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Abstract

The phrase business cycle is usually used for short term fluctuations in
macroeconomic time series. In this paper we focus on the estimation of
business cycles in a bivariate manner by fitting two series simultaneously.
The underlying model is thereby nonparametric in that no functional form is
prespecified but smoothness of the functions are assumed. The functions are
then estimated using penalized spline estimation. The bivariate approach
will allow to compare business cycles, check and compare phase lengths and
visualize this in forms of loops in a bivariate way. Morevover, the focus is
on separation of long and short phase fluctuation, where only the latter is
the classical business cycle while the first is better known as Friedman or
Goodwin cycle, respectively. Again, we use nonparametric models and fit
the functional shape with P-splines. For the separation of long and short
phase components we employ an Akaike criterion.

JEL CLASSIFICATION SYSTEM FOR JOURNAL ARTICLES:
C32, C14, E32.

KEYWORDS: penalized spline regression, bivariate nonparametric regres-
sion, business cycle, Goodwin and Friedman cycle
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1 Introduction

Econometrics as well as statistics have been dominated by parametric models

over decades. The limitation has fallen down with smoothing techniques now

allowing for a sophisticated framework to fit models functionally. Smooth-

ing techniques with local approaches (see e.g. Fan and Gijbels 1996) as

well as spline smoothing (see Eubank 1989 or Wahba 1990) have indeed

achieved recognizable standard and are numerically available in modern sta-

tistics packages like R (www.r-project.org) or S-Plus. A general introduction

is found in Hastie and Tibshirani (1990), a milestone in terms of smooth non-

parametric modeling. In recent years, penalized spline fitting as smoothing

technique has obtained more and more attention. Originally introduced by

O’Sullivan (1986) it was Eilers and Marx (1996) who made the procedure

popular under the phrase P-spline smoothing. The book by Ruppert, Wand,

and Carroll (2003) demonstrates the flexibility as well as the numerical sim-

plicity of the approach. An interesting feature of the P-spline idea is thereby,

that P-spline smoothing can be linked to Linear Mixed Models so that both,

fitting as well as smoothing parameter selection can be carried out by Mixed

Models technology, see Wand (2003) or Kauermann (2004).

Even though nonparametric techniques are well developed and established

in classical regression type models, their use for time dependent data is less

explored. Fan and Yao (2003) summarize a number of nonparametric models
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in a time series framework. More recent work is found in Ruppert (2004)

or the edited volume by Akritas and Politis (2003), chapters 8 and 11. A

concise general overview was given in Härdle, Lütkepohl, and Chen (1997).

Nonetheless, the field of nonparametric estimation for time series data has

shown distinctly less activity in the last years compared to the ubiquitous

discussion in a classical regression context. In this paper we make use of

functional data analyses using penalized splines to structure and analyze

business cycles and underlying long phase cycles of bivariate macroeconomic

time series. The major problem one is facing in data collected over time is

that residuals εt might be serially correlated. And even though serial cor-

relation is not a particular problem for the pure nonparametric fit of g(t),

it is a problem for selecting the smoothing parameter in a data driven way,

(see Opsomer, Wang, and Yang 2001). For P-spline smoothing the problem

is less apparent as has been shown in Krivobokova and Kauermann (2004).

Nonetheless, the decomposition of trend and serial correlation is a difficult

problem and a uniform scientific opinion can not be achieved.

We investigate the relation of the employment rate yt1 and inflation rate yt2.

From a pure statistical point of view we are thereby not interested in a sep-

arate analysis and fitting of the two business cycle functions for yt1 and yt2,

respectively. We assume that yt = (y1t, y2t) follows a business fluctuation

g(t) = (g1(t), g2(t)), say, and pursue a joint estimation of g(t). The objective
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is to visualize g(t) as trajectory over t in the phase space of yt1 and yt2. The

long phase loops and the business fluctuations around them obtained from

this trajectory allow for an economic interpretation. In particular the direc-

tion of rotation of the trajectory of g1(t), g2(t) gives information which cycle

is running ahead of the other and clearly, a rotation change indicates, that

the phase length for the two cycles g1(t) and g2(t) differ. We will use polar co-

ordinates which allows to assess if cycle length differ and whether they have a

dynamic behavior over time. Practically this is done by smoothly estimating

rotation angle and radius of the function g(t). We will decompose the series

into a long phase cycle and a short phase cycle of business cycle frequency,

where not only the latter is of interest in this paper, though our angle and

radius measures are characteristics of the observed business solely. Both,

”short” and ”long” phase cycles are estimated in a coherent framework using

Penalized Splines. The modeling exercise has relations to classical predator-

prey models originally proposed by Lotka (1925) and Volterra (1926) and

applied to economics by Goodwin (1967). There loops or cycles, respec-

tively, are trajectories of differential equations which are itself parametric.

