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Abstract

An integrated monetary growth model of Keynes–Metzler–Goodwin type
with a portfolio approach to its three asset markets (money, bonds, equities)
is introduced to study the interaction between the real and the financial part
of market economies. Beneath expectations and governmental behavior,
profits and their implied dividend payments influence the behavior of asset
markets, which determine interest rate and Tobin’s q by means of a general
equilibrium approach. Tobin’s q drives firms’ investment in business fixed
capital and performs the link from financial markets to good markets. We
study the model in intensive form, the comparative statics of its asset market
module, its unique interior steady state solution and its stability, the latter
by way of an 8D dynamical system and its various subsystems, proving local
stability assertions and the existence of so called Hopf–bifurcation that give
rise to limit cycles in the 8D state space.
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1 Introduction

The goal of this paper is to present a Keynesian macrodynamic model of a growing
monetary economy, that builds on the analysis of the working KMG model1 of

Chiarella and Flaschel (2000a) and Chiarella, Flaschel, Groh, and Semmler (2000)
and that explains the real–financial interaction in Keynesian dynamics in a more

satisfactory way than in the working KMG model from which it has been derived.
In this latter model type, asset markets influence the real dynamics only in a very
traditional way, by means of an LM curve that gave rise to a stable relationship

between the nominal rate of interest, the output capital ratio and real balances
per unit of capital. Furthermore neither bond dynamics nor the evolution of the

stock of equities could there influence the real part of the economy due to the
lack of wealth and interest income effects on aggregate demand. The present

paper will now introduce a portfolio theory of asset market behavior in the place
of a single LM curve and will thereby improve the representation of asset market

dynamics considerably, though wealth and interest income effects will still be
ignored. Nevertheless bond and equity stock dynamics now feeds back into the

real part of the economy, yet still by a single route namely through Tobin’s
average q as one important argument in the investment behavior of firms.

Our KMG approach to macrodynamics investigates the interaction of all im-

portant markets of the macroeconomy (for labor, goods, money, bonds and equi-
ties) still in a non stochastic environment without explicit utility maximization of

households and profit maximization of firms.2 Households behavioral equations
are in the tradition of the Kaldorian approach (Kaldor 1940) with differentiated

saving habits and are not derived by optimizing a hypothetical utility function
of workers or capitalists. On the one hand, this method reflects our skepticism

about the relevance of utility maximization for aggregate behavioral relationships
(in an economy with labor and goods market disequilibrium) and on the other

hand it allows us to leave the model sufficiently simple in order to concentrate
on the description and analysis of asset market dynamics.3 Combining a full dis-
equilibrium approach in the real part of the economy with a general equilibrium

approach in the financial part gives rise to various interesting considerations of
the dynamics which then drives the economy. The model therefore presents an

integrated approach to macrodynamics that accounts for all budget constraints
of all types of agents in the economy, exhibits a uniquely determined steady

state solution surrounded by a variety of interesting propagation or the feedback
mechanisms existing in the economy. It is therefore a consistently formulated

1Keynes-Metzler-Goodwin model. This model type makes use of labor and goods market
disequilibrium adjustment processes in the tradition of Goodwin and Metzler, respectively. It
therefore considers explicitly the interaction of income distribution with economic growth, the in-
teraction of disappointed sales expectations of firms and resulting unintended inventory changes
and a simple LM theory of the money market which allows the investigation of Keynes– as well
as Mundell–effects of wage and price inflation or deflation.

2See however Chiarella, Flaschel, Groh, Köper, and Semmler (1999) for improvements of this
approach into this latter direction.

3See again Chiarella, Flaschel, Groh, Köper, and Semmler (1999) for improvements of this
approach with respect to workers consumption and savings behavior.
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integrated dynamical model on the aggregate level which exhibits a rich dynamic

structure with a type of high order dynamics that has not been investigated from
the theoretical perspective in the macroeconomic literature.

As already stated, the core of the model is given by a Keynes–Metzler–
Goodwin (KMG) approach to integrated macrodynamics as developed in

Chiarella and Flaschel (2000a) and further analyzed in Chiarella, Flaschel, Groh,
and Semmler (2000).4 Foundations to such integrated macrodynamical model
building were already laid in Flaschel, Franke, and Semmler (1997). Further work

is in preparation that extends the KMG approach to macrodynamics towards the
treatment of small or interacting open economies, see Chiarella, Flaschel, Franke,

and Lux (2000) and towards a theoretical as well as numerical analysis of mod-
ern macroeconometric model building in Chiarella, Flaschel, and Semmler (2000).

The level of macrodynamic modeling that is reached in the present paper already
goes beyond the work just cited and represents part of the basis of future work

with the topic ‘Firms, Finance, and Economic Policy’ that will continue the above
cited approaches towards a deeper treatment of firms behavior, the influence of

financial markets on the real economy and the treatment of fiscal and monetary
policy rules that may help to improve the dynamics that typically characterizes
models of KMG growth.

The main properties of this approach should be briefly presented. The econ-
omy consists of various private agents: workers, asset holders and firms. The

public sector consists of the government and the central bank. Concerning the
good market, there exists a production good exclusively produced by firms, that

can be, on the one hand consumed by the workers, asset holders or the gov-
ernment, and on the other hand invested as business fixed capital or used for

inventory investment by firms. Firms do not have perfect foresight with respect
to the demand for goods and do not adjust their output instantaneously towards

the level of aggregate demand. Hence, in order to be able to satisfy actual and
future demands, they have to hold stocks of inventories of produced goods. The
adjustment policy for reaching a desired stock of inventories is modeled in a

Metzlerian way (Metzler 1941).
The labor market is assumed to take place under a Keynesian regime in the

sense, that any demand can be satisfied by an always positive excess supply
of labor at the actual wage rate. Goodwin’s contribution to the model is the

dynamic interaction of employment and the real wage rate (Goodwin 1969).
We want to model a monetary economy with various financial assets in order

to investigate their interaction with the real parts, namely good market and
labor market. There are various assets: money and short term bonds issued by

the government, and equities issued by firms in order to finance investments. All
this financial assets are exclusively held by the asset holders.

In section 2 we develop the extensive form of the model and give a detailed

explanation of its structure. In section 3 the intensive form of the dynamics is
derived in order to allow for steady state considerations on the basis of eight

4See also Chiarella and Flaschel (1996), Chiarella and Flaschel (1998) and Chiarella and
Flaschel (1999), Chiarella and Flaschel (2000b), the latter two for the treatment of open
economies in the KMG framework.
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autonomous laws of motion that, as will be shown, indeed exhibit a unique point

of rest or steady state. The stability of the full 8D dynamical system is analyzed
in section 4 by way of a sequence of subsystems of increasing dimension. In two

further sections we extend the model towards a treatment of cash balances held
(by firms) for transaction purposes and towards a dividend policy of firms that

allow for retained earnings of firms. Finally conclusions are drawn in section
??. Two appendices provide detailed mathematical proofs for the propositions of
previous sections and the notation that is employed in the paper.

2 A portfolio approach to KMG growth theory

In this section we provide the extensive or structural form of our growth model
of KMG type, now exhibiting a portfolio equilibrium block in the place of the

LM theory of the short–run rate of interest and the dynamic adjustment equa-
tions for the prices of the other assets of Chiarella, Flaschel, Groh, and Semmler

(2000). We split the model into appropriate modules which primarily concern
the sectors of the economy, namely households, firms, and the government (fiscal

and monetary authority), but also represent the wage–price–interaction and the
asset markets.

2.1 Households

As discussed in the introduction we disaggregate the sector of households in
worker households and asset holder households. We begin with the description

of workers’ behavior:

Workers’ households

ω = w/p, (1)

Cw = (1− τw)ωL
d, (2)

Sw = 0, (3)

L̂ = n = const. (4)

Equation (1) gives the definition of the real wage ω before taxation, where w
denotes the nominal wage and p the actual price level. We operate in a Keynesian

framework with sluggish wage and price adjustment processes, hence we take the
real wage to be given exogenously at each moment in time. Further we follow the

Keynesian framework by assuming that the labor demand of firms can always be
satisfied out of the given labor supply, i.e., we do not allow for regime switches as
they are discussed in Chiarella, Flaschel, Groh, and Semmler (2000, ch. 5). Then,

according to (2), real income of workers equals the product of real wages times
labor demand, which net of taxes τwωL

d, equals workers’ consumption, since we

do not allow for savings of the workers as postulated in (3).5 No savings implies,
that wealth of workers is zero at every point in time. This in particular means

5See Chiarella, Flaschel, Groh, and Semmler (2000) for the inclusion of workers’ savings into
a KMG framework.
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that the workers do not hold any money and that they consume instantaneously

their disposable income.6 As is standard in theories of economic growth, we
finally assume in equation (4) a constant growth rate n of the labor force L based

on the assumption that labor is supplied inelastically at each moment in time.
The parameter n can be easily reinterpreted to be the growth rate of the working

population plus the growth rate of labor augmenting technical progress.
The modeling of the asset holders income, consumption and wealth is de-

scribed by the following set of equations:

Asset holders’ households

ρe = (Y e − δK − ωLd)/K (5)

Cc = (1− sc)[ρ
eK + rB/p− Tc], 0 < sc < 1, (6)

Sp = sc[ρ
eK + rB/p − Tc] (7)

= (Ṁ + Ḃ + peĖ)/p, (8)

Wc = (M +B + peE)/p, Wn
c = pWc. (9)

The first equation (5) of this module of the model defines the expected rate of

return on real capital ρe to be the ratio of the currently expected real cash flow
and the real stock of business fixed capital K. The expected cash flow is given by

expected real revenues from sales Y e diminished by real depreciation of capital δK
and the real wage sum ωLd. We assume that firms pay out all expected cash flow

in form of dividends to the asset holders. These dividend payments are one source
of income for asset holders. The second source is given by real interest payments
on short term bonds (rB/p) where r is the nominal interest rate and B the stock

of such bonds. Summing up these types of interest incomes and taking account
of lump sum taxes Tc in the case of asset holders (for reasons of simplicity) we

get the disposable income of asset holders within the square brackets of equation
(6), which together with a postulated fixed propensity to consume (1 − sc) out

of this income gives us the real consumption of asset holders.
Real savings of pure asset owners is real disposable income minus their con-

sumption as exposed in equation (7). They can allocate it in form of money Ṁ , or
buy other financial assets, namely short-term bonds Ḃ or equities Ė at the price

pe, the only financial instruments that we allow for in the present reformulation
of KMG growth. Hence, savings of asset holders must be distributed to these
assets as stated in equation (8). Real wealth of pure asset holders is defined on

this basis in equation (9) as the sum of the real cash balance, real short term
bond holdings and real equity holdings of asset holders. Note that the short term

bonds are assumed to be fixed price bonds with a price of one, pb = 1, and a
flexible interest rate r.

We now describe the demand equations of asset owning households for finan-
cial assets following Tobin’s general equilibrium approach (Tobin 1969):

Md = fm(r, ree)W
n
c (10)

6We explain in an appendix that money holdings for transaction purposes is here only con-
sidered with respect to firms which is just the opposite assumption of what is usually considered
in the macroeconomic literature.
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Bd = fb(r, r
e
e)W

n
c (11)

peE
d = fe(r, r

e
e)W

n
c (12)

Wn
c = Md + Bd + peE

d (13)

The demand for money balances of asset holders Md is determined by a function
fm(r, ree) which depends on the interest rate on short run bonds r and the expected

rate of return on equities ree. The value of this function times the nominal wealth
Wn gives the nominal demand for money Md, i.e., fm describes the portion
of nominal wealth that is allocated to pure money holdings. Note that this

formulation of money demand is not based on a transaction motive, since the
holding of transaction balances is the job of firms in the present paper. We also

do not assume that the financial assets of the economy are perfect substitutes, but
indeed assume that financial assets are imperfect substitutes by the approach that

underlies the above block of equations. But what is the motive for asset holders
to hold a fraction of their wealth in form of money, when there is a riskless interest

bearing asset? In our view it is reasonable to employ a speculative motive: Asset
holders want to hold money in order to be able to buy other assets or goods

with zero or very low transaction costs. This of course assumes that there are
(implicitly given) transaction costs when fixed price bonds are turned into money.
Köper (2000b) will modify this framework by assuming that money holdings equal

M3 and that bonds are flexprice or long-term bonds which give rise to capital
gains or losses just as the equities of the present paper.

The nominal demand for bonds is determined by fb(r, r
e
e) and the nominal

demand for equities by fe(r, r
e
e), which again describe the fractions that are allo-

cated to these forms of financial wealth. From equation (9) we know that actual
nominal wealth equals the stocks of financial assets held by the asset holders.

We assume, as is usual in portfolio approaches, that the asset holders do de-
mand assets of an amount which equals in sum their nominal wealth as stated

in equation (9). In other words, they just reallocate their wealth in view of new
information on the rates of returns on their assets and thus take care of their
wealth constraint.

