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Abstract

Recently research in financial economics has studied consumption
and portfolio decisions, where investment opportunities change over
time. This type of work originates in Merton (1971, 1990) who has
used the Bellman equation to solve the consumption as well as asset
allocation decisions for one state and two choice variables. Campbell
and Viceira (1999, 2002) study consumption and portfolio decisions
in various models with time varying expected returns by assuming
that new investment opportunities are not only arising from chang-
ing interest rates, but also from time varying risk premia. They have
approximated such a dynamic decision model under the assumption
that the consumption-wealth ratio should not vary too much. In this
paper, we study dynamic consumption and portfolio decisions by us-
ing dynamic programming which allows to compute, with sufficient
accuracy, the decision variables and the consumption-wealth ratio at
any point of the state space. The dynamic decision problem is first
analytically and numerically solved for a simple model with constant
returns. Then we solve a model with dynamic consumption and port-
folio decisions when time varying returns are calibrated from the low
frequency components of US time series financial data. The impli-
cations of the change of investor’s risk aversion, the returns and the
time horizon are explored. Finally, we solve a stochastic version of the
model with mean-reverting returns.
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1 Introduction

In recent times seminal work has been undertaken to model dynamic con-
sumption and portfolio decisions. Merton (1971, 1973) has provided a general
intertemporal framework for studying the decision problem of a long term
investor who not only has to decide about consumption and investment but
also of how to allocate funds to assets such of equity, bonds and cash. It
is now increasingly recognized that the static mean-variance framework of
Markowitz needs to be replaced by a dynamic framework that takes into
account new investment opportunities, different risk aversion of investors as
well as their different time horizon.

There has been much effort that attempts to show that under certain
restrictive conditions the dynamic decision problem is the same as for the
static decision problem1, yet now it is well recognized that the more general
dynamic framework starting with Merton (1971, 1973) is preferable. For the
intertemporal model developed by Merton, however, one has difficulties to
obtain closed form solutions. One thus needs numerical solution techniques
to solve for the optimal consumption path and the asset allocation problem.

Campbell and Viceira (1999, 2002) use the assumption of log-normality
of consumption and asset prices with the presumption that the optimal
consumption-wealth ratio can be sufficiently approximated. Using log-linear
expansion of the consumption-wealth ratio around the mean they can show
the link between the myopic static decision problem and the dynamic decision
problem, see Campbell and Viceira (2002, chs. 3 – 5).

They solve a simple model with time varying bond returns but with a
constant equity premium.2 They empirically calibrate the asset allocation
problem for the US postwar period 1952.1 – 1999.4. Their exercise on the
variation of the investor’s risk aversion then shows that investors would in-
crease their holdings of bonds and risk free asset (3 month bonds) as the risk
aversion rises. Thus, long term investors who are risk averse tend to hold
more bonds than equity.

Campbell and Viceira use a VAR approach3 which allows for a time vary-
ing equity premium whereby the expected equity premium is driven by a fore-
casting variable such as the dividend-price ratio. They take up a proposition
by Siegel (1994) that suggests that investing in equity with time varying risk
premium, that, for example, follows a mean reversion process, is less risky
than investing in bonds. Thus, the share of equity holding would be higher
than for bonds in the long run. Siegel (1994:30) states:

1See Samuelson (1963, 1969), Merton (1969), Fama (1970)
2See Campbell and Viceira (2002, ch. 3).
3See Campbell and Viceira (1999, 2002, ch. 4).
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”Although it might appear riskier to hold stocks than bonds,
precisely the opposite is true: the safest long-term investment
has clearly been stocks, not bonds.”

If there is a predictable structure in equity (and bond) returns, and thus
there are time varying expected returns, then clearly the optimal decision,
with respect to consumption and portfolio rules, need to respond to the time
varying expected returns.4

Since we here work with a deterministic model we approximate the time
varying expected asset returns by the low frequency component of the re-
turns.5 On the other hand, recent theoretical research on asset pricing using
loss aversion theory can give a sufficient motivation for such an assumption
on time varying expected asset returns following a low frequency movement.6

A further discussion of those issues is undertaken in appendix 2.
Yet, given such a low frequency movements of the returns, a buy and hold

strategy for portfolio decisions will not be sufficient. Dynamic consumption
decisions as well as a frequent rebalancing of the portfolio is needed in order
to capture low frequency changes in returns and to avoid wealth and welfare
losses.

In general, models with time varying returns are difficult to solve an-
alytically and linearization techniques, as solution methods, for example a
log-linear expansion about the equilibrium consumption-wealth ratio, as un-
dertaken by Campbell and Viceira (2001, chs. 2-4) may be too inaccurate.
This is likely to be the case if the consumption-wealth ratio is too variable.7

We use here a dynamic programming algorithm with flexible grid size that
operates globally and can solve for any point in the state space, simultane-
ously for both the consumption decision as well as for the portfolio weights.
As our more accurate solution technique shows the consumption-wealth ratio

4There is plenty on empirical evidence of time varying expected returns; for early work see
Campbell and Shiller (1988) and Fama and French (1988); for recent surveys, see Brandt
(1999), Campbell and Viceira (1999) and Cochrane (2006).

5We are thinking here less of a univariate forecasting method such as mean reversion
estimates, to obtain time varying returns but rather a multiple factor model to predict
returns to be represented by low frequency movements of returns. As Cochrane (2006)
argues the multivariate methods seem to perform better.

