approximation by taking the value j∗(x) = j for j

realizing the maximum in (A3), where Vh is replaced by V Γ
h . This procedure in particular

allows the numerical computation of approximately optimal trajectories.

In order the distribute the nodes of the grid efficiently, we make use of a posteriori

error estimation. For each cell Cl of the grid Γ we compute

ηl := max
k∈cl

| Th(V
Γ
h )(k) − V Γ

h (k) |

More precisely we approximate this value by evaluating the right hand side in a number

of test points. It can be shown that the error estimators ηl give upper and lower bounds for

the real error (i.e., the difference between Vj and V Γ
h ) and hence serve as an indicator for

a possible local refinement of the grid Γ. It should be noted that this adaptive refinement

of the grid is very effective for computing steep value functions and models with multiple

equilibria, see Grüne and Semmler (2004).
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