What is left to model in the households sector is the expected rate of return on
equities ree which consists of real dividends per equity (ρepK/peE), and expected

capital gains, πe, the latter being nothing else than the expected growth rate of
equity prices.

ree =
ρepK

peE
+ πe (14)

In order to complete the modeling of asset holders’ behavior we thus have to

describe the evolution of πe. We here assume that there are two types of asset
holders, which differ with respect to their expectation formation of equity prices.
There are chartists who in principle employ an adaptive expectations mechanism:

π̇ec = βπec(p̂e − πec), (15)

where βπec is the adjustment speed towards the actual growth rate of equity
prices. The other asset holders, the fundamentalists, employ a forward looking
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expectation formation mechanism:

π̇ef = βπef
(η̄ − πef ) (16)

where η̄ is the fundamentalists’ expected long run inflation rate of share prices.
Assuming that the aggregate expected inflation rate is a weighted average of the

two expected inflation rates, where the weights are determined according to the
sizes of the groups, we postulate

πe = απecπec + (1− απec)πef . (17)

Here απec ∈ (0, 1) is the ratio of chartists to all asset holders.

2.2 Firms

We consider the behavior of firms by means of two submodules. The first describes

the production framework and their investment in business fixed capital and
the second introduces the Metzlerian approach of inventory cycles concerning

expected sales, actual sales and the output of firms.

Firms: production and investment

ρe = (pY e −wLd − pδK)/(pK), (18)

Y p = ȳpK, (19)

Uc = Y/Y p, (20)

Ld = Y/x̄, (21)

V = Ld/L = Y/(xL), (22)

q = peE/(pK), (23)

I = i1(q − 1)K + i2(Uc − Ūc)K + nK, (24)

K̂ = I/K, (25)

peĖ = pI + p(Ṅ − I) (26)

Firms are assumed to pay out dividends according to expected profits (expected

sales net of depreciation and minus the wage sum), see the above module of the
asset owning households. The rate of expected profits ρe is expected real profits

per unit of capital as stated in equation (18). For producing output firms utilize
a production technology that transforms demanded labor Ld combined with busi-
ness fixed capital K into output. For convenience we assume that the production

takes place by a fixed proportion technology.7 According to (19) potential output
Y p is therefore given in each moment of time by the fixed coefficient ȳp times the

existing stock of physical capital. Accordingly, the utilization of productive ca-
pacities is given by the ratio Uc of actual production Y and the potential output

Y p. The fixed proportions in production also give rise to constant output-labor
coefficient x̄, by means of which we can deduce labor demand from goods market

7See Chiarella, Flaschel, Groh, and Semmler (2000) for the treatment of neoclassical smooth
factor substitution.
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determined output as in equation (21). The ratio Ld/L thus defines the rate of

employment of the model.
The economic behavior of firms also comprises the investment decision into

business fixed capital, which is determined independently from households savings
decision. We here model investment decisions per unit of capital as function of

the deviation of Tobin’s q, see Tobin (1969), from its long run value 1, and the
deviation of actual capacity utilization from a normal rate of capital utilization,
and add an exogenously given trend term, here given by the natural growth rate

n in order to allow this rate to determine the growth path of the economy in the
usual way. We employ here Tobin’s average q which is defined in equation (23).

It is the ratio of the nominal value of equities and the reproduction costs for the
existing stock of capital. Investment in business fixed capital is enforced when

q exceeds one, and is be reduced when q is smaller then one. This influence is
represented by the term i1(q− 1) in equation (24). The term i2(Uc− Ūc) models

the component of investment which is due to the deviation of utilization rate of
physical capital from its non accelerating inflation value Ūc. The last component,

nK, takes account for the natural growth rate n which is necessary for steady
state analysis if natural growth is considered as exogenously given. Equation (26)
is the budget constraint of the firms. Investment in business fixed capital and

unintended changes in the inventory stock p(Ṅ −I) must be financed by issuing
equities, since equities are the only financial instrument of firms in this paper.

Capital stock growth finally is given by net investment per unit of capital I/K
in this demand determined modeling of the short–run equilibrium position of the

economy.
Next we model the inventory dynamics in the model following Metzler (1941)

and Franke (1992). This approach is a very useful concept for describing the
goods market disequilibrium dynamics with all of its implications.

Firms output adjustment:

N d = βndY e, (27)

I = nN d + βn(N
d −N ), (28)

Y = Y e + I, (29)

Y d = C + I + δK +G, (30)

Ẏ e = nY e + βye(Y
d − Y e), (31)

Ṅ = Y − Y d, (32)

Sf = Y − Y e = I, (33)

where βnd , βn, βye ≥ 0.
As stated in equation (27), the desired stock of physical inventories is denoted

by N d and is assumed to be a fixed proportion of the expected sales. The planned
investments I in inventories follow a sluggish adjustment process towards the de-

sired stock N d according to equation (28). Taking account of this additional
demand for goods we write the production Y to be set equal to the expected

sales of firms plus I in equation (29). For explaining the expectation formation
for good demand, we need the actual total demand for goods which is given by
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consumption (of private households and the government) and gross investment

by firms (30). By knowing the actual demand Y d, which is always served, the
dynamics of expected sales is given in equation (31). It models these expecta-

tions to be the outcome of an error correction process, that incorporates also the
natural growth rate n in order take account of the fact that this process operates

in a growing economy. The adjustment of sales expectations is driven by the pre-
diction error (Y d − Y e), with an adjustment speed that is given by βye . Actual
changes in the stock of inventories are given by the deviation of production from

goods demanded (32). The savings of the firms Sf is as usual defined by income
minus consumption. Because firms are assumed to not consume anything, their

income equals their savings and is given by the excess of production over expected
sales, Y −Y e. According to the production account in figure 1 the gross account-

ing profit of firms finally is ρepK + pI = pC + pI + pδK + pṄ + pG. Plugging in
the definition of ρe from equation (18), we compute that pY e + pI = pY d + pṄ

or equivalently p(Y − Y e) = I as stated in equation (33).

Uses Resources

Production Account of Firms:

Depreciation pδK Private consumption pC

Wages wLd Gross investment pI + pδK

Gross accounting profits Π = ρepK + pI Inventory investment pṄ
Public consumption pG

Income Account of Firms:

Dividends ρepyK Gross accounting profits Π
Savings pI

Accumulation Account of Firms:

Gross investment pI + pδK Depreciation pδK

Inventory investment pṄ Savings pI
Financial deficit FD

Financial Account of Firms:

Financial deficit FD Equity financing peĖ

Figure 1: Accounting sheets of the firms’ sector

2.3 Governmental sector

The role of the government in this paper is to provide the economy with public

(unproductive) services within the limits of its budget constraint. Public pur-
chases (and interest payments) are financed through taxes, through newly printed
money, or newly issued fixed-price bonds (pb = 1). The budget constraint gives
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rise to some repercussion effects between the public and the private sector.

T = τwωL
d + Tc, (34)

Tc = t̄ncK + rB/p, t̄nc = const. (35)

G = ḡK, ḡ = const. (36)

Sg = T − rB/p−G, (37)

M̂ = µ̄, (38)

Ḃ = pG+ rB − pT − Ṁ. (39)

We model the tax income consisting of taxes on wage income and lump sum
taxes on capital income Tc. The latter is assumed for reasons of analytical sim-

plicity solely (for the time being) in way, that makes aggregate demand indepen-
dent of the interest payments of the government, which in particular simplifies

steady state calculations significantly, adding to our simplification of not includ-
ing wealth effects on consumption into our model.8

For the real purchases of the government for providing governmental services
we assume, again as in Sargent (1987), that they are a fixed proportion ḡ of

real capital, which taken together allows to represent fiscal policy by means of
simple parameters on the intensive form level of the model and in the steady state

considerations to be discussed later on. The real savings of the government, which
is a deficit if it has a negative sign, is defined in equation (37) by real taxes minus
real interest payments minus real public services. Again for reasons of simplicity

the growth rate of money is given by a constant µ̄. Equation (38) is the monetary
policy rule of the central bank and money is assumed to enter the economy via

open market operations of the central bank, which buys short-term bonds from
the asset holders when issuing new money. Then the changes in the short-term

bonds supplied by the government are given residually in equation (39), which
is the budget constraint of the governmental sector. This representation of the

behavior of the monetary and the fiscal authority clearly shows that the treatment
of policy questions is not yet a central part of the paper. See Köper (2000a) for

an explicit treatment of government interest payments.

2.4 Wage–Price–Interaction

We now turn to the last sector of our model which is the wage-price sector picking

up the Rose approach (Rose 1990) of two short-run Phillips curves, i) the wage
Phillips curve and ii) the price Phillips curve:

ŵ = βw(V − V̄ ) + κw p̂+ (1− κw)π, (40)

p̂ = βp(Uc − Ūc) + κpŵ + (1− κp)π, (41)

π̇ = βπ(αp̂+ (1− α)(µ̄− n)− π). (42)

where βw, βp, βπ ≥ 0, 0 ≤ α ≤ 1, and 0 ≤ κw, κp ≤ 1. This approach makes

use of the assumption that relative changes in money wages are influenced by

8See Sargent (1987) for another application of this assumption.
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demand pressure in the market for labor and price inflation (cost-pressure) terms

and that price inflation in turn depends on demand pressure in the market for
goods and on money wage (cost-pressure) terms. Wage inflation therefore is

described in equation (40) on the one hand by means of a demand pull term
βw(V − V̄ ), which tells us that relative changes in wages depends positively on

the gap between actual employment V and its NAIRU value V̄ . On the other
hand, the cost push elements in wage inflation is the weighted average of short-
run (perfectly anticipated) price inflation p̂ and medium run expected overall

inflation π, where the weights are given by κw and 1 − κw. The price Phillips
curve is quite similar, it displays a demand pull and a cost push component, too.

The demand pull term is given by the gap between capital utilization and its
NAIRU value, (Uc− Ūc), and the cost push element is the κp and 1−κp weighted

average of short run wage inflation ŵ and expected medium run overall inflation
π.

What is left to model is the expected medium run inflation rate π. We pos-
tulate in equation (42) that changes in expected medium run inflation are due to

an adjustment process towards a weighted average of the current inflation rate
and steady state inflation. Thus we introduce here a simple kind of forward look-
ing expectations into the economy. This adjustment is driven by an adjustment

velocity βπ.
It is obvious from this description of the model that it is, on the one hand,

already a very general description of macroeconomic dynamics. On the other
hand, it is still dependent on some very special assumptions, in particular with

respect to financial markets and the government sector. This can be justified at
the present stage of analysis by observing that many of its simplifying assump-

tions are indeed typical for macrodynamic models, which attempt to provide a
complete description of a closed monetary economy with labor, goods markets

and three markets for financial assets, see in particular the model of Keynesian
dynamics of Sargent (1987).

2.5 Capital markets

We have not yet discussed the determination of the nominal rate of interest r
and the price of equities pe and thus have not yet formulated how capital mar-
kets are organized. Following Tobin’s portfolio approach (1969), see also Franke

and Semmler (1999), we here simply postulate that the following equilibrium con-
ditions always hold and thus determine the above two prices concerning bonds

and equities as statically endogenous variables of the model. Note here that all
asset supplies are given magnitudes at each moment in time and that ree is given

by ρepK
peE

+πe and thus varies at each point in time solely due to variations in the
share price pe.

M = Md (= fm(r, ree)W
n
c ) (43)

B = Bd (= fb(r, r
e
e)W

n
c ) (44)

peE = peE
d (= fe(r, r

e
e)W

n
c ) (45)
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In our model we thus support the view that the secondary market is the

market, where the prices or interest rates for the financial assets are determined
such that these markets are cleared at all moments in time. This implies, that

the newly issued assets do not have significant impact effects on these prices.9

The trade between the asset holders induces a process that makes asset prices

fall or rise in order to equilibrate demands and supplies. In the short run (in
continuous time) the structure of wealth of asset holders, Wn

c is, disregarding
changes in the share price pe, given to them and for the model. This implies that

the functions fm(), fb(), and fe(), introduced in equations 10 to 12 must satisfy
the following well known conditions:

fm(r, ree) + fb(r, r
e
e) + fe(r, r

e
e) = 1 (46)

∂fm(r, ree)

∂i
+

∂fb(r, r
e
e)

∂i
+

∂fe(r, r
e
e)

∂i
= 0, ∀ i ∈ {r, ree} (47)

These conditions guarantee that the number of independent equations is equal to
the number of statically endogenous variables (r, pe) that the asset markets are

assumed to determine at each moment in time.
We postulate that the financial assets display the gross substitution property,

which means that the demand for all other assets increase whenever the price of
another asset rises. For a formal definition see for example Mas-Colell, Whinston,

and Green (1995, p. 611).

∂fb(r, r
e
e)

∂r
> 0,

∂fm(r, ree)

∂r
< 0,

∂fe(r, r
e
e)

∂r
< 0, (48)

∂fe(r, r
e
e)

∂ree
> 0,

∂fm(r, ree)

∂ree
< 0,

∂fb(r, r
e
e)

∂ree
< 0. (49)

The above discussion concentrates on stocks and their impact on asset prices,
including the so-called Walras’ law of stocks. The following proposition shows in

addition that also the Walras’ law of flows does hold in our modeled economy,
representing an important consistency check of the model.

Proposition 1 Assume that the issue of new bonds and money of the govern-

ment are absorbed by the asset holders. Then: Every new issued amount of
equities of firms will be met by the demand for equities by the asset holders.

9This representation of the secondary markets as markets characterized by stock equilibrium
at each moment in time may be turned into flow equilibrium conditions (including then new
issue, possibly on primary markets) if it is assumed that desired stocks only give rise to sluggish
desired adjustments to such target values, for example in the following way, where these demand
flows are and can then to be coordinated with the new issue of money, bonds and equities.