6For details see Barberis et al. (2001) and Grüne and Semmler (2005).
7In order to obtain an approximate solution of the model Campbell and Viceira (2002:51)
presume that the consumption-wealth ratio is ”not too” variable. This procedure seriously
loses accuracy with a parameter of risk aversion, γ > 1. Moreover, Campbell and Viceira
use a model with a constant interest rate. See also Campbell (1993), Campbell and
Viceira (1999) and Campbell and Koo (1997). On the issue of accuracy of using first and
second order approximations, see Grüne and Semmler (2007).
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can greatly vary and our solution remains sufficiently correct.8 As previous
work, we stay here with a power utility function of the investor.9

The remainder of the paper is organized as follows. In section 2 we illus-
trate the dynamic decision problem of consumption and asset allocation for
a model with one asset and a constant return. We employ dynamic program-
ming to study the impact of the variation of risk aversion, asset returns and
time horizon on the dynamic paths of consumption, wealth accumulation and
welfare. In section 3 we use a two asset model with two time varying returns
and employ stylized facts on low frequency movements in asset returns, in
particular for equity and a risk free asset in order to explore the above men-
tioned three issues. We calibrate the model with respect to US financial time
series data. As alternative to taking low frequency movements in returns we
employ in section 4 a model with mean reversion in returns. Here then we
have to do this, of course, in the context of a stochastic version of the model.
In sections 3 and 4 we also use dynamic programming as solution technique
which allows for a more accurate solution for any point in the state space.
Section 5 concludes the paper.

In the appendices a sketch of the dynamic programming algorithm is
given, the data sources are discussed and a stochastic version of a dynamic
portfolio problem illustrated.

2 Dynamic Consumption Decision: One As-

set

We here first illustrate the use of the HJB10 equation for a dynamic con-
sumption choice problem, formulated in continuous time. We introduce a
model with one asset and a constant return. The objective of the investor
will here be to maximize his or her welfare given by a power utility function
over consumption. We want to obtain the consumption choice for any point
in the state space.

8In Grüne and Semmler (2007) the out of steady state dynamics of 2nd order approxi-
mations and dynamic programming are compared. There it is shown that for 2nd order
approximations the decision variables are approximately correct only in the vicinity of
the steady state whereas the approximation of the value function shows bigger errors in
the vicinity of the steady state as well as further away from it. The errors from dynamic
programming are much smaller for both the decision variables and the value function and
do not depend on the distance to the steady state.

9For a model of asset pricing with loss aversion, see Grüne and Semmler (2007).
10See Bellman (1967).
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2.1 The Model

Our model is11 a continuous time version of a dynamic decision problem.
We study a choice problem that contains only one asset which generates a
constant risk-free return. It could be thought of as a bond with a risk-free
constant return. There is no choice between assets to be made, but only
a choice of the optimal consumption path. We presume preferences over
consumption of power utility type

U(Ct) =
C1−γ

t

1 − γ
(1)

There is only one asset, W , with a risk-free constant return r.
We presume that the agent maximizes the intertemporal discounted util-

ity

max
C

∫ ∞

0

e−δtU(Ct)dt. (2)

The wealth dynamic is given by

Ẇ = rW − C (3)

Using a dynamic programming approach (DP) leads to the following for-
mulation

J = max
Ct

∫ ∞

0

e−δtU(Ct)dt (4)

s.t. equ. (3) and W (0) = W0.
The problem is to find the path Ct, t ≥ 0, such that the objective function

(2) obtains its optimal value. J is called the optimal value function, given
the initial condition W (0) = W0.

The HJB-equation for the DP problem (4) is (see Kamien and Schwartz
1997: 260)

−Jt(t,W ) = max
C

{e−δtU(C) + JW (t,W )(rW − C)} (5)

The first order condition for (5) is

e−δtU ′(C) − JW (t,W ) = 0 (6)

Then using (1) for U , we get

11This example was worked out by C.Y. Hsiao. We want to thank her for her effort.
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JW (t,W ) = e−δtC−γ

Thus,

C = (JW eδt)−
1

γ (7)

Replacing C in (5) we obtain

0 = +Jt + e−δt 1

1 − γ

(

JW eδt
)− 1

γ
(1−γ)

+ JW (rW −
(

JW eδt
)− 1

γ

= Jt + JW rW +
1

1 − γ
eδt(1− 1

γ
+1)J

1− 1

γ

W − J
1− 1

γ

W e−
δt
γ

= Jt + JW rW +
γ

1 − γ
(e−

δt
γ J

1− 1

γ

W ) = 0 (8)

Our guess for the value function is

J(t,W ) = R(t)e−δtU(W ) = Re−δt W
1−γ

1 − γ

Then we obtain

Jt = −δJ (9)

JW =
1 − γ

W
J (10)

e−
δt
γ J

γ−1

γ

W = e−
δt
γ

(

Re−δtW−γ
)

γ−1

γ

(11)

= R
γ−1

γ e−δtW 1−γ = (1 − γ)R− 1

γ J

One can check whether the above solution is the solution of our DP prob-
lem, by inserting (9), (10), (12) in (8) we obtain

−δJ + r(1 − γ)J + γR− 1

γ J = (12)

J(rR− 1

γ + r(1 − γ) − δ) = 0.

If R satisfies (·) = 0 in (12) we have

R =
δ

γ
+

r(γ − 1)

γ
.
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We get the solution for our DP problem

J(t,W ) =
( δ

γ
+

r(γ − 1

γ

)−γ

e−δt W
1−γ

1 − γ
. (13)

Using (7) to get the optimal control

C∗ = (JW eδt)−
1

γ = R− 1

γ W.

Thus,

C∗

W
=

δ

γ
+

r(γ − 1)

γ
. (14)

Our results for the steady state show that first, for this example indeed
it holds that the consumption-wealth ratio is constant, second, the ratio
increases in δ (less patience), third, the ratio decreases in r (return effect),
and fourth, consumption propensity is affected by γ (higher risk aversion).
Yet, we do not know how the variables behave out of the steady state.