Ṁ = Ṁd = βfm(fm(. . .)Wn
−M)

Ḃ = Ḃd = βfb(fb(. . .)W
n
−B)

peĖ = peĖ
d = βfe(fe(. . .)W

n
− peE)

12



Proof: For proving this proposition we refer to the definitions of nominal savings

of the three considered sectors:

Sn
p = Ṁd + Ḃd + peĖ

d (50)

Sn
g = −Ṁ − Ḃ (51)

Sn
f = pI (52)

The assumption made means that Ṁd = Ṁ and Ḃd = Ḃ holds. By definition

we know that ex post investments equal savings. Investment is given by the
investment into business fixed capital plus actual inventory investment. Savings

are the sum of the savings of all sectors.

pI + pṄ = Sn
p + Sn

g + Sn
f

⇔ pI + pṄ = Ṁd + Ḃd + peĖ
d − Ṁ − Ḃ + pI

⇔ pI + pṄ = peĖ
d + pI

⇔ pI + p(Ṅ − I) = peĖ
d

From equation (26) we conclude that peĖ
d = peĖ, which means that the demand

for new equities equals its supply.

3 The model in intensive form

In this section we derive the intensive form of the model, i.e., we will express
all stock and flow variables in the laws of motion to be derived, and also in the

needed algebraic equations, per unit of capital. We thus divide nominal stock
and flow variables by the nominal value of the capital stock pK and all real ones

by K, the real capital stock. This allows the determination of a (unique) steady
state solution as interior point of rest of the state space considered.

We begin with the intensive form of some necessary definitions or identities,
which we need needed for representing the dynamic system in a sufficiently com-

prehensible form. Note here that the function q used in this block of equations will
be determined and discussed later on, in subsection 3.2, where the comparative
statics of the portfolio part of the model is investigated.

Y/K = y = (1 + βnd(n+ βn))y
e − βnν

Ld/K = ld = y/x̄

V = ld/l
Uc = y/yp

ρe = ye − δ − ωld

C/K = c = (1− τw)ωl
d + (1− sc)(y

e − δ − ωld − t̄nc )

I/K = i = i1(q − 1) + i2(Uc − Ūc) + n
Y d/K = yd = c+ i+ δ + ḡ

peE/(pK) = q = q(m, b, ρe, πe), see subsection 3.2

ree = ρe/q + πe
πe = απeπec + (1− απe)πef

13



The above equations describe output and employment per unit of capital, the

rate of utilization of the existing stock of labor and capital, the expected rate
of profit, consumption, investment and aggregate demand per unit of capital,

Tobin’s average q, and the expected rate of return on equities (including expected
capital gains πe)

Now we translate the laws of motion of the dynamically endogenous variables
into capital intensive form. The law of motions for the nominal wages and price
level stated in equations (40) and (41) are interacting instantaneously and thus

depend on each other. Solving these two linear equations for ŵ and p̂ gives

ŵ = κ
(
βw(V − V̄ ) + κwβp(Uc − Ūc)

)
+ π, (53)

and p̂ = κ
(
βp(Uc − Ūc) + κpβw(V − V̄ )

)
+ π, (54)

with κ = (1 − κwκp)
−1. For a detailed computation see Chiarella and Flaschel

(2000a) and here appendix A.1. From these two inflation rates one can compute
the growth law of real wages ω = w/p by means of the definitional relationship

ω̂ = ŵ− p̂. This gives us

ω̂ = κ[(1− κp)βw(V − V̄ ) + (κw − 1)βp(Uc − Ūc)], (55)

where κ is (1− κwκp)
−1. The next set of equations explains the dynamic laws of

the expected rate of inflation, the labor capital ratio,the expected sales, and the
stock of inventories in intensive form:

π̇ = αβπκ[βp(Uc − Ūc) + κpβw(V − V̄ )] + (1− α)βπ(µ̄ − n− π), (56)

l̂ = n− i = − i1(q − 1)− i2(Uc − Ūc), (57)

ẏe = βye(y
d − ye) + (n− i)ye, (58)

ν̇ = y − yd − iν, (59)

Equation (56) is almost the same as in the extensive modeling, but here the

term p̂ − π is substituted according to equation (54). Equation (57), the law of
motion of relative factor endowment, is given by the (negative) of the investment

function as far as its dependence on asset markets and the state of the business
cycle are concerned. Equation (58) is obtained by way of the time derivative of
ye as follows:

ẏe = d(Y e/K)
dt = Ẏ eK−Y eK̇

K2 = Ẏ e

K − yei = βye (y
d − ye) + ye(n− i).

In essentially the same way one gets equation (59). The laws of motion governing

the expectations about the equity prices are not changed by the intensive form
modeling and thus again read as follows:

π̇ef = βπef
(η̄ − πef ), (60)

π̇ec = βπec(p̂e − πec). (61)

In the following only the value of aggregate capital gains expectations is needed.
But for the computation of this we need the historic values of actual inflation

14



in equity prices p̂e for which we lack a law of motion, because the general equi-

librium approach tells us p̂e is such that asset markets are in equilibrium. We
follow Sargent (1987, pp. 117), by employing the integral representation of the

expectation about equity price inflation, which leads us to the following definition
of aggregate expectation of equity price inflation:

πe(t) = αec

[
πec(t0)e

−βπec(t−t0) + βπec

∫ t

t0

e−βπec(t−s)p̂e(s)ds

]

+ (1− αec)
[
(πef(t0)− η̄)e−βπef

t + η̄
]
, (62)

where πec(t0) and πef (t0) are the initial values of the expectations about growth

in equity prices, performed by the chartist and the fundamentalists at time t0.
The details for obtaining this equation are given in the mathematical appendix

A.2.
Finally, the laws of motion for real balances and real bonds per unit of capital

have to be derived. Based on the knowledge of the laws for inflation p̂ and

investment i we can derive the differential equation for bonds per unit of capital
shown in equation (63) from the following expression:

ḃ =
d(B/pK)

dt
=

Ḃ

pK
− b(p̂+ i)

where Ḃ is given by equation (39). The same idea is used for the changes in the
money supply. We thus get finally the following two differential equations:

ḃ = ḡ − t̄nc − τwωl
d − µ̄m

− b
(
κ[βp(Uc − Ūc) + κpβw(V − V̄ )] + π + i

)
, (63)

ṁ = mµ̄−m(κ[βp(Uc − Ūc) + κpβw(V − V̄ )] + π + i). (64)

According to the above, the dynamics in extensive form can therefore be

reduced to nine (eight) differential equations, where however the law of motion
for share prices has not been determined yet, or to seven differential and one

integral equation which is easier to handle than the alternative representation,
since there is no law of motion for the development of future share prices to be

calculated then. Note with respect to these dynamics that economic policy (fiscal
and monetary) is still represented in very simple terms here, since money supply
is growing with a given rate and since government expenditures and taxes on

capital income net of interest payments per unit of capital are given parameters.
This makes the dynamics of the government budget constraint, see the law of

motion for bonds per unit of capital b, a very trivial one, as in Sargent (1987,
ch. 5), and thus reserves the problems associated with these dynamics in the

literature a matter for future research. The advantage that fiscal policy can be
discussed in very simple way here by means of three parameters solely.

Comparing the present dynamics with those of the working KMG model of
Chiarella and Flaschel (2000a) and Chiarella, Flaschel, Groh, and Semmler (2000)

shows that there are now two variables from the financial sector that feed back to
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the real dynamics in this extended system, the bond to capital ratio b represent-

ing the evolution of government debt and Tobin’s average q. The first (dynamic)
variable however only influences the real dynamics since it is one of the factors

that influences the statically endogenous variable q which in turn enters the in-
vestment function as a measure of the firms’ performance. Government bonds

do not influence the economy in other ways, since there are no wealth effects in
consumption yet and since the interest income channel to consumption has been
suppressed by the assumption on tax collection concerning capital income. In

addition, the interest rate channel of the earlier KMG approaches, where the real
rate of interest as compared to the real profit rate entered the investment func-

tion, is now absent from this function. The nominal interest rate as determined
by portfolio equilibrium thus does not matter in the present formulation of the

model, where Tobin’s q in the place of this interest rate provides now the channel
by which investment behavior is reacting to the results brought about by the

financial markets.
The present dynamics has no longer laws of motion that are left implicit in its

discussion (the bond and the share price dynamics of the working KMG models
cited above), but is now a completely formulated dynamics, yet still one where
the real financial interaction is represented in basic terms. Price inflation (via real

balances and real bonds) and the expected rate of profit (via the dividend rate
of return) influence the behavior of asset markets via laws of motion for them,

while the reaction of asset markets feeds back into the real part of the economy
instantaneously through the change in Tobin’s q that is caused by them (and the

dynamics of expected capital gains).

3.1 Steady state considerations

In this subsection we show the existence of a steady state in the modeled economy.

We here stress that this can be done independently of the knowledge supplied
in the next section on the comparative statics of the asset market equilibrium

system, since Tobin’s q is given by 1 in the steady state via the real part of the
model and since the portfolio equations can be uniquely solved in conjunction

with the government budget constraint for the three variables r,m, b which they
then determine. Note that m, b are data in the short-run analysis of the behavior
of asset markets of the next subsection (where q, r are determined on their basis

as the variables that bring the asset markets into equilibrium), while m, b are
variables in the long run that are to be derived from asset market equilibrium

conditions and the government budget constraint.
In the following variables with a “ˇ” on top denote the steady state value of

the corresponding variable.

Proposition 2 Assume sc > τw and scρ̌
e > n+ ḡ− t̄nc . Assume furthermore that

the parameter φ used below has a positive numerator, i. e. ,the government runs

a primary deficit in the steady state, (and thus between zero and one if money
supply is growing). The dynamic system given by equations (55) to (64) possesses

a unique interior steady state solution (ω̌, ľ, m̌ > 0) with equilibrium on the asset
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markets, iff the fundamentalists long run reference inflation rate of equity prices

equals the steady state inflation rate of good prices

η̄ = ˇ̂p,

and

lim
r→0

(fm(r, ρ̌e+ π̌e) + fb(r, ρ̌
e+ π̌e)) < φ̄

and lim
r→∞

(fm(r, ρ̌e+ π̌e) + fb(r, ρ̌
e+ π̌e)) > φ̄

holds true with φ̄ =
ḡ−t̄nc−τwω̌ľd

ḡ−t̄nc −τwω̌ľd+µ̄
.10

Proof: If the economy rests in a steady state, then all intensive variables stay

constant and all time derivatives of the system become zero. Thus by setting the
left hand side of the system of equations (55) to (64) equal to zero, we can deduce

the steady state values of the variables.
From equation (57) we can derive that ǐ = n holds, from (58) we get y̌e = y̌d,

and from (64): µ̄ = (κ[βp(Uc − Ūc) + κpβw(V − V̄ )] + π + i). The last relation

plugged in into equation (42) and using ǐ = n we get with αβπ 6= −(1 − α)βπ
that µ̄ − n − π = 0 and κ[βp(Uc − Ūc) + κpβw(V − V̄ )] = 0. Thus we have the

following two equations for Uc − Ūc and V − V̄ :

Uc − Ūc = −κpβw(V − V̄ )/βp

Uc − Ūc = (1− κp)βw(V − V̄ )/[(1− κw)βp]

By assumption we have βp, βw > 0 and 0 ≤ κp, κwleq1. Then V − V̄ must equal
zero in order to fulfill the last two equations. When V = V̄ , then according to

(55) we know that Uc = Ūc. Then equation (57) leads to q̌ = 1.
With these relations one can easily compute the unique steady state values

of the variables ye, l, π, ν, ω:

y̌e =
y̌

1 + nβnd

, with y̌ = Ūcȳ
p (65)

ľ = y̌/(V̄ x̄) (66)

π̌ = µ̄− n (67)

ν̌ = βnd y̌e (68)

ω̌ =
y̌e − n − δ − ḡ − (1− sc)(y̌

e − δ − t̄nc )

(sc − τw)ľd
, (69)

ρ̌e = y̌e − δ − ω̌ľd (70)

All these values are determined on the good and labor markets. The steady
state value of the real wage has been in particular derived from the goods market

10Note with respect to this part of the proposition that the steady state values used in the
above assumption are calculated before this assumption is applied to a determination of the
steady state value of the nominal rate of interest.

17



equilibrium condition that must hold in the steady state and it is positive under

the assumptions made in proposition 2.
We next take account of the asset markets, which determine the values of

the short-term interest rate r (which is now uniquely in charge to clear the asset
markets), but now in conjunction with the determination of the steady state for

m, b, where m+b is determined through the government budget constraint. This
is the case because the steady state rate of return on equities relies, on the one
hand, on solely on ρ̌e, since q has been determined through the condition i = n

and shown to equal one in steady state, and, on the other hand, on the expected
inflation rate of share prices, which equals the goods price inflation rate in the

steady state as will be shown below;

řee = ρ̌e + π̌e.

The steady state values of the two kinds of expectations about the inflation
rate of equity prices (of chartists and fundamentalists) are

π̌ef = η̄ ∧ π̌ec = η̄ (71)

from which one can derive that π̌e = η̄ = ˇ̂p = π̌ = µ̄ − n must hold: We have
seen that, in the steady state, Tobin’s q equals one and its time derivative equals

zero, q̇ = 0:

q̇ = 0

⇒
(ṗeE+peĖ)pK−peE(ṗK+pK̇)

p2K2 = 0

⇒ ṗeE+peĖ
pK = p̂+ n

According to equation (26) we have peĖ = pI+p(Ṅ−I) we thus get in the steady

state peĖ = pI . Inserting this into the last implication shown we get p̂e = p̂ and
thus as an important finding that η̄ = µ̄ − n must hold in order to allow for a

steady state.
Now we determine the steady state values of the stocks of real cash balances

and the stock of bonds. These values have to be determined in conjunction with
the steady state interest rate ř which is now solely responsible for clearing the

asset markets, because Tobin’s q = 1 has already been determined on the real
markets.

The budget constraint of the government is given in intensive form by

ḃ+ ṁ = ḡ − t̄nc − τwωl
d − (b+m)(p̂+ i). (72)

One therefore obtains in the steady state

b̌+ m̌ = (ḡ − t̄nc − τwωl
d)/µ̄ (73)

Furthermore, consider the asset demand functions (10) and (11).

m = fm(r, ree)(m+ b+ q), q = 1 (74)

b = fb(r, r
e
e)(m+ b+ q), q = 1 (75)
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The left side of the last two equations are the supplied amounts and the right

sides represent the demand for the assets m, b.
Using now equation (73)

µ̄(m̌+ b̌) = ḡ − t̄nc − τwωl
d (76)

From this system of three linear independent equations (74) to (76) one can
deduce the three unique steady state values ř, b̌, and m̌ which we will show
below.

Beginning with the steady state interest rate we sum equations (74) and (75)
and multiplying by µ̄:

µ̄(m̌+ b̌) = (f̌m + f̌b)µ̄(m̌+ b̌+ 1)

where f̌m and f̌b denote the values of fm(ř, ρ̌e+π̌e) and fb(ř, ρ̌
e+π̌e) respectively.

Plugging in the budget constraint in the form of equation (76) we get

f̌m + f̌b = φ̄,

with φ̄ = ḡ−t̄nc−τwω̌ľd

ḡ−t̄nc −τwω̌ľd+µ̄
. From property (47) and (49) we can conclude that

∂(fm + fb)

∂r
> 0 (77)

which implies that the cumulated demand for money and bonds is a strictly

increasing function in the variable r.
If limr→0(fm(r, ρ̌e + π̌e) + fb(r, ρ̌e + π̌e)) < φ̄ and limr→∞(fm(r, ρ̌e + π̌e) +

fb(r, ρ̌e + π̌e)) > φ̄ then by monotony and continuity there must be a value of r,
which equilibrates the asset markets in the above aggregated form. Then, steady

state supplies ofm, b can be calculated by equations (74) and (75) in a unique way,
based on the steady state interest rates r = ř and ree = ρ̌e+πe. This concludes the

uniquely determined derivation of steady state values for our dynamical system
(55) to (64) which in turn when inserted into this system indeed imply that the

dynamics is at a point of rest in this situation.
We observe finally that the calculation of the steady state value of the rate of

wage and the rate of profit can be simplified when it is assumed that government

expenditures are given by ḡ + τwωl
d in the place of only ḡ.

3.2 The comparative statics of the asset markets

After we have specified the extensive and intensive form of the model and have

shown the existence and uniqueness of an interior steady state solution of the
intensive form we now focus on the short–run comparative statics of the financial

markets module of the system. We thus now derive in particular the function
q = q(m, b, ρe, πe) already made use of in the intensive form presentation of the

model, which is now needed to investigate the stability properties of the model
close to its steady state solution, see the next subsection.

Assuming that the asset demand functions display the property which gave us
a unique interior steady state solution in the preceding subsection, see proposition
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2, it is now possible to approximate these demand functions by linear functions

in a neighborhood of the steady state in order to derive the stability properties
of the next subsection. These linearized versions of the asset demand functions

can be written as

f l
m(r, ree) = αm0 − αm1r − αm2(ρ

e/q + πe)

f l
b(r, r

e
e) = αb0 + αb1r − αb2(ρ

e/q + πe)

f l
e(r, r

e
e) = αe0 − αe1r + αe2(ρ

e/q + πe)

where the superscript l denotes the linearized form and where

αij ≥ 0 ∀i ∈ {b, m, e}, j ∈ {0, 1, 2}.

Because of proposition 1 it is sufficient to focus on the first two asset market

equilibrium conditions in all subsequent equilibrium considerations. These two
equilibrium conditions now read:

m = (αm0 − αm1r− αm2(ρ
e/q + πe))(m+ b+ q), (78)

b = (αb0 + αb1r − αb2(ρ
e/q + πe))(m+ b+ q). (79)

Solving (78) and (79) for the interest rate r we obtain:

rLM =
αm0 − αm2(ρ

e/q + πe)−m/(m+ b+ q)

αm1
(80)

and rBB =
− αb0 + αb2(ρ

e/q + πe) + b/(m+ b+ q)

αb1
(81)

The LM–subscript denotes the interest rate that equals demand for real balances

and real money supply and the BB–subscript denotes the interest rate that equals
real bond demand and supply. Figure 2 displays examples of these two functions.
The intersection of the LM–curve and the BB–curve then provides the equilibrium

values for the short-term interest rate r and Tobin’s q. The figure only shows
examples of such functions and as we know that the functions are not linear

in q we do not know yet whether the equilibrium exists and is unique. Note
however that we are only considering a neighborhood of the steady state solution

for r, q, m, b, ρe, πe where the latter must of course fulfill the above equilibrium
conditions for the asset markets. In order to show that r, q exists and is uniquely

determined for all m, b, ρe, πe sufficiently close to this steady state solution we
therefore have to show that the assumptions of the implicit function theorem are

valid at the steady state.

Proposition 3 Adopting the assumptions of proposition 2. There is a unique
solution (r, q) to the equations (74) and, (75), which thus clears the asset markets,

for all values of m, b, ρe, πe in an appropriately chosen neighborhood of the interior
steady state solution of the dynamics (55) to (64).

Proof: We have to show that the Jacobian of the system

fm(r, q)(m+ b+ q)−m = 0

fb(r, q)(m+ b+ q)− b = 0
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Figure 2: LM–BB–Curves: The dashed lines show the simultaneously shifted

curves of the LM– and BB–curve when one of the statically exogenous variables
ρe, πe, q, m rises or b falls.

is regular with respect to the variables r, q, which means that

∣∣∣∣∣

∂
∂r(fm(r, q)(m+ b+ q)−m) ∂

∂q (fm(r, q)(m+ b+ q)−m)
∂
∂r(fb(r, q)(m+ b+ q)− b) ∂

∂q(fb(r, q)(m+ b+ q)− b)

∣∣∣∣∣ 6= 0

must hold true. We know for the signs of the entries in this Jacobian:

(
− +
+ +

)

which immediately implies the regularity of this Jacobian.

We have thus shown that the financial markets can always be cleared through

adjustments of the short-term interest rate and Tobin’s q. But how do these
two variables react in the short-run when the above given statically exogenous

variables change (in time)? We consider this questions first on the level of the
partial equilibrium curves shown in figure 2. We can derive as dependencies of
the two-short run interest functions rLM , rBB from ρe, πe, q, m and on this level

also from q the following relationships:

rLM( ρ
e, πe, m, b, q )
− − − + + and rBB( ρ

e, πe, m, b, q )
+ + − + − (82)

These results come directly from the partial derivatives of the functions in equa-

tions (80) and (81).
Equations (80) and (81) together build up an equilibrium condition by rLM =

rBB:

αm0 − αm2(ρ
e/q + πe)−m/(m+ b+ q)

αm1

−
− αb0 + αb2(ρ

e/q + πe) + b/(m+ b+ q)

αb1
= 0 (83)
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Applying the implicit function theorem then gives the following qualitative de-

pendencies of Tobin’s q∗

q∗( ρe, πe, m, b )
+ + + + ∀ q > (

αb1

αm1
− 1)m

(84)

q( ρe, πe, m, b )
+ + + − ∀ q < (

αb1

αm1
− 1)m

The corresponding calculations are given in the mathematical appendix A.3.

We thus know that the first situation must apply locally around the steady
state if ( αb1

αm1
−1)m̌ < 1 holds true while the other one holds in the opposite case.11

We thus get the results that an increase in ρe the basis for the dividend rate of
return unambiguously increases Tobin’s q just as an increase in the expected

capital gains πe. Furthermore, an increase in m also pushes q upwards and thus
increases investment, just as an increase in m would do it in the presence of a

negative dependence of the rate of investment on the rate of interest, the Keynes
effect or traditional models of the AS-AD variety. The positive influence of m on

q thus mirrors the Keynes effect of traditional Keynesian short-run equilibrium
analysis. The nominal rate of interest is however no longer involved in the real
part of the model as it is here formulated which permits to ignore the comparative

statics of this interest rate here.
Results with respect to the influence of bonds b on a change in Tobin’s q are

however ambiguous and depend on the steady state value of real balances m as
well as on the parameters that determine the interest rate sensitivity of money

and bonds demand. But we get more insights into the formation of Tobin’s q by
means of the following lemma:

Lemma 1 In a neighborhood around the steady state, the partial derivative of
Tobin’s q with respect to cash balances exceeds the partial derivative of q with

respect to bond holdings:

∂q

∂m
>

∂q

∂b

Proof: According to appendix A.4 we can rewrite the inequality of the proposi-
tion by

−
det ∂(F1,F2)

∂(r,m)

det ∂(F1,F2)
∂(r,q)

> −
det ∂(F1,F2)

∂(r,b)

det ∂(F1,F2)
∂(r,q)

we know that the denominator is negative and we get equivalently:

det ∂(F1,F2)
∂(r,m) > det ∂(F1,F2)

∂(r,b)

⇔ − αm1b+ αb1(b+ q) > αm1(m+ q)− αb1m

⇔ αb1(m+ b+ q) > αm1(m+ b+ q)
⇔ αb1 > αm1

11We do not pay attention here to the border case where ( αb1

αm1

− 1)m̌ = 1 holds true. Note

here also that the αij sum to one for j = 0 and to zero for j = 1, 2 which implies that αb1

αm1

− 1
is always nonnegative.
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which is true, because this inequality is an implication of equation (77).

This lemma tells us that open market policy of the government, which means

that the central bank buys bonds by means of issuing money (dm = −db), indeed
has an expansionary effect on Tobin’s q:

∂q

∂m
dm+

∂q

∂b
(−dm) > 0 (85)

Note finally that the effect of ρe on q can be related to the Rose effect in the
working KMG model of Chiarella and Flaschel (2000a), while there is no longer

a Mundell effect to the model as there is no influence of the real rate of interest
on aggregate demand.

4 Local stability

In the following we assume that all assumptions stated in proposition 2 are met.
What is left to analyze is the dynamic behavior of the system, when it does not

rest in the steady state but is in a small neighborhood of the steady state. In the
following we give propositions, which in sum imply that there must be a locally
stable steady state, if some sufficient conditions are met.

We begin with an appropriate subsystem of the full dynamics for which the
Routh–Hurwitz conditions can be shown to hold. Setting βp = βw = βπef

=

βπec = βn = βπ = 0, βye > 0, and keeping π, πe, ω, ν thereby at their steady state
values we get the following subdynamics of state variables m, b and ye which is

then independent from the rest of the system:12

ṁ = m(µ̄− (π + i))

ḃ = ḡ − t̄nc − τwω
y

x
− µ̄m− b(π + i) (86)

ẏe = βye [c+ i+ δ + ḡ − ye] + ye(i− n)

Proposition 4 The steady state of the system of differential equations (86) is

locally asymptotically stable if βye is sufficiently large, the investment adjustment
speed i2 concerning deviations of capital utilization from the normal capital uti-

lization is sufficiently small and the partial derivatives of desired cash balances
with respect to the interest rate ∂fm/∂r and the rate of return on equities ∂fm/∂ree
are sufficiently small.

Proof: The proof makes use of the Routh–Hurwitz conditions (see Gant-

macher (1971) for example) and is given in detail in the mathematical appendix.

In other words the proposition asserts that local asymptotic stability at the
steady state of the considered subdynamics is given, when the demand for cash is

very little influenced by the rates of return on the financial asset markets (which
corresponds to a strong Keynes effect in the corresponding working model of

12Note that l may vary, but does not feed back into the presently considered subdynamics.
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Chiarella and Flaschel (2000a, ch. 6), the accelerating effect of capacity utilization

on the investment behavior is sufficiently small, and the adjustment speed of
expected sales towards actual demand is fast enough.

Next we consider the same system but allow βp to become positive, though
only small in amount. This means that ω which has entered the m, b, ye–

subsystem only by its steady state value so far, becomes now a dynamic variable,
giving rise to a 4D dynamics now.

ṁ = m(µ̄− (κβp(
y
yp − Uc) + π + i))

ḃ = ḡ − t̄nc − τwω
y
x − µ̄m− b(κβp(

y
yp − Uc) + π + i)

ẏe = βye [c+ i+ δ + ḡ − ye] + ye(i− n)

ω̇ = ωκ(κw − 1)βp(
y
yp − Ūc)

(87)

Proposition 5 The interior steady state of dynamic system (87) is locally
asymptotically stable if the conditions in proposition 4 are met and βp is suf-

ficiently small.

Proof: The proof is left to the appendix.