2.2 Numerical Results

A dynamic programming method, as sketched in the appendix 212, can be
used to study the out of steady state behavior of the variables and to compute
the value function, the path of the control variable, C, the latter in feedback
form from the state variable, W , and the path of the consumption wealth
ratio.

In the numerical study of our model we take an interval Ω = [0, 1]× [0, 2]
with grid points along each dimension. Later for γ ≥ 1 we choose Ω =
[0.0001, 1] × [0.1]. As step size h we take h = 1

12
. As parameters we choose

the constant return r = 0.03, risk aversion, γ = 0.75, and discount rate
δ = 0.06. The control C is also scaled by wealth, so we have c = C

W
, the

control space is Ũ = [0, 0.7], with q = 4001 grid points.
Table 2.1 summarizes the chosen parameters and the gridding strategy.

12See also Grüne (1997) and Grüne and Semmler (2004a)
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Parameters grid

Ω [0, 1] × [0, 1]
(n[0], n[1]) (100,100)

h 1
12

[t, T ] [0, 180]

r 3%
γ 0,75
δ 0.06

Table 2.1: Parameter Values and Grids

Figure 2.1 shows the numerically computed value function, which is con-
cave due to the chosen utility function. As the figures 2.2a,b show the optimal
consumption is a linear function of wealth, and the optimal consumption-
wealth ratio converges toward to constant, with C

W
= 0.07. As observable

in figure 2.2b, the latter ratio is first not a constant but moves toward a
constant.

Figure 2.1: Value function in the interval Ω = [0, 1]
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Figure 2.2a:

Figure 2.2b:
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Figure 2.2a,b: Optimal consumption (upper figure), and consumption
wealth ratio (lower figure), for the interval Ω = [0, 1].

Next, we explore the behavior of consumption and wealth for different
initial level of wealth. With step-size h = 1

12
, we have assumed end time of

T = 180. As figures 3.3 a,b show all trajectories, for different initial level of
wealth, converge to W ∗ = 0 in an asymptotically stable way. In addition,
the smaller the initial wealth, the faster it is depleted.

Figure 2.3a:
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Figure 2.3b:

Figure 2.3a,b: Trajectories for wealth and consumption for different initial
levels of wealth, [t, T ] = [0, 180].

A similar behavior is observable for the optimal consumption: it is lower,
the lower the initial wealth. Moreover, C goes to zero at the same time as
W goes to zero, depending however on initial wealth. Yet, note that in all
of these exercises there are no multiple equilibria or bifurcations observable.
Yet, overall in this simple example we already can observe that the out of
steady level of the consumption-wealth ratio is not a constant.

2.3 Variation of Risk Aversion

As discussed in the introduction another important issue of portfolio theory
is to explore of how optimal consumption and the path of wealth are affected
by the attitude toward risk of the investors, in the power utility function
represented by the parameter of risk aversion, γ. The more risk averse the
investor is the more there is curvature in the utility function i.e. the higher
the γ. Here we presume the same initial wealth for each investor. Table 2.2
captures the increasing risk aversion by the increasing γ.
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Investors Risk Aversion
A γ= 0.1
B γ= 0.5
C γ= 0.75
D γ= 5

Table 2.2: Investors’ risk aversion

If we consider the value function, representing the welfare of the investor,
we can observe in figures 2.4 a,b higher welfare for a higher risk aversion, γ.

Moreover, as figures 2.5a,b show consumption goes down with higher risk
aversion and the consumption-wealth ratio also decreases with higher risk
aversion parameter γ. The latter is also observable from equ. (14) for the
equilibrium solution of the HJB equation.

Figure 2.4a:

Figure 2.4b:
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Figure 2.4a,b: Value function depending on risk aversion.

Figure 2.5a:
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Figure 2.5b:

Figure 2.5a,b: Optimal consumption for γ= 0.1, 0.5, 0.75 and consumption
wealth ratio for discount rate δ= 0.06.

Next, we present the vector field for the different risk aversion parameters,
γ. The vector field analysis in figure 2.6 shows that the trajectories for all γ’s
go to zero and thus wealth, Wt. goes to zero independently of the coefficient
of relative risk aversion, γ.
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Figure 2.6: Vector fields for γ = 0.1, 0.5, 0.75 and 5 and, discount rate
δ = 0.06.
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2.4 Variation of Returns

Next we want to explore the effects of the variation of asset returns on the
value function, consumption choice and the dynamic of wealth. The asset
returns are chosen as described in table 2.2.

Asset Asset Returns

A r = 3%

B r = 5%
C r = 6%
D r = 9%

Table 2.2: Asset Returns

As one can observe from figure 2.7, the value function increases in size
with the size of the asset return.

Figure 2.7: Value function for asset returns r = 3%, 5%, 6% and 9% with
δ = 0.06, γ = 0.75 and δ = 0.05.

Further, figure 2.8 shows that consumption is proportional to wealth.
Figure 2.8a,b demonstrates that the consumption-wealth ratio is first not
a constant but converges toward constant, except for the highest return of
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r = 9%. In fact, the consumption wealth ratio becomes non-stationary for
r > 6%.

Figure 2.8a,b: Optimal consumption and consumption wealth ratio
r = 3%, 5%, 6% and 9% discount rate δ = 0.06.

Figure 2.9: Vectorfield for r ∈ [3, 10]

This result is also confirmed by the next figure. As the vector field of figure
2.9 for the asset returns r ∈ [3, 10] shows, for an r < 6% the wealth shrinks
whereas for an r ≥ 6% the wealth expands. Note that we have undertaken
the exercise here for a constrained state space. What we wanted to explore
here was the bifurcation of the asset dynamics occuring at r = 6%.13

13We do not explore further whether there might be new positive stationary states W > 0.
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2.5 Variation of Time Horizon

Next we explore the effect of the time horizon on the value function, con-
sumption and dynamic of wealth.