Enlarging the system (87) by letting βw become positive we get the following

subsystem:

ṁ = m(µ̄− (κ
[
βp(

y
yp − Uc) + κpβw(

y
xl − V̄ )

]
+ π + i))

ḃ = ḡ − t̄nc − τwω
y
x − µ̄m− b(κ

[
βp(

y
yp − Uc) + κpβw(

y
xl − V̄ )

]
+ π + i)

ẏe = βye [c+ i+ δ + ḡ − ye] + ye(i− n)

ω̇ = ωκ[(1− κp)βw(
y
xl − V̄ + κw − 1)βp(

y
yp − Ūc)]

l̇ = l[−i1(q − 1)− i2(
y
yp − Ūc)]

(88)

Proposition 6 The steady state of the dynamic system (88) is locally asymp-

totically stable if the conditions in proposition 5 are met and βw is sufficiently
small.

Proof: The proof is left to the appendix.

Again we enlarge the system by letting βn > 0. Then we get the system

ṁ = m(µ̄− (κ
[
βp(

y
yp − Uc) + κpβw(

y
xl − V̄ )

]
+ π + i))

ḃ = ḡ − t̄nc − τwω
y
x − µ̄m− b(κ

[
βp(

y
yp − Uc) + κpβw(

y
xl − V̄ )

]
+ π + i)

ẏe = βye [c+ i+ δ + ḡ − ye] + ye(i− n)
ω̇ = ωκ[(1− κp)βw(

y
xl − V̄ + κw − 1)βp(

y
yp − Ūc)]

l̇ = l[−i1(q − 1)− i2(
y
yp − Ūc)]

ν̇ = y − (c+ i+ δ + ḡ)− νi

(89)

Proposition 7 The steady state of the dynamic system (89) is locally asymp-

totically stable if the conditions in proposition 6 are met and βn is sufficiently
small.
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Proof: The proof is left to the appendix.

Finally let βπ become positive. We then are back at the full differential

equation system (though we are still neglecting the integral equation of the model
and thus the dynamics of capital gain expectations).

ω̇ = ωκ[(1− κp)βw(V − V̄ ) + (κw − 1)βp(Uc − Ūc)],

π̇ = αβπκ[βp(Uc − Ūc) + κpβw(V − V̄ )] + (1− α)βπ(µ̄− n − π),

l̂ = n − i = − i1(q − 1)− i2(Uc − Ūc),

ẏe = βye(y
d − ye) + (n− i)ye,

ν̇ = y − yd − iν,

ḃ = ḡ − t̄nc − τwωl
d − µ̄m

− b
(
κ[βp(Uc − Ūc) + κpβw(V − V̄ )] + π + i

)
,

ṁ = mµ̄ −m(κ[βp(Uc − Ūc) + κpβw(V − V̄ )] + π + i).

(90)

Proposition 8 The steady state of the dynamic system (90) is locally asymp-
totically stable if the conditions in proposition 7 are met and βπ is sufficiently

small.

Proof: The proof is left to the appendix.

We thus have in sum that fast sales expectations coupled with sluggish ad-
justments of wages, prices, inventories and inflationary expectations gives rise to
local asymptotic stability if it is furthermore assumed that the investment accel-

erator term is weak and the real balance effect in the investment equation (via
Tobin’s q) sufficiently strong. We conjecture that slow adjustment of capital gain

expectations will also preserve the stability of the interior steady state solution
of the then really fully given original dynamical system.

Proposition 9 The steady state of the dynamic system (90) always loses its
stability by way of a Hopf bifurcation.

Proof: The proof basically rests on the fact that the determinant of the Jacobian

of steady state of the dynamic system (90) is always negative, see the proof of
proposition 8, so that eigenvalues have to cross the imaginary axis (excluding

zero) when stability gets lost.

Note here that there are further conditions involved when showing the exis-

tence of either subcritical or supercritical Hopf bifurcations. There is first the
positive speed condition when eigenvalues cross the imaginary axes and secondly

the condition that the Liapunov coefficient must be nonzero then. Both condition
are however purely technical in nature and will nearly always hold in a system

with such nonlinear functional relationships as they are contained in the presently
considered dynamics.

We expect that the above proposition also holds when capital gain expecta-
tions of chartists and fundamentalists are made endogenous and that in particular

loss of stability can be obtained by increasing the adjustment speed of the back-
ward looking part of the expectations mechanism we have based on the assumed
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existence of these two groups of economic agents on the financial markets. Due

to the difficulties of treating the 8D integro-differential system that represents
the full dynamics of the present paper we do not go into a proof of this assertion

here.
Let us finally assert without proof that the normal or adverse Rose effect of

changing real wages leading to changing aggregate demand and thereby to fur-
ther changes in money wages, the price level and the real wage, see Chiarella
and Flaschel (2000a) and Chiarella, Flaschel, Groh, and Semmler (2000) in the

case of the working KMG model, will also be present in the currently considered
KMG dynamics, with their portfolio description of asset market behavior. Either

wage or price flexibility will therefore be destabilizing and lead us to Hopf bifur-
cation, limit cycles and also purely explosive behavior eventually. Furthermore,

the Mundell or real rate of interest effect is not obviously present in the consid-
ered dynamics as there is no longer a real rate of interest involved in investment

(or consumption) behavior. Increasing expected price inflation does not directly
increase aggregate demand, economic activity and thus the actual rate of price

inflation. This surely implies that the model needs to be extended here in or-
der to take account again of the role that is generally played by the real rate of
interest. There are finally two accelerator effects involved in the dynamics, the

Metzlerian inventory accelerator mechanism and the Harrodian fixed business in-
vestment accelerator (in level formulation). We therefore expect that increasing

the parameters βn, i2 will also be destabilizing and lead us to Hopf bifurcations
and more as well.

5 Extension 1: Including a transactions motive for

money holdings

One might argue that the exposed model lacks one important feature which is
known in literature as the transactions motive for money demand. Here we

present an extended framework which allows us to incorporate the transactions
motive of holding cash balances. The basic idea consists of the assumption, that
primarily firms are concerned with liquidity consideration concerning payments

to households, other firms and the government while these latter units nearly
instantaneously return these payments to firms by buying the goods produced by

them. For doing the daily transactions, firms thus use and need money.
Now suppose the firms do recognize some uncertainty with respect of monthly

or weekly payments and there is an implicit punishment to firms, if they are not
able to pay their obligations with money. Then it seems natural, that firms

maintain a certain stock of cash. While we do allow the individual firms to have
various ideas about their need to hold cash balance, we maintain in the aggregate

as a first approach to an income dependent component of money demand the view,
that the stock of money held by the firms can be modeled by a simple inventory
dynamics similar to the case of inventories of finished goods already present in

the dynamics of this paper. This implies as a first step towards such an extension
of the model that the desired stock of cash balances is a constant fraction of the
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expected sales.

The newly introduced equations describing the dynamics of the cash balances
held by firms for income payments are

Md
f = βmdpY e, (91)

Im = βm(Md
f −Mf ) + µ̄Md

f , (92)

Ṁf = p(I − Ṅ ) + Im. (93)

In equation (91) we have defined the desired stock of cash balances Md
f as a

fixed proportion of expected nominal sales. The next equation gives the desired

changes Im in the stock of money. The first term in this dynamic law represents
the adjustment due to the gap of desired cash balance and cash balance actually
held, with an adjustment speed βm. The second term refers to the growth rate

of money supply in order to allow for a steady state solution of this adjustment
process. Equation (93) finally states, that actual changes in money stocks are

not only due to the desired changes Im but also due to windfall profits or losses.
This modeling has in common with the model of the main part of the paper

that the investment in business fixed capital must still be financed by issuing of
new equities. But there is a difference in the financing of unintended changes in

inventories now. They do not play any more a role in the issuing of equities, but
the desired changes in money holdings do. The budget constraint therefore now

gets the following appearance:

peĖ = pI + Im. (94)

This modeling is more satisfactory because it frees us from the need to explain the
questionable implication that windfall profits or deficits influences immediately

the issue of equities. The equation is not trivial, thus we go on to derive it
explicitly now. The consequences of the cash balance holdings of firms can be

seen in figure (3). The Production account, income account and accumulation
account are not affected at all. But the financial account has been changed

because the financial deficit plus the changes in the cash balance have to be
financed by the issue of equities. The form of the financial deficit has changed:
FD = peĖ − Ṁf . According to the accumulation account we can now write:

peĖ = pI + p(Ṅ − I) + Ṁf (95)

From the definition of the desired changes in cash balance of firms we can then
write peĖ = pI + Im which is exactly the budget constraint of the firm exposed

in equation (94).
With the following proposition we show, that the Walras’ law of flows is still

valid in this extended framework of a portfolio approach to KMG growth.

Proposition 10 If firms are allowed to hold money, and the changes of supply

of money and bonds equal the changes of the corresponding demands, then the
change in equity supply is exactly absorbed by the change in equity demand of the

asset holders.
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Uses Resources

Production Account of Firms:

Depreciation pδK Consumption pC
Wages wLd Gross investment pI + pδK

Gross accounting profits Π = ρepK + pI Inventory investment pṄ
Consumption pG

Income Account of Firms:

Dividends ρepyK Gross accounting profits Π
Savings pI

Accumulation Account of Firms:

Gross investment pI + pδK Depreciation pδK

Inventory investment pṄ Savings pI
Financial deficit FD

Financial Account of Firms:

Changes in money balance Ṁf Equity financing peĖ
Financial deficit FD

Figure 3: Accounts of the firms’ sector: firms with transaction motive for holding
cash balances

Proof: The savings of asset holder are Sc = Ṁd
c + Ḃd +peĖ

d, of firms: Sf = pI,
and of the government Sg = −Ṁ − Ḃ. The assumptions of the proposition

provide: Ṁd
f + Ṁd

c = Ṁ and Ḃd = Ḃ. Ex post investments must equal savings:

⇔ pI + pṄ = Sn
p + Sn

g + Sn
f

⇔ pI + pṄ = Ṁd
c + Ḃd + peĖ

d + pI − Ṁ − Ḃ

⇔ pI + pṄ = peĖ
d + pI − Ṁd

f

From equation (93) we obtain pI+Im = peĖ
d which due to equation (94) proves

the proposition.

5.1 Intensive form

Transferring the changes of the extensive form model to its intensive form, we
first consider the intensive form of the desired changes in firms’ cash balances,

denoted by Jm.

Jm =
Im
pK

= (µ̄βmd + βmβmd)ye − βmmf (96)

The dynamic equation for the bond supply is almost the same as before, but we

have to write the total amount of money in the economy now in the disaggregated
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form m = mc +mf :

ḃ = ḡ − t̄nc − τwωl
d − µ̄(mc +mf )

− b
(
κ[βp(Uc − Ūc) + κpβw(V − V̄ )] + π + i

)
, (97)

Important further changes concern the dynamic laws of motion for the money

holdings. Now the supply has to be split between firms and asset holders.

∂
∂t(mc +mf)

mc +mf
= m̂ = M̂ − p̂− K̂

= µ̄ − (κ[βp(U − Ū) + κpβw(V − V̄ )] + π + i)

From this we compute for the time rate of change of money supply per unit of

capital:

ṁc + ṁf = (mc +mf)µ̄

− (mc +mf )(κ[βp(U − Ū) + κpβw(V − V̄ )] + π + i)

The law of motion of firms’ cash balance is given by

ṁf = (yd − ye) + Jm −mf(κ
(
βp(Uc − Ūc) + κpβw(V − V̄ )

)
+ π + i) (98)

From this we can compute the law of motion of the cash balances of the asset

holders:

ṁc = (ṁc + ṁf)− ṁf

= (mc +mf)µ̄− (mc +mf )(κ[βp(U − Ū) + κpβw(V − V̄ )] + π + i)

− (yd − ye)− Jm +mf (κ
(
βp(U − Ū) + κpβw(V − V̄ )

)
+ π + i)

= (mc +mf)µ̄− (yd − ye)− Jm

−mc(κ[βp(U − Ū) + κpβw(V − V̄ )] + π + i) (99)

5.2 Steady state

The cash balances held by firms do not affect the steady state considerations of
the variables ye, ld, ν, π, ω, and πe, which are determined from the characteristics

of the goods and the labor markets.
But on the financial part something has changed. First we determine the

steady state of firms’ cash balance and then we investigate its effect on the hold-
ings of the other financial assets. The steady state value of the firms’ cash balances

is constructed by considering the time derivative of the term Mf/(pK), setting
it equal to zero, and by solving the resulting equation for mf . We thereby obtain

the result:

m̌f = βmd y̌e. (100)

Note that this value for mf is determined from the goods market. The steady
state values of the asset holders’ stocks of financial assets depends again solely
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on the steady state interest rate on bonds, because Tobin’s q = 1 is again implied

through the investment behavior of firms in the steady state and thus through
the real part of the economy. The computation of the steady state interest rate

differs slightly from the approach of the main part of the paper, because the
government budget constraint now also refers to the stock of money that is held

by firms.

µ̄(m̌c + m̌f + b̌) = ḡ − t̄nc − τwω̌ľ
d

⇔ µ̄(m̌c + b̌) = ḡ − t̄nc − τwω̌ľ
d − µ̄m̌f

(101)

The steady state interest rate is the interest rate which equilibrates the supply of
money and bonds and with the corresponding demands, again to be supplemented

by the equations that are needed to determine these supplies. Of course, the sum
of these supplies has to be the same as the sum of these demands. Multiplying

this sum with µ̄ we obtain the equilibrium condition:

µ̄(m̌c + b̌) = (fm(ř, řee) + fb(ř, ř
e
e))µ̄(m̌c + b̌+ 1) (102)

Properties (47) and (49) tell us that fm(ř, řee)+ fb(ř, ř
e
e) is an increasing function

in ř. Using now the budget constraint we know that there must be a unique
steady state interest rate that equilibrates the aggregate demand and supply of
money and bonds and which satisfies the budget constraint:

(fm(ř, řee) + fb(ř, ř
e
e)) = φ̄ (103)

with φ̄ =
ḡ − t̄nc − τwω̌ľ

d − µ̄m̌f

ḡ − t̄nc − τwω̌ľd − µ̄m̌f + µ̄
(104)

To exclude the situation that there is no market clearing interest rate we have
to make sure that with an increasing interest rate the aggregate demand exceeds

the debt of the public sector and falls short behind the supply when the interest
rate becomes small enough. This condition is met according to the assumption
made in the proposition 2.

Since we have deduced the steady state interest rate, it is easy to find the
steady state holdings of cash balances in the asset holder sector, and the steady

state stock of bonds.
We have to stress at this point, that the steady state growth rate of the price

of equities is not equal to the price inflation of goods. This growth rate of share
prices has to be newly calculated, which we are going to do now. In steady state

Tobin’s q must be one (q = 1). The time derivative of q furthermore is

q̇ =
(ṗeE + peĖ)pK − peE(ṗK + pK̇)

p2K2
=

ṗeE + peĖ

pK
− q(p̂+ i)

=
ṗE

pK
+

pĖ

pK
− (p̂+ i) =

ṗe
pe

q + i+
Im
K

− p̂− i =
ṗe
pe

+ Jm − p̂

Hence, in the steady state (q̇ = 0) we have:

Jm = p̂− p̂e (105)

30



Uses Resources

Production Account of Firms:

Depreciation pδK Consumption pC
Wages wLd Gross investment pI + pδK

Gross accounting profits Π = ρepK + pI Inventory investment pṄ
Consumption pG

Income Account of Firms:

Dividends (1− αρ)ρ
epyK Gross accounting profits Π

Savings pI + αρρ
epK

Accumulation Account of Firms:

Gross investment pI + pδK Depreciation pδK

Inventory investment pṄ Savings pI + αρρ
epK

Financial deficit FD

Financial Account of Firms:

Changes in money balance Ṁf Equity financing peĖ
Financial deficit FD

Figure 4: Accountings of the firms’ sector when there are cash balances and re-
tained earnings.

Thus the inflation rate in good prices exceeds now the inflation rate in share

prices. Empirical data however do not support this theoretical result. The prob-
lem seems to lie in the definition of Tobin’s average q. The nominal value of

equity holdings is divided by the nominal value of the productive capital stock
pK solely and neglects the money holdings of the firms.

6 Extension 2: Retained earnings of firms

In the previous section we stressed the lack of empirical evidence for the impli-
cation that the transaction motive of firms lead us to inflation in equity prices

less than the one of goods prices. Now we introduce another feature into our
model with which we can overcome this problem. We allow the firms to retain

a fixed proportion of their profits. These retained profits together with the issue
of equities now serve to finance the investment of firms in business fixed capital

and desired changes in their cash balances.
First we explicate the impact of this idea on the behavior of asset holders.

They are concerned about the dividend payments of firms which are now of less

amount compared to the earlier situation.

ρe = (Y e − δK − ωLd)/K (106)

Cc = (1− sc)[(1− αρ)ρ
eK + rB/p− Tc], 0 < sc < 1, 0 < αρ < 1(107)

Sp = sc[(1− αρ)ρ
eK + rB/p− Tc] (108)
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= (Ṁc + Ḃ + peĖ)/p, (109)

Wc = (Mc + B + peE)/p, Wn
c = pWc. (110)

Equation (106) repeats the unchanged definition of the expected rate of return

on capital. But in equation (107) the change becomes obvious. The source of
capital income, the dividend payments of firms enter only with the factor (1−αρ)

the consumption function where 0 ≤ αρ ≤ 1. This modification is also taken into
account in the formulation of the savings of asset holders in equation (108).

Additionally the economy is also changed by a different formulation of the
markets for financial assets. The expected rate of return on equities must pick

up the changes in the expected dividend payments:

ree =
(1− αρ)ρ

epK

peE
+ πe. (111)

In the firms’ sector, the budget equation of firms now turns out to be

peĖ = pI + Im − αρρ
epK, (112)

which tells us that the residual of business fixed investment and planned changes
in the cash balances of firms minus that part of expected profit, which is retained,
has to be financed by the issue of new equities. The change in the financing policy

of firms leads us therefore to a new definition of their savings:

Sn
f = pI + αρρ

epK. (113)

6.1 Intensive form and steady state considerations

The intensive form of the changed equations are now exposed. The intensive
representation of the consumption of private households, which is an important

part of the demand, is now given by

c = (1− τw)ωl
d + (1− sc)[(1− αρ)(y

e − δ − ωld)− t̄nc ]. (114)

The steady state of the economy will also differ from the steady state without

retained profits. But we focus here on those equations, where the newly intro-
duced parameter αρ enters explicitly the steady state equations of the dynamic

system. The steady state value of the real wage is to be rewritten as follows:

ω̌ =
y̌e − n − δ − ḡ − (1− sc)[(1− αρ)(y̌

e − δ)− t̄nc ]

[(1− τw)− (1− sc)(1− αρ)]ľd
(115)

Now we come to the primary purpose of this section: The consideration of the

steady state growth rate in equity prices. Building on the time derivative of q and
using the fact that in the steady state q̇ = 0 and q = 1 must hold, we compute

the following expressions:

q̇ = 0

⇔ (ṗeE+peĖ)pK−peE(ṗK+pK̇)
p2K2 = 0

⇔ p̂eq + i+ Jm − αρρ
e = q(p̂+ i)

⇔ p̂e = p̂− Jm + αρρ
e

(116)
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Thus an important finding of this section is, that if Jm is small enough, the

growth rate of equity prices will exceed the growth rate of goods prices which
may be an explanation of an important fact found in the data of modern market

economies.
The question now is, whether we can achieve the same result by allowing

firms to issue bonds for financing business fixed capital and desired changes in
cash balances? An important problem in the consideration of bond financing
of firms lies in the determination of the market value of the firms. So far we

assumed that this market value of firms is given by the price of equities times the
equities in existence. But when we allow for debt financing, we think that their

debt must lower the firms value in some sense. The pure equity valuation thus
seems inappropriate then, because of the claims of creditors that have then to be

considered in addition.

A Mathematical Appendix

A.1 Deriving the law of motion for real wages

The growth rate of real wages is the growth rate of nominal wages minus price
inflation:

ω̂ =

(
dw
p

dt

)
/

(
w

p

)
=

(
dw
dt p− w dp

dt

p2

)
p

w
=

dw

dt
/w −

dp

dt
/p = ŵ − p̂.

Plugging in the laws of motion for nominal wages and prices given in equations
(40) and (41) we obtain

p̂ = βp(Uc − Ūc) + κpŵ + (1− κp)π

= βp(Uc − Ūc) + κp(βw(V − V̄ ) + κwp̂+ (1− κw)π) + (1− κp)π

= βp(Uc − Ūc) + κpβw(V − V̄ ) + κpκw p̂+ κp(1− κw)π + (1− κp)π

=
βp(Uc − Ūc) + κpβw(V − V̄ ) + (1− κwκp)π

1− κwκp

= κ(βp(Uc − Ūc) + κpβw(V − V̄ )) + π

and ŵ = κ(βw(V − V̄ ) + κwβp(Uc − Ūc)) + π

with κ = (1− κwκp)
−1.

A.2 Computation of πe

We assume that the average expected inflation rate of equity prices equals the

actual inflation rate of equities πe = p̂e. These expectations play an important
role in the capital markets because they are one component of the expected

rate of return on equities. As we have seen in equation (17) the actual overall
expectation of equity price inflation is the weighted average of expectations held

by fundamentalists and chartists. From the law of motion in equation (16) and
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knowing the initial value of πef denoted by πef(t0) we can derive the definite

solution

πef (t) = (πef (t0)− η̄)e
−βπef

t
+ η̄.

Now we give the definite solution for the expected equity price inflation held by

chartists. From (15) we can derive the general solution:

πec(t) = βπec

∫ t

t0

p̂e(s)e
−βπec(t−s)ds.

Note that this representation is equivalent to the exponential lag distribution if

t0 = −∞. For this see Gandolfo (1996, ch. 12.4).
From the general solution one can easily derive the definite solution:

πec(t) = πec(t0)e
−βπec(t−t0) + βπec

∫ t

t0
p̂e(s)e

−βπec(t−s)ds,

where πec(t0) is the initial value of the expectations about growth the rate in

equity prices performed by the chartists.
Building up the weighted sum of the definite solutions according to equation

(17) we obtain equation (62).

A.3 Comparative statics

Defining F to be the difference between the money market clearing interest rate

and the bond market clearing interest rate depending on q and other variables
we get from (80) and (81):

F (ρe, q, πe, m, b) =
αm0 − αm2(ρ

e/q + πe)−m/(m+ b+ q)

αm1

−
− αb0 + αb2(ρ

e/q + πe) + b/(m+ b+ q)

αb1

We know that the steady state values of ρe, πe, m, and b are positive and thus
are also positive in a neighborhood around the steady state. The equilibrium

condition is F (. . .) = 0. Applying the implicit function theorem we can derive
qualitative dependencies of q on changes of other variables. Therefore, we can

compute the partial derivative of F (. . .) with respect to Tobin’s q.

∂F/∂q =

[
αm2ρ

e

αm1q2
+

m

αm1(m+ b+ q)2
+

αb2ρ
e

αb1q2
+

b

αb1(m+ b+ q)2

]
.

One can easily check that this term is positive.

The influence of expected rate of return on capital on q : The partial
derivative of Tobin’s q with respect to ρe is given by the following computation:

∂q

∂ρe
= −

∂F/∂ρe

∂F/∂q

=

(
αm2

αm1q
+

αb2

αb1q

)
/
∂F

∂q

Both, numerator and denominator are positive. Hence ∂q/∂ρe > 0 holds or in
words: Tobin’s q depends positively on the expected rate of return on capital.
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The influence of expected equity price inflation on q : We compute

∂q

∂πe
= −

∂F/∂πe
∂F/∂q

=

(
αm2

αm1
+

αb2

αb1

)
/
∂F

∂q
.

Again the numerator is positive and ∂q/∂πe > 0. Rising inflationary expectations

with respect to equity prices leads to a rising q.

The influence of the cash balance on q :

∂q

∂m
= −

∂F/∂m

∂F/∂q

= −

[
1

αm1

(
−
m+ b+ q −m

(m+ b+ q)2

)
+

1

αb1

(
−

−b

(m+ b+ q)2

)]
/
∂F

∂q

=

[
1/αm1

b+ q

(m+ b+ q)2
− 1/αb1

b

(m+ b+ q)2

]
/
∂F

∂q

Making use of the gross substitution property αm1 < αb1 the last expression is
positive and we get ∂q/∂m > 0. An increase in cash balances leads to an increase

in q.

The influence of the stock of bonds on q :

∂q

∂b
= −

∂F/∂b

∂F/∂q

= −

[
1

αm1

(
−

−m

(m+ b+ q)2

)
+

1

αb1

(
−
m+ b+ q − b

(m+ b+ q)2

)]
/
∂F

∂q

=

[
1/αm1

−m

(m+ b+ q)2
+ 1/αb1

m+ q

(m+ b+ q)2

]
/
∂F

∂q

which is positive if

m

αm1
<

m+ q

αb1
or equivalently q > m

(
αb1

αm1
− 1

)

holds. Here we obtain the ambiguity in (84). Because of the adding up constraint
in (47) can be written by −αm1 +αb1 −αe1 = 0 a necessary condition for ∂q

∂b > 0

is that αe1 is sufficiently small.

A.4 Comparative statics, alternative calculations

One yields the qualitative influences of the exogenous variables on q and r also

by applying a more general version of the implicit function theorem.
Defining F1 to be the excess demand on money market and F2 to be the

excess demand on bond market we have the following equilibrium conditions for

the financial markets:
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F1(r, q, m, b, ρe, πe) = (αm0 − αm1r − αm2(
ρe
q

+ πe))(m+ b+ q)−m = 0

F2(r, q, m, b, ρe, πe) = (αb0 + αb1r− αb2(
ρe
q

+ πe))(m+ b+ q)− b = 0

In order to obtain the impact of the exogenous variables (m, b, ρe, πe) on the

endogenous variables we apply the implicit function theorem and make use of
Cramer’s rule (see for example Simon and Blume (1994)) in order to obtain the

partial derivatives of q and r. In the case of the partial derivative of ∂q/∂m we
have to compute

∂q

∂m
= −

det ∂(F1,F2)
∂(r,m)

det ∂(F1,F2)
∂(r,q)

,

where the Jacobian of the system with respect to the endogenous variables r and
q, denoted by ∂(F1, F2)/∂(r, q), can be calculated by

∂(F1, F2)

∂(r, q)
=

(
− αm1(m+ b+ q) αm2

ρe

q2
(m+ b+ q) + m

m+b+q

αb1(m+ b+ q) αb2
ρe

q2 (m+ b+ q) + b
m+b+q

)
.