Discount Rates

A δ = 0.01

B δ = 0.03
C δ = 0.06
D δ = 1

Table 2.3: Used discount rates, δ.

As one would expect from economic theory, the value function becomes
less steep the higher the discount rate is, see figure 2.10. With large a discount
rate the asset holder prefers consumption in the near future over consumption
further away from the current time period. The agent has thus a preference
to run down his or her wealth with a higher discount rate.

Figure 2.10: Discount Rates 0.01, 0.03, 0.06 and 1.

The fact that consumption another consumption wealth ratio is rising
with the discount rate, is also demonstrated in figures 2.11 a,b,c,d.
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Figure 2.11a,b,c,d: Consumption (a,c) and consumption-wealth ratio (b,d)
for discount rates 0.01, 0.03, 0.06 and 1.

The figure 2.12 shows that there is, as for the asset returns in section 2.4,
also a bifurcation of the wealth dynamics, here for a discount rate of roughly
δ = 0.0035.
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Figure 2.12: Bifurcation of wealth dynamics, region [0, 5].

Overall, in our model with one asset and a constant return we can mostly
observe results that we can expect from theory. Yet, for all parameter con-
stellations the consumption-wealth ratio is not a constant outside the steady
state. First, it is far away from its steady state ratio, but then converges
toward some constant (except in some cases where we see, due to some bi-
furcation behavior, a divergent behavior).
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3 Dynamic Consumption and Portfolio Deci-

sions: Two Assets and Time Varying Re-

turns

Next we are considering two assets. Both of them are characterized by pre-
dictable returns that can be represented by low frequency movements in their
returns. Those asset returns may be viewed as time varying mean returns.
Here, we concentrate on dynamic portfolio decisions for a deterministic ver-
sion of the model. Therefore, our low frequency components take the place
of time varying expected returns.14 We want to undertake a study of dy-
namic consumption and portfolio decisions for the case when the returns
follow such a low frequency movement. For our propose it is sufficient to
presume that actual financial time series data can be decomposed into two
different time scales: a low and high frequency movement. The appendix
2 of the paper presents empirical results of stock returns, interest rates and
bond returns that are decomposed into a high and low frequency movements,
using an appropriate filter. There, we also briefly discuss to what an extent
low frequency components of asset returns can successfully be employed in
forecasting returns.

By nature consumption and portfolio decisions are not decisions on high
frequency data, but are rather based on low frequency movements of the
data. The financial market practioners, for example, dynamically rebalance
portfolios by looking at low frequency movements in the financial data. That
is what we attempt to model in our next model variant, whereby we simply
presume that the filtered process will generate a low frequency component
of the returns. In the model below, we approximate this by an appropriate
sine-wave function.

3.1 The Model with Time Varying Returns

Let us introduce a model with two assets and two returns whereby the returns
follow a deterministic low frequency movement. We presume here that thus
can be stylized as a sine wave function depending on time. Empirical evidence
that time series data on returns follow a sign wave function is provided in
appendix 2. Moreover, we also assume that there might be a phase shift
as concerning the two wave functions used here. We concentrate on two
returns with low frequency movement, representing the equity return and
another one the short-term interest rate. The empirical evidence, reported

14The latter is what one would have in a stochastic version of the model.
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in appendix 2, also seems to suggest such a behavior of those two returns.
Our dynamic portfolio decision problem can be stated as

max
{c∗,α}

∫ ∞

0

e−δU(Ct)dt (26)

s.t. Ẇ (t) = αtRe,tWt + (1 − αt) Rf,tWt − Ct (27)

ẋ(t) = 1. (28)

Hereby we presume that the mean of the returns for the short term in-
terest rate, Rf,t and the equity return, Re,t are time dependent and can be
formulated as

Rf,t(xt) = α1 sin(α3xt) (29)

Re,t(xt) = α2 sin(α4xt) + α5 (30)

In the following α3 is presumed to be a multiple of α4, or the reverse. For
α4 = k · α3 and xt = b2 then holds

α3xt = α3b2 = j12π

α4xt = α4b2 = j22π

and thereby either j1 = 1, j2 = k or j2 = 1, j1 = k. In case j1 = 1 holds,
we have

b2 =
2π

α3

On the other hand, if j2 = 1 holds, it follows

b2 =
2π

α4
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Parameter Parameter Values

Ω [0, 350] × [0, 2π
α3

] and [0, 350] × [0, 2π
α4

]

(n[0], n[1]) (350, 30)
(W [0],W [1]) (W1.x2) ∈ Ω

h 1
12

[t, T ] [0, 90]
N0 8
N1 1

γ 0.,75
δ 0.05
α1 0.1
α2 0.2
α3 0.2
α4 0.2
α5 0.005

Table 3.1. Parameter values for the model.

As in the previous section, it is worth exploring the role of the degree of
risk aversion of the investor, γ, the variation of returns, Re,t and Rf,t, and the
time horizon an investor has when making on investment and consumption
decisions. We will study the effects on the value function, the paths of
consumption and the consumption-wealth ratio, the vector fields and the
optimal trajectories. Before, however, those variants are explored we study
a benchmark case.

3.2 Benchmark Case

Let us first study again the case where we keep the parameters fixed but
explore the role of initial conditions. Note that in the following x2 = t and
x1 = W . Thus we can observe a more wave like movement of consumption
and the consumption-wealth ratio, the higher the initial wealth , W . In other
words, the former two are depend on the size of the initial asset, see figures
3.1 and 3.2.
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Figure 3.1: Value function for γ = 0.75 und δ = 0.05,W

Figure 3.2: Optimal consumption (left) and consumption wealth ratio
(right), γ = 0.75 and δ = 0.05.

In figure 3.3 the vector field shows the dynamics of the consumption
portfolio choice: for low wealth and a small number of time steps, asset
value rises, up to 340 and then falls.
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Figure 3.3: Vector field and trajectories for W0 = (1, 0) for γ = 0.75.

Figure 3.4 shows the dependence of the movement of wealth, consumption
and the portfolio weight, α, on time. Hereby the upper line is wealth, W , then
follows consumption, and the (jumping) straight line is α. We can observe, if
there is a positive equity premium, α will be positive, otherwise α is negative.
Note that we have treated here the decision maker to be constrained. We
presume −3 ≤ α ≤ 4.5,

Figure 3.4: Optimal trajectory for W0 = (1, 0) for γ = 0.75.
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3.3 Variation of Risk Aversion

One of the important issues in dynamic portfolio decisions is how consump-
tion decisions and portfolio weights are affected by the risk aversion of the
investor. In our power utility function which, we have used here, investors
with a lower (higher) risk aversion are characterized by a lower (higher) γ.
Note here again x2 = t and x1 = W . In the figures 3.5 we can observe that
the value function is smaller but also becomes flatter as risk aversion rises.

Figure 3.5: Value function for γ : 0.1 (upper left), γ = 1 (upper right)
γ = 2 (below)
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The next figure, figure 3.6, shows that the larger the risk aversion, the
higher is the optimal consumption, see lower panel of figure 3.6, with γ = 2
Yet, it also fluctuates more, see lower panel with γ = 2..

Figure 3.6: Consumption-wealth ratio for γ : 0.1, (upper left) γ = 1
(upper right) γ = 2 (below)
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Moreover, in figure 3.7 we can observe, the lower the risk aversion, the
more rapid the asset is built up, see right figures from above to below.
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Figure 3.7: Vector fields (left) for γ : 0.1, 1 and 2 (from above to below) and
corresponding trajectories
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3.4 Variation of Returns

Next, we explore the role of the fluctuation in the magnitude of the returns
for dynamic asset allocation decisions. The movement of the asset returns,
Re,t and Rf,t are given by the parameters presented in table 3.2. There three
variants are proposed.

Table 3.2: Parameters for the returns, Re,t, Rf,t

Benchmark Variant 1 Variant 2 Variant 3

α1 0.1 0.1 0.1 0.1
α2 0.2 0.2 0.2 0.2
α3 0.2 0.4 0.8 0.2
α4 0.2 0.2 0.2 0.4
α5 0.005 0.005 0.005 0.005
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Figure 3.8 shows that the more there are waves in the returns, the more
there are waves in the value function.

Figure 3.8: Value function for variation of returns, Re,t, Rf,t (see table
3.2). Variant 1 (upper left), variant 2 (upper right), variant 3 (below).
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This is also shown in the figure 3.9 for the swings in wealth accumulation,
consumption and the portfolio weight, α.
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Figure 3.9: Vector fields and optimal trajectories for variation in returns

Re,t and Rf,t. Variant 1 (upper panel), variant 2 (middle panel), variant 3
(lower panel)
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3.5 Variation of Time Horizon

Finally, we want to explore the role of the time horizon for dynamic asset
allocation decisions. Here we vary the discount rate whereby a low (high)
discount rate, δ, represents a long (short) time horizon. We take, δ = 0.1, δ =
1 and δ = 11.

As one can observe, the wave-like behavior of the value function is re-
duced, the shorter the time horizon is for the investor. Thus, dynamic opti-
mization over a longer time horizon, will make the fluctuation of the value
function stronger. Moreover, as one would expect from theory, the size of
the welfare shrinks with a higher discount rate, δ.

Figure 3.10: Value function for discount rates: δ : 0.1 (upper left), 1 (upper

right), 2 (lower left) and 11 (lower right).
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The panels in figure 3.11 show that the fluctuation of consumption and
the consumption-wealth ratio shrink as the time horizon shrinks, i.e. for
δ ≥ 1 there are no waves any more.
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Figure 3.11: Consumption (left) and consumption-wealth ratio (right) for

discount rates δ: 0.1 (upper panel); 0.5 (middle panel); 1 (lower panel).
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Figure 3.12 shows that for investment strategies over a short horizon (high
δ) the paths for the wealth and consumption converges to zero.
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Figure 3.12: Vector fields (left) and trajectories (right) for discount rates δ:

0.1 (upper panel), 0.5 (middle panel), 1 (lower panel).

Overall, in this section we have studied the time variation in returns, tak-
ing on a wave-like mean process. As we have shown, they create wave-like
fluctuations in welfare, consumption and portfolio weights. We also could
demonstrate the impact of risk aversion, the amplitude of returns and the
time horizon on welfare, wealth, consumption decisions and the portfolio
weights. In particular, we could observe for the time horizon it holds that
welfare and the fluctuation in welfare is larger, the longer the time horizon is
(the lower δ). On the other hand, as one would expect from theory, wealth is
reduced faster as the time horizon shrinks (the lower δ). Moreover, as shown
in all our exercises, the consumption-wealth ratio is not a constant but ex-
hibits considerable out of steady state fluctuations. The sizable fluctuations
of the consumption-wealth ratio is just a result of the optimal consumption
and portfolio choice which are, through our dynamic programming algorithm,
computed at any point of the state space.
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4 A Stochastic Model with Mean Reversion

in Returns

Next, we want to study a model with mean reversion in returns. We want to
present an example of a stochastic consumption and portfolio choice model
which has also two choice variables and two state variables. The basics of the
model are analytically treated in appendix 3. Yet, the here presented slightly
extended version needs to be solved numerically. We use, as stochastic pro-
cesses, a process for wealth and a mean reverting interest rate15 process and
explore the consumption and the portfolio choice at each point of the state
space. We hereby can then again obtain the consumption-wealth ratio. To
avoid a third state equation we here presume a constant expected equity
premium as in Campbell and Viceira (2002, ch. 3).