The determinant of the Jacobian above must be negative because the signs of the

entries are positive except of the upper left entry, which is negative. Hence

det
∂(F1, F2)

∂(r, q)
< 0.

The influence of the cash balance on q : The partial derivative of Tobin’s
q with respect to m is given by the following computation:

∂q

∂m
= −

det ∂(F1,F2)
∂(r,m)

det ∂(F1,F2)
∂(r,q)

(117)

This means that the sign of dq
dm is the same as the sign of det ∂(F1, F2)/∂(r,m)

which is

det
∂(F1, F2)

∂(r,m)
=

∣∣∣∣∣
− αm1(m+ b+ q) m

m+b+q − 1

αb1(m+ b+ q) b
m+b+q

∣∣∣∣∣
= − αm1b+ αb1(b+ q)

= (αb1 − αm1)b+ αb1q

From gross substitution property we know that αm1 < αb1. Thus we can conclude

from positive stocks of assets and positive α’s that det ∂(F1, F2)/∂(r,m)> 0 and
therefore ∂q

∂m > 0
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The influence of the stock of bonds on q : The partial derivative of Tobin’s

q with respect to b is given by the following computation:

∂q

∂b
= −

det ∂(F1,F2)
∂(r,b)

det ∂(F1,F2)
∂(r,q)

(118)

The right hand side of this equation is much similar to that of the derivative of

q with respect of m in the preceeding paragraph. Hence we know that the sign
of the derivative ∂q

∂b again depends solely on the sign of the numerator.

det

∣∣∣∣∣
− αm1(m+ b+ q) (αm0 − αm1r − αm2(

ρe
q + πe))

αb1(m+ b+ q) (αb0 + αb1r − αb2(
ρe
q + πe))− 1

∣∣∣∣∣
= αm1(m+ q)− αb1m

Here the result displays an ambiguity. It tells us that

∂q

∂b

<
=
>

0, if q
<
=
>

(
αb1

αm1
− 1)m.

So the condition that guarantees not to negative values of ∂q
∂b is a sufficiently

small value of αb1

αm1
, which is equivalent to a sufficient small value of ∂fe

∂r by means

of the adding up constraint (47).

The influence of the expected rate of return on capital on q : By the

same argument as in the previous section the sign of the partial derivative of
Tobin’s q with respect to ρe is given by the sign of

det
∂(F1, F2)

∂(r, ρe)
=

∣∣∣∣∣
− αm1(m+ b+ q) −αm2

q (m+ b+ q)

αb1(m+ b+ q) −αb2

q (m+ b+ q)

∣∣∣∣∣ > 0 (119)

Hence we know that ∂q
∂ρe is positive.

The influence of the expected growth rate of equity prices on q :

Again we only have to check the sign of the determinant of the Jacobian

∂(F1, F2)/∂(r, πe):

det ∂(F1,F2)
∂(r,πe)

=

∣∣∣∣∣
− αm1(m+ b+ q) −αm2(m+ b+ q)

αb1(m+ b+ q) −αb2(m+ b+ q)

∣∣∣∣∣ > 0 (120)

from which follows that ∂q
∂πe

> 0.

The influence of the cash balance on r :

∂(F1, F2)

∂(m, q)
=

∣∣∣∣∣
− b+q

m+b+q αm2
ρe

q2
(m+ b+ q) + m

m+b+q
m

m+b+q αb2
ρe

q2
(m+ b+ q) + b

m+b+q

∣∣∣∣∣ < 0

From which we can conclude that ∂r
∂m < 0.
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The influence of the stock of bonds on r :

∂(F1, F2)

∂(b, q)
=

∣∣∣∣∣

m
m+b+q αm2

ρe

q2 (m+ b+ q) + m
m+b+q

− b+q
m+b+q αb2

ρe

q2
(m+ b+ q) + b

m+b+q

∣∣∣∣∣ > 0

from which follows that ∂r
∂b > 0.

The influence of expected capital gains on equities on r :

∂(F1, F2)

∂(πe, q)
=

∣∣∣∣∣
−αm2(m+ b+ q) αm2

ρe

q2 (m+ b+ q) + m
m+b+q

−αb2(m+ b+ q) αb2
ρe

q2
(m+ b+ q) + b

m+b+q

∣∣∣∣∣

Without further assumptions we cannot specify the influence of the expected
growth rate on equity prices on the interest rate.

The influence of the expected rate of return on capital on r : Again we

only have to check the sign of the determinant of the Jacobian ∂(F1, F2)/∂(ρ
e, q):

∂(F1, F2)

∂(ρe, q)
=

∣∣∣∣∣
−αm2

q (m+ b+ q) αm2
ρe

q2 (m+ b+ q) + m
m+b+q

−αb2

q (m+ b+ q) αb2
ρe

q2 (m+ b+ q) + b
m+b+q

∣∣∣∣∣

Again we cannot say anything about the the influence of the expected rate of

return on capital so far.
Note that the findings in this subsection are totally in accordance with the

findings of section and 3.2 and A.3.

A.5 Proofs of the stability propositions

Proof of Proposition 4: The Jacobian of the system (86) is

J =




−mi1
∂q
∂m −mi1

∂q
∂b −m ∂i

∂ye

−µ̄ − bi1
∂q
∂m −µ̄ − bi1

∂q
∂b −τwω

1
x

∂y
∂ye − b ∂i

∂ye

(βye + ye)i1
∂q
∂m (βye + ye)i1

∂q
∂b βye

(
∂c
∂ye + ∂i

∂ye − 1
)
+ ye ∂i

∂ye




Note that all other variables possessing a dynamic law are set to their steady

state values.
The Routh–Hurwitz conditions for a 3× 3–system are given by:

detJ < 0 (121)

tr J < 0 (122)

J1 + J2 + J3 > 0 (123)

(−tr J)(J1 + J2 + J3) + detJ > 0 (124)

where the Ji are the second order principal minors of J .
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Beginning with condition (122) we have to calculate the trace:

trJ = −mi1
∂q

∂m
− µ̄ − bi1

∂q

∂b
+ (βye + ye)(i1

∂q

∂ye
+ i2

1

yp
∂y

∂ye
)

+βye

(
∂c

∂ye
− 1

)

The conditions for the trace to be negative are derived now by first showing that

−mi1
∂q
∂m−bi1

∂q
∂b and ∂c

∂ye −1 are negative. Second we show that (βye+ye)(i1
∂q
∂ye +

i2
1
yp

∂y
∂ye ) is positive.

−mi1
∂q

∂m
− bi1

∂q

∂b

= i1

(
det

∂(F1, F2)

∂(r, q)

)−1

m(αb1b− αm1b+ αb1q) + b(αm1m+ αm1q − αb1m)

= i1

(
det

∂(F1, F2)

∂(r, q)

)−1

(αb1mq + αm1bq)

Remember that the determinant was negative, hence the whole term is negative.

Now we show that the term ∂c
∂ye − 1 is negative:

∂c
∂ye − 1

= (1− τw)ω
1
x

∂y
∂ye + (1− sc)(1− ω 1

x
∂y
∂ye )− 1

= (sc − τw)ω
1
x

∂y
∂ye − sc

which is in the rest point by means of the steady state value of ω:

−n − ḡ − scδ + (1− sc)t̄
n

ye

Knowing that in steady state the government runs a deficit, the only positively
entering term (1− sc)t̄

n must be smaller than ḡ, hence ∂c
∂ye − 1 must be negative.

The term (βye + ye)(i1
∂q
∂ye + i2

1
yp

∂y
∂ye ) can be rewritten by:

(βye + ye)(i1
∂q
∂ρe

∂ρe

∂ye + i2
1
yp

∂y
∂ye )

= (βye + ye)(i1
∂q
∂ρe

∂ρe

∂ye + i2
1
yp (1 + nβnd))

In section A.4 we have shown that ∂q
∂ρe is positive such that the whole term

consists of positive entries. The term can be bounded to be sufficiently small by

first, assuming a sufficiently small i2, which makes the second part of the term
in brackets small. Second, we assume sufficiently small values of ∂fm

∂r = αm1 and
∂fm
∂ree

= αm2 at the steady state, which let the first part of the sum in the brackets

small enough as we will show now.
According to section A.4 we can write:

∂q

∂ρe
=

1
q (αm1αb2 + αb1αm2)(m+ b+ q)2

ρe

q2 (αm1αb2 + αb1αm2)(m+ b+ q)2 + αm1b+ αb1m
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From the right hand side one can easily see, that it could take sufficiently small

values down to zero, when αm1 and αm2 are chosen small enough. In the following
we will assume that the αm1, αm2, and i2 are sufficiently small, such that

∂c

∂ye
+

∂i

∂ye
− 1 < 0.

In addition with a sufficiently large βye this assumption ensures a negative trace.
With respect to the Routh–Hurwitz condition 123 a sufficient condition for

the sum of the principal minors to be positive is that all principal minors are

positive.

J3 =

∣∣∣∣∣
−mi1

∂q
∂m −mi1

∂q
∂b

−µ̄ − bi1
∂q
∂m −µ̄ − bi1

∂q
∂b

∣∣∣∣∣ = µ̄mi1(
∂q

∂m
−

∂q

∂b
)

According to Lemma 1 we know that this expression is positive.

J2 =

∣∣∣∣∣∣
−mi1

∂q
∂m −m ∂i

∂ye

(βye + ye)i1
∂q
∂m βye

(
∂c
∂ye + ∂i

∂ye − 1
)
+ ye ∂i

∂ye

∣∣∣∣∣∣

=

∣∣∣∣∣
−mi1

∂q
∂m −m ∂i

∂ye

0 βye(
∂c
∂ye − 1)

∣∣∣∣∣ > 0

J2 must be positive, because of the assumptions made in the proposition ensure

that (∂c)/(∂ye) + (∂i)/(∂ye)− 1 < 0 holds.

J1 =

∣∣∣∣∣∣
−µ̄ − bi1

∂q
∂b −τwω

1
x

∂y
∂ye − b ∂i

∂ye

(βye + ye)i1
∂q
∂b βye

(
∂c
∂ye + ∂i

∂ye − 1
)
+ ye ∂i

∂ye

∣∣∣∣∣∣
> 0

This last statement is true, because the assumption (∂fe)/(∂r) small enough

implies that (∂q)/(∂b)> 0 holds, as we have found in appendix A.4.
Now we prove the Routh–Hurwitz condition (121): the determinant of J must

be negative.

|J | =

∣∣∣∣∣∣∣∣

−mi1
∂q
∂m −mi1

∂q
∂b −m ∂i

∂ye

−µ̄ − bi1
∂q
∂m −µ̄ − bi1

∂q
∂b −τwω

1
x

∂y
∂ye − b ∂i

∂ye

(βye + ye)i1
∂q
∂m (βye + ye)i1

∂q
∂b βye(

∂c
∂ye − 1) + (βye + ye) ∂i

∂ye

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

−mi1
∂q
∂m −mi1

∂q
∂b −m ∂i

∂ye

−µ̄ −µ̄ −τwω
1
x

∂y
∂ye

0 0 βye (
∂c
∂ye − 1)

∣∣∣∣∣∣∣∣

which is negative due to βye(
∂c
∂ye − 1) < 0. The last Routh–Hurwitz condition

(−trJ)(J1 + J2 + J3) + det J > 0 finally can be fulfilled by letting βye to be
large enough, because rising adjustment speeds lead to a decreasing trace and
rising sum of principal minors and to decreasing determinant. But βye enters
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(−trJ)(J1+J2 +J3) quadratic and the determinant only linear. Hence, for suffi-

ciently large adjustment speed the last Routh–Hurwitz condition is also fulfilled.
Thus all Routh Hurwitz conditions are fulfilled when i2, αm1, αm2 are

sufficiently small and βye sufficiently large.