The model can be written for power utility as16

max
α,C

∫ ∞

0

e−δt C1−γ

1 − γ
dt (15)

s.t.

dW = {[αt(rt + xt) + (1 − αt)rt]Wt − Ct}dt + σwdzt (16)

drt = κ(θ − rt)dt + σrdzt (17)

Denote, Wt, total wealth, rt, the short term interest rate, αt, the fraction
of wealth held as equity, x, an expected equity premium which we assume
to be a constant, yet with a stochastic shock imposed on it.17 θ is the mean
interest rate and dzt again, the increment in Brownian motion.

Following Munk et al. (2004) we assume stylized facts of the U.S. asset
market such as x = 0.0648, σw = 0.0069, σr = 0.0195, θ = 0.00369, κ =
0.0395. The first and second moment reported here are annualized.

For the decision variable αt we assume −2 ≤ α ≤ 2 and for Ct we presume
bounds such as 0 < Ct < 40. The use a stochastic dynamic programming

15Models with mean reversion in one variable, for example, of interest rates and equity
returns, are now frequently used in the portfolio modelling literature. Yet, we want
to note that their empirical evidence is not as strong as multivariate factor models in
forecasting returns, see Cochrane (2006).

16See Munk et al. (2004), see also Wachter (2002)
17This is similar to the assumption of Campbell and Viceira (2002, ch. 2) where they

postulate ”a constant risk premia and where the expected portfolio return is due entirely
to variation in the riskless interest rate”. Campbell and Viceira (2002:55). In our case
we have, however, an additional stochastic component for the portfolio return.
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algorithm that provides us with the following result for the dynamic decision
paths for αt and Ct, the wealth dynamics and the consumption-wealth ratio
at each point of the state space W − r. Figures 4.1-4.3 show the results of
the numerical study using a stochastic variant of a dynamic programming
algorithm.18
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Figure 4.1: Value Function for the Wealth Dynamics

18See Grüne and Semmler (2004).
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Figure 4.2: Vector field for the Wealth Dynamics

First, as observable in figure 4.1 and 4.2 there are two domains of at-
traction for the wealth dynamics. For low wealth (and not too high interest
rates) wealth is contracting and it will finally converges to zero, as will con-
sumption. For larger wealth and higher interest rates, given the bounded
consumption 0 < Ct < 40, wealth will persistently increase. This is visible
from the value function, figure 4.1, and the vector field, figure 4.2. As the fig-
ures 4.1 and 4.2 suggest the two domains of attractions should be separated
by a line. In some recent literature (see Grüne and Semmler, 2004) this line
has been called the Skiba-line (shown in figure 4.2 by the line S − S). Such
a bifurcation can also emerge in a two dimensional control problem similarly
of what we have observed in section 2 for the one-dimensional problem.
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Figure 4.3: The consumption-wealth ratio (depending on the state space
W − r)

Second, we want to note, as our numerical results show, that the consumption-
wealth ratio strongly varies in the state space W − r. In particular, as figure
4.3 shows, at different levels of wealth, W , the consumption-wealth ratio
shows large differences. Since in our model of equs. (15)-(17) the expected
return on the risky asset is just an increasing function of the risk free rate,
r, the model does not seem to imply that the consumption-wealth ratio is a
good predictor of future returns, as for example Lettau and Ludvigson (2001)
state.19

19This at least holds if consumption, as in our model, is bounded from above. On the other
hand, as shown in sections 2 and 3 the discount rate, risk aversion and time horizon are
important as well for the consumption-wealth ratio.
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5 Conclusions

In this paper we have followed up some recent research in dynamic con-
sumption and portfolio choice theory. We first start with a model with a
constant return and then extend it where consumption and portfolio deci-
sions are made when returns are time varying. In section 3 of the paper we
have chosen a framework where our decision maker can choose the optimal
consumption path without constraint, but the choice of portfolio weights was
constrained within bounds. Since we have not introduced transaction costs
for changing portfolio weights, our constraints for the portfolio weights may
be a reasonable procedure to avoid unreasonably large positive and negative
weights.

We could show that when there are low frequency movements in the
returns, and thus time varying investment opportunities, a buy and hold
strategy is not reasonable, but rebalancing of the portfolio is needed in order
to increase wealth and welfare. Readjustments of consumption and rebal-
ancing of the portfolio should, as we have argued, follow the low frequency
component of the returns from the financial assets.

In contrast to Campbell and Viceira (1999, 2002, chs. 2-4) in all of
our model variants the consumption-wealth ratio is not approximated but
accurately computed at each point in the state space. In Campbell and
Viceira (1999, 2002) the consumption-wealth ratio is approximated, and their
solution becomes less accurate as the variability of the ratio increases (see
Campbell and Viceira 1999:442). Yet, as we have shown, the optimal solution
of the consumption-wealth ratio can greatly vary across the state space if the
optimal consumption and portfolio decisions are correctly computed20 which
is not a problem for our procedure since it gives us global solutions with
sufficient accuracy.

We also follow up the research on mean reversion processes. We study
a stochastic case with two decision variables (consumption and portfolio
weights) and two state variables, with wealth and interest rate as state vari-
ables where the interest rate follows a mean reverting process. Here, we pre-
sume consumption to be bounded (in particular to have an upper bound).
In this model the expected equity premium is a constant and the expected
equity return moves with the interest rate.21 Here too, we could demonstrate
that the consumption-wealth ratio can greatly vary. We also could observe
again, as in the model of section 2, the possibility of a bifurcation in the
dynamics. Future research should address the issue of dynamic consumption

20The approximate solution of Campbell and Viceira (1999) holds only for a low parameter
of risk aversion, and for a constant risk-free rate.

21Note that this model version in its set up is similar to Campbell and Viceira (1999).
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and portfolio decisions with time varying asset returns more extensively in
the context of a stochastic model.22

22For a further use of dynamic programming to solve for dynamic consumption and port-
folio decisions in a stochastic framework, see Chiarella et al. (2007).
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Appendix 1: Sketch of the Dynamic Program-

ming Algorithm

We here briefly describe the dynamic programming algorithm23 as applied in
Grüne and Semmler (2004) that enables us to numerically solve the dynamic
model as proposed in section 4. The feature of the dynamic programming
algorithm is an adaptive discretization of the state space which leads to high
numerical accuracy with moderate use of memory.

Such algorithm is applied to discounted infinite horizon optimal control
problems of the type introduced in section 4. In our model variants we have
to numerically compute V (x) for

V (x) = max
u

∫ ∞

0

e−δf(x, u)dt

s.t. ẋ = g(x, u)

where u represents the control variable and x a vector of state variables.
In the first step, the continuous time optimal control problem has to be

replaced by a first order discrete time approximation given by

Vh(x) = max
j

Jh(x, u), Jh(x, u) = h
∞

∑

i=0

(1 − θh)Uf(xh(i), ui) (A1)

where xu is defined by the discrete dynamics

xh(0) = x, xh(i + 1) = xh(i) + hg(xi, ui) (A2)

and h > 0 is the discretization time step. Note that j = (ji)i∈N0
here

denotes a discrete control sequence.
The optimal value function is the unique solution of a discrete Hamilton-

Jacobi-Bellman equation such as

Vh(x) = max
j

{hf(x, uo) + (1 + θh)Vh(xh(1))} (A3)

where xh(1) denotes the discrete solution corresponding to the control
and initial value x after one time step h. Abbreviating

Th(Vh)(x) = max
j

{hf(x, uo) + (1 − θh)Vh(xh(1))} (A4)

23This algorithm builds on Bellman (1967) and Bardi et al. (1997).
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the second step of the algorithm now approximates the solution on grid
Γ covering a compact subset of the state space, i.e. a compact interval [0, K]
in our setup. Denoting the nodes of Γ by xi, i = 1, ..., P , we are now looking
for an approximation V Γ

h satisfying

V Γ
h (X i) = Th(V

Γ
h )(X i) (A5)

for each node xi of the grid, where the value of V Γ
h for points x which are

not grid points (these are needed for the evaluation of Th) is determined by
linear interpolation. We refer to the paper cited above for the description of
iterative methods for the solution of (A5). Note that an approximately opti-
mal control law (in feedback form for the discrete dynamics) can be obtained
from this approximation by taking the value j∗(x) = j for j realizing the
maximum in (A3), where Vh is replaced by V Γ

h . This procedure in particular
allows the numerical computation of approximately optimal trajectories.

In order the distribute the nodes of the grid efficiently, we make use of a
posteriori error estimation. For each cell Cl of the grid Γ we compute

ηl := max
k∈cl

| Th(V
Γ
h )(k) − V Γ

h (k) |

More precisely we approximate this value by evaluating the right hand
side in a number of test points. It can be shown that the error estimators ηl

give upper and lower bounds for the real error (i.e., the difference between
Vj and V Γ

h ) and hence serve as an indicator for a possible local refinement
of the grid Γ. It should be noted that this adaptive refinement of the grid is
very effective for computing steep value functions and models with multiple
equilibria, see Grüne and Semmler (2004).

Appendix 2: Low Frequency Components of

Returns

We want to note that much work has been undertaken to find appropri-
ate forecasting variables for time varying asset returns. The most popu-
lar ones since the 1980s, are the dividend-price ratio, dividend yield or the
consumption-wealth ratio24 which were much celebrated to have good fore-
casting power for time varying asset returns.25 In other recent literature

24For the former, see Campbell and Viceira (2002) and for the latter, see Lettau and
Ludvigson (2001).

25See the literature cited in footnote 4.
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univariate mean reversion processes where used to predict time varying ex-
pected returns. See Campbell and Viceira (2002), Munk et al. (2004) and
Wachter (2002) for their justification and use in dynamic portfolio decision
models, and see Cochrane (2006) for a critical view on the use of univariate
mean reversion processes.

Other empirical literature point to the superior performance of the use
of moving average returns, i.e., sample mean, as forecasting variable in par-
ticular for out-of-sample predictions. The moving average technique, which
captures the low frequency component of asset returns, is also often used
by market practioners for out-of-sample forecast with quite superior perfor-
mance as compared to other forecasting methods.26 Indeed, as shown in
Lettau and Nieuwerburgh (2006) many of the financial ratios exhibit a shift-
ing mean, resulting in uncorrect or spurious regressions. We thus here simply
use time varying mean returns and represent them by low frequency com-
ponents of actual asset returns. Those are employed in the model of section
3.

The long swings that are visible in the low frequency components of asset
returns, see figures A1-A3 below, are also supported by recent theoretical
research on asset pricing using loss aversion theory. In Barberis et al. (2001)
and Grüne and Semmler (2005) it is shown that including asset gains and
losses in investors’ preferences gives rise to low frequency movements in asset
returns and to mean reverting processes. An econometric study that uses a
regime change model gives empirical support for such an approach, see Zhang
and Semmler (2006).