Proof of proposition 5: The Jacobian of the system (87) is given by

J⋆ =




J1,1 J1,2 J1,3 −mκβp
1
yp

∂y
∂ye −mi1

∂q
∂ω

J2,1 J2,2 J2,3 − bκβp
1
yp

∂y
∂ye −τw

y
x − bi1

∂q
∂ω

J3,1 J3,2 J3,3 βye(sc − τw)
y
x + (βye + ye)i1

∂q
∂ω

0 0 ωκ(κw − 1)βp
1
yp

∂y
∂ye 0




With βp = 0 we know that the system possesses three eigenvalues with negative
real part and one eigenvalue of zero, the negative real part eigenvalues being iden-

tical to the eigenvalues of the Jacobian J⋆ of system (86). Let now βp become
positive, but small enough. Employing the fact that the eigenvalues are continu-

ous in the entries of the Jacobian (see for example Sontag (1990)), we know that
with sufficiently small perturbations of the entries of the Jacobian (small βp) the
negative real parts will stay negative. With three eigenvalues with negative real

parts we can make use of the property that the product of the eigenvalues of
a matrix equals the determinant of the matrix. There follows that the fourth

eigenvalue must be negative if the determinant of the Jacobian is positive. Hence
for proving proposition 5 it is equivalent to showing that the determinant of J⋆

shown below is positive:

|J⋆| = − ωκ(κw − 1)βp
1

yp
∂y

∂ye

∣∣∣∣∣∣∣

J1,1 J1,2 −mi1
∂q
∂ω

J2,1 J2,2 −τw
y
x − bi1

∂q
∂ω

J3,1 J3,2 βye(sc − τw)
y
x + (βye + ye)i1

∂q
∂ω

∣∣∣∣∣∣∣

The term −ωκ(κw − 1)βp
1
yp

∂y
∂ye is positive, because κw can only take values in

the interval [0, 1]. All other terms are positive. This means that |J⋆| will be
positive if and only if the second component of the product, the determinant of

the following 3× 3 system is positive too:
∣∣∣∣∣∣∣

−mi1
∂q
∂m −mi1

∂q
∂b −mi1

∂q
∂ω

−µ̄ − bi1
∂q
∂m −µ̄ − bi1

∂q
∂b −τw

y
x − bi1

∂q
∂ω

(βye + ye)i1
∂q
∂m (βye + ye)i1

∂q
∂b βye(sc − τw)

y
x + (βye + ye)i1

∂q
∂ω

∣∣∣∣∣∣∣
> 0

Multiplying the first row by (βye +ye)/m and adding this to the third row of the
matrix and multiplying the first row by −b/m and adding this to the second row

we do not change the determinant and we can obtain thereby the expression:
∣∣∣∣∣∣∣

−mi1
∂q
∂m −mi1

∂q
∂b −mi1

∂q
∂ω

−µ̄ −µ̄ −τw
y
x

0 0 βye(sc − τw)
y
x

∣∣∣∣∣∣∣
> 0

βye(sc − τw)
y

x
µ̄mi1(

∂q

∂m
−

∂q

∂b
) > 0
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From lemma 1 we know that this inequality must hold true

Proof of proposition 6: The Jacobian of the 5 × 5 system in proposition 6

can be written by

J⋆⋆ =




J⋆
1,1 J⋆

1,2 J⋆
1,3 −mκκp

βw

xl
∂y
∂ye J⋆

1,4 mκκpβw
y
xl2

J⋆
2,1 J⋆

2,2 J⋆
2,3 − bκκp

βw

xl
∂y
∂ye J⋆

2,4 bκκpβw
y
xl2

J⋆
3,1 J⋆

3,2 J⋆
3,3 J⋆

3,4 0

J⋆
4,1 J⋆

4,2 J⋆
4,3 +

ωκ(1−κp)βw

xl
∂y
∂ye J⋆

4,4 −
ωκ(1−κp)βwy

xl2

−li1
∂q
∂m −li1

∂q
∂b −l ∂i

∂ye −li1
∂q
∂ω 0




where J⋆
i,j are the entries of the Jacobian of the system (87). We follow the same

idea as in the preceding proof. Hence, it is sufficient to show that |J⋆⋆| < 0 holds,
if the parameter βw is sufficiently small. In a first step we do some row operations

within the matrix which do not change its determinant: −b/m times the first row
and added to the second row gives the new second row, (βye + ye)/l times the
fifth row and added to the third row gives the new third row, −l/m times the

first row and added to the fifth row gives the new fifth row. The determinant is
therefore equal to

|J⋆⋆| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

J⋆⋆
1,1 J⋆⋆

1,2 J⋆⋆
1,3

−µ̄ −µ̄ −τw
x

∂y
∂ye

0 0 βye [−τw
ω
x

∂y
∂ye − sc(1−

ω
x

∂y
∂ye )]

0 0 ωκ[(1− κp)
βw

xl
∂y
∂ye + (κw − 1)βp

yp
∂y
∂ye ]

0 0 lκ[βp

yp
∂y
∂ye + κp

βw

xl
∂y
∂ye ]

J⋆⋆
1,4 J⋆⋆

1,5

−τw
y
x 0

βye (sc − τw) 0
0 −ωκ(1− κp)βw

y
xl2

0 −lκκpβw
y
xl2

∣∣∣∣∣∣∣∣∣∣∣

< 0

We know that the upper left 2× 2 submatrix has a positive determinant, thus in
order to have a negative determinant of the full matrix, we need that the lower

right 3× 3 submatrix has a negative determinant. This submatrix is denoted by
h1 and we have to show that |h1| < 0:

|h1| = −βye(sc − τw)

×

∣∣∣∣∣
ωκ[(1− κp)

βw

xl
∂y
∂ye + (κw − 1)

βp

yp
∂y
∂ye ] −ωκ(1− κp)βw

y
xl2

lκ[
βp

yp
∂y
∂ye + κp

βw

xl
∂y
∂ye ] −lκκpβw

y
xl2

∣∣∣∣∣ .

In case of 0 < κp ≤ 1 the latter equals

|h1| = −βye(sc − τw)

∣∣∣∣∣∣
ωκ[(κw − 1)−

1−κp

κp
]
βp

yp
∂y
∂ye 0

lκ[
βp

yp
∂y
∂ye + κp

βw

xl
∂y
∂ye ] −lκκpβw

y
xl2

∣∣∣∣∣∣
,
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which is negative, because sc > τw and κp is in (0, 1).

In the case κ = 0 we get

|h1| = −βye(sc − τw)

×

∣∣∣∣∣
ω[βw

xl
∂y
∂ye + (κw − 1)βp

yp
∂y
∂ye ] −ωβw

y
xl2

l
βp

yp
∂y
∂ye 0

∣∣∣∣∣ ,

which is negative too.

Proof of proposition 7: The Jacobian of system (89) is

J⋆⋆⋆ =




J⋆⋆
1,1 J⋆⋆

1,2 J⋆⋆
1,3 J⋆⋆

1,4 J⋆⋆
1,5 −mκ(βp

−βn

yp + κpβw
−βn

xl )−m ∂i
∂ν

J⋆⋆
2,1 J⋆⋆

2,2 J⋆⋆
2,3 J⋆⋆

2,4 J⋆⋆
2,5 J⋆⋆⋆

2,6

J⋆⋆
3,1 J⋆⋆

3,2 J⋆⋆
3,3 J⋆⋆

3,4 J⋆⋆
3,5 J⋆⋆⋆

3,6

J⋆⋆
4,1 J⋆⋆

4,2 J⋆⋆
4,3 J⋆⋆

4,4 J⋆⋆
4,5 J⋆⋆⋆

4,6

J⋆⋆
5,1 J⋆⋆

5,2 J⋆⋆
5,3 J⋆⋆

5,4 J⋆⋆
5,5 0

J⋆⋆⋆
6,1 J⋆⋆⋆

6,2 J⋆⋆⋆
6,3 J⋆⋆⋆

6,4 0 J⋆⋆⋆
6,6




,

where

J⋆⋆⋆
2,6 = τwω

βn
x

− bκ(βp
−βn
yp

+ κpβw
−βn
xl

)− b
∂i

∂ν
,

J⋆⋆⋆
3,6 = βye(τw − sc)ω

βn
x

+ (βye + ye)
∂i

∂ν
,

J⋆⋆⋆
4,6 = ωκ[(1− κp)βw

−βn
xl

+ (κw − 1)βp
−βn
yp

],

J⋆⋆⋆
6,1 = −(ν + 1)i1

∂q

∂m
,

J⋆⋆⋆
6,2 = −(ν + 1)i1

∂q

∂b
,

J⋆⋆⋆
6,3 =

∂y

∂ye
−

∂c

∂ye
− (ν + 1)

∂i

∂ye
,

J⋆⋆⋆
6,4 = (τw − sc)

y

x
− (ν + 1)i1

∂q

∂ω
,

J⋆⋆⋆
6,6 = −βn − n − [(τw − sc)ω

βn
x
]− (ν + 1)

∂i

∂ν
.

If βn is zero we obtain

|J⋆⋆⋆| = −n|J⋆⋆|

because the last column would only consist of zeros, except of the entry
J⋆⋆⋆
6,6 = −n. Thus one Eigenvalue is −n. The other five Eigenvalues are those of

the upper left 5× 5 matrix, which are negative as we have shown in the proof of
proposition 6. Letting βn become positive but sufficiently small, the negativity

of the Eigenvalues will be preserved.
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Proof of proposition 8 The Jacobian of the dynamic system (90) is given by

J⋆⋆⋆⋆ =




J⋆⋆⋆
1,1 J⋆⋆⋆

1,2 J⋆⋆⋆
1,3 J⋆⋆⋆

1,4 J⋆⋆⋆
1,5 J⋆⋆⋆

1,6 −m

J⋆⋆⋆
2,1 J⋆⋆⋆

2,2 J⋆⋆⋆
2,3 J⋆⋆⋆

2,4 J⋆⋆⋆
2,5 J⋆⋆⋆

2,6 −b

J⋆⋆⋆
3,1 J⋆⋆⋆

3,2 J⋆⋆⋆
3,3 J⋆⋆⋆

3,4 J⋆⋆⋆
3,5 J⋆⋆⋆

3,6 0

J⋆⋆⋆
4,1 J⋆⋆⋆

4,2 J⋆⋆⋆
4,3 J⋆⋆⋆

4,4 J⋆⋆⋆
4,5 J⋆⋆⋆

4,6 0

J⋆⋆⋆
5,1 J⋆⋆⋆

5,2 J⋆⋆⋆
5,3 J⋆⋆⋆

5,4 J⋆⋆⋆
5,5 J⋆⋆⋆

5,6 0

J⋆⋆⋆
6,1 J⋆⋆⋆

6,2 J⋆⋆⋆
6,3 J⋆⋆⋆

6,4 J⋆⋆⋆
6,5 J⋆⋆⋆

6,6 0

0 0 J⋆⋆⋆⋆
7,3 0 J⋆⋆⋆⋆

7,5 J⋆⋆⋆⋆
7,6 −(1− α)βπ




,

where

J⋆⋆⋆⋆
7,3 = αβπκ(

βp
yp

+
κpβw
xl

)
∂y

∂ye
,

J⋆⋆⋆⋆
7,5 = −αβπκκpβw

y

xl2
,

J⋆⋆⋆⋆
7,6 = αβπκ(βp

−βn
yp

+ κpβw
−βn
xl

).

Again we only have to show that the determinant is negative. Multiplying the
first row by αβπ/m and adding this to the seventh row and adding to this new

seventh row −αβπ/l times the fifth row we get a seventh row with zeros with
the exception of the last element which is −βπ. We know that the determinant

is the determinant of the upper left 6 × 6 matrix times −βπ yielding a negative
determinant, because we know from the proof of proposition 7 that the upper

left 6× 6 matrix has a positive determinant.
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B Appendix: Notation

The models considered this paper are based on the following basically standard macroeconomic
notation:

A. Statically or dynamically endogenous variables:

B, Bd Bonds, bond demand
Cc Consumption of asset holders
Cw Consumption of workers

E, Ed Equities, equity demand
G Government expenditure
I Fixed business investment
K Capital stock
L Labor supply

Ld Level of employment

M , Md Money supply, money demand
Mf ,Mc Cash balance of firms and asset holders
N Stock of inventories

Nd Desired stock of inventories
S = Sp + Sf + Sg Total savings
Sf , S

n
f Savings of firms, nominal savings of firms

Sg, S
n
g Government savings, nominal government savings

Sp, S
n
p Private savings, nominal private savings

T Total real taxes
U = Y/Y p Rate of capacity utilization

V = Ld/L Rate of employment
W Real wealth
Y Output

Y d Aggregate demand C + I + δK +G
Y e Expected aggregate demand
Y p Potential output
ν = N/K Inventory–capital ratio
ω Real wage (u = ω/x the wage share)
π Expected rate of inflation (medium–run)
ρ, ρe Rate of return on capital, expected rate of return on capital
p Price level
pe Price of Equities
r Nominal rate of interest (price of bonds pb = 1)
ree Rate of return on equities
w Nominal wages
I Desired inventory investment
Im Firms’ desired cash balance adjustment
J Firms’ desired cash balance adjustment in intensive form

B. Parameters

V̄ NAIRU-type normal utilization rate concept (of labor)
Ū NAIRU-type normal utilization rate concept (of capital)
δ Depreciation rate
µ̄ Growth rate of the money supply
ḡ Intensive government purchases (const.)
η̄ Fundamentalists long run expectations equity price inflation
n Natural growth rate
i1,2 > 0 Investment parameters
βw ≥ 0 Wage adjustment parameter
βp ≥ 0 Price adjustment parameter
βπ ≥ 0 Inflationary expectations adjustment parameter
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α ∈ [0, 1] Weight of actual inflation on expected inflation
αec ∈ [0, 1] Ratio of chartists to chartists and fundamentalists
αρ ∈ [0, 1] share of retained earnings on profits
βnd > 0 Desired inventory – expected sales ratio
βn > 0 Inventory adjustment parameter
βmd > 0 Desired cash balance – expected sales ratio
βm > 0 Cash balance adjustment parameter
βye > 0 Demand expectations adjustment parameter
κw,p ∈ [0, 1], κwκp 6= 1 Weights for short– and medium–run inflation
κ = (1− κwκp)

−1

yp > 0 Potential output–capital ratio ( 6= y, the actual ratio)
x > 0 Output–labor ratio
t(tnc = t− rb) Taxes (net of interest) per capital
sc ∈ [0, 1] Savings–ratio (out of profits and interest)

C. Mathematical notation

ẋ Time derivative of a variable x
x̂ Growth rate of x
l′, lw Total and partial derivatives
x̌ Steady state value of X
yw = y′(l)lw Composite derivatives
ro, etc. Steady state values
y = Y/K, etc. Real variables in intensive form
m = M/(pK), etc. Nominal variables in intensive form
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