The data on the returns, for the time period 1929-2000, are from Bekaert
et al. (2006). The subsequent appendix presents filtered time series data
using the HP filter27 on equity return (figure A1), short term interest rate
(figure A2) and bond return (figure A3).

26Goyal and Welch for example state ”Neither the dividend-yield nor the dividend price
ratio had both in-sample and out-of-sample performance that should one lead to believe
that it could out-perform the simple prevailing equity premium average in an economi-
cally and statistically significant manner” (Goyal and Welch, 2003: 653).

27We use here the HP filter, since we would like to filter out low frequency components
of asset returns at business cycle frequency. The use of the BP-filter gave us similar
results. Rick Ashley has guided us to several filters of different types, that seem to be
applicable for our purpose, see Ashley’s web-site at Virginia Tech.
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Figure A1: Actual and low frequency component of real equity return
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Figure A2: Actual and low frequency component of short-term real interest
rate
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Figure A3: Actual and low frequency component of real bond return

Appendix 3: Stochastic Version of the Model

We briefly consider here dynamic portfolio decisions in stochastic environ-
ment. We study a model with two assets and two returns. It represents the
analytical form of the stochastic version solved in section 4. Yet, here we
work with one asset, delivering a risk-free rate, with a constant return, and
the other asset, a risky asset, generating a risky return. This can be reduced
to a dynamic decision problem with one state and one control variable.28

28Kamien and Schwartz (2001, sect. 22)
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The optimal expected return from the dynamic decision can be expressed in
current value terms, in general form as

V (x0) = max E

∫ ∞

0

e−δtf(x, u)dt (18)

s.t. dx = g(x, u)dt + σ(x, u)dz, x(t0) = x0, (19)

This represents a stochastic decision problem with x as state variable, u
as control variable and a Brownian motion in equ. (19). From (18) and (19)
one can obtain a HJB-equation in stochastic form

δV (x) = max
u

(f(x, u) + V ′(x)g(x, u) + (1/2)σ2(x, u)V ′′(x)) (20)

Let us turn the above general form into a simple example, see Merton
(1973, 1990). The example, we want to study, has two controls and one state
variable representing a model of allocating wealth among current consump-
tion, investment in a risk-free asset, and investment in a risky asset. We here
too exclude transaction costs. Agents are not restricted in choosing portfolio
weights. Denote W , total wealth, α, fraction of wealth in the risky asset,
Rf , return on the risk-free asset, Re, expected return on the risky asset,
Re > Rf , σ2, variance per unit time of the return on the risky asset, and C,
consumption. Presume preferences U(C), Cb/b with b = 1 − γ.

The change of wealth can be denoted by

dW = [(1 − α)RfW + αReW − C]dt + αWσdz. (21)

There is a deterministic fraction of wealth which is determined by the
return on the funds in the risk-free asset, plus the expected return on the
funds in the risky asset, minus consumption.

The stochastic term at the end of equ. (18) denotes the increment of a
Brwonian motion, representing the stochastic part of the risky return. The
aim of the holder of wealth is the maximization of an expected discounted
utility flow. We again assume a model with an infinite horizon:

max
C,α

E

∫ ∞

0

(e−δtCb/b)dt (22)

s.t. (21) and W (0) = W0.

This infinite horizon decision problem has indeed one state variable W and
two control variables C and α. The model of sect. 2.1 represents a problem
with just one state variable and one choice variable. Using the specifications
of (21) and (22), (20) we can write the HJB-equation in stochastic form.
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δV (W ) = max
C,α

(Cb/b+V ′(W )[(1−α)RfW+αReW−C]+(1/2)α2W 2σ2V ′′(W )).

(23)
Some calculus29 provides us with the maximizing values of C and α for

the given parameters of the problem, the state variable W , and the unknown
function V :

C = [V ′(W )]b/(b−1), α = V ′(W )(Rf − Re)/σ
2WV ′′(W ). (24)

It is assumed that the optimal solution involves investment in both assets
for all t. Using (24) and (23) and simplifying we obtain

δV (W ) = (V ′)b/b−1(1 − b)/b + RfWV ′ − (Rf − Re)
2(V ′)2/2σ2V ′′. (25)

One can try a solution to this nonlinear second order differential equation
of the form

V (W ) = AW b, (26)

Hereby A is a positive parameter to be determined. One can compute
the required derivatives of (26) and use the results in (25). With some
simplification, one obtains

Ab = {[δ − Rfb − (Rf − Re)
2b/2σ2(1 − b)]/(1 − b)}b−1. (27)

Thus, the optimal current value function is (26), with A as specified in
(27). In order to find the optimal choice C, use equs. (26) and (27) in equ.
(24):

C = W (Ab)1/(b−1), α = (Re − Rf )/(1 − b)σ2. (28)

This means that the household chooses a constant consumption wealth
ratio at each instant of time only if the equity premium remains a constant.
The optimal choice depends on the parameters. It varies with the discount
rate and with the variance of the risky asset. Similarly to a static case, the
optimal wealth chosen for the two kinds of assets is a constant, independent of
total wealth, as long as the equity premium and variance σ2 remain constant.
Yet, the portion devoted to the risky asset varies with the equity premium.
It is related to the variance of that return and the risk aversion parameter,
γ, since b = 1 − γ. The above model is usually used for dynamic portfolio
choice problem with stochastic equity return and constant risk-free interest
rate. Although it has two control variables it has only one state variable.

29For details, see Kamien and Schwartz (2001, sect. 22)
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[15] Grüne, L. and W. Semmler (2004), ”Using Dynamic Programming with
Adaptive Grid Scheme for Optimal Control Problems inEconomics”.
Journal of Economic Dynamics and Control, vol. 28: 2427-2456.
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