Our approach does not follow the differential equation relation but uses non-

parametric routines to estimate smooth loops. The smoothing idea itself

shows similarities to estimating principle curves (see e.g. Hastie and Stützle

1989, or Einbeck, Tutz, and Evers 2005, and references given there). Unlike

the data situation in principle curve estimation, however, we have data col-
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lected over time which is in fact the core component of our model.

As data we investigate bivariate macroeconomic time series. In more de-

tail we are interested in the short term fluctuations in the time series, which

are well known as ”business cycles”. The most popular definition of business

cycles is given by Burns and Mitchell (1946) which name them as ”a type

of fluctuations in the aggregate economic activity”. Although the work was

criticized by Koopmans (1947) the definition and nowadays the approaches

are mainly accepted. Long and Plosser (1983) agree to this definition and

stated that the name ”business cycle refers to the joint time-series behavior of

a wide range of economic variables”. Instead of observing these fluctuations

directly in the time plot of the time series one has to derive the ”detrended”

time series. Lucas (1977) redefines the business cycles as ”the deviations of

the Gross National Product from a trend”, which can differ from an exponen-

tial growth rate over the time. Kydland and Prescott (1990) propose ”a curve

which students of business cycles and growth would draw in” and suggest to

use the Hodrick and Prescott (1981) Filter. Contrary, Stock and Watson

(1999) prefer the bandpass filter (Baxter and King 1999). From a statistical

point of view both filter have a lack, namely the choice of the ”tuning para-

meter”. Hodrick and Prescott (1981) and Kydland and Prescott (1990) use

a fixed smoothing parameter λ = 1600, which was subjectively proposed for

one time series (real output) and it seems questionable to use this smooth-
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ing parameter blindly for all other time series. Baxter and King (1999) and

Stock and Watson (1999) choose the tuning parameter pair p = 6 and q = 32

because they pointed out that a cycle should last at least 6 and at most 32

quarters long. Although the choices of these parameters are (subjectively)

reasoned we again warn to follow this suggestions blindly. A statistical ap-

proach which selects the tuning parameter data driven is suggested in the

paper.

The equilibrium models of Kydland and Prescott (1982), Long and Plosser

(1983) and Backus, Kehoe, and Kydland (1992) build up a microfounded

economy in which the artificial time series are very alike the empirical fluctu-

ations measured by statistical moments, i.e. the covariance and autocorrela-

tion. While the Kydland and Prescott (1982) model is based on the idea that

the production of the good takes more than one period, Long and Plosser

(1983) extend the one-good-model to an economy in which different goods

are produced to be consumed and/or to produce new goods. Backus, Kehoe,

and Kydland (1992) opens the economy in which labor is immobile but goods

can be transferred between the countries to reduce the risk of the agents. Al-

though these models differ slightly they are all capable to reproduce more or

less the observed fluctuations of macroeconomic time series, e.g. real output,

consumption, investment, trade balance, capital stock and worked hours.

Given the theoretical background of the equilibrium models more and more

statistical approaches have been presented in the literature to capture the
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behavior of the business cycles. Stock and Watson (1999) compare seventy

macroeconomic time series with the real output. Beside a graphical repre-

sentation they capture the relationship by the autocorrelation statistics and

the Granger causalities. Hamilton (1989) and Hamilton (2005) use a discrete

Markov switching model to explain some time series. Sinclair (2006) uses

this work to extend the model to explain the observed asymmetries in the

business cycles. The work of Stock (1987) distinguish between the observed

(linear) calendar time and a (nonlinear) economic time. These examples jus-

tifies a nonlinear approach although most of the works seem to fail to extend

the models to a multivariate case.

The scientific contributions of this paper are twofold. First, from a method-

ological point of view, we propose a new econometric method for decomposing

bivariate time series, and their representation as two-dimensional phase plots,

into two cycles of significantly different length. Secondly, from an economic

viewpoint, we provide the estimation and visualization of such interacting

cycles of business cycle frequency and of long wave frequency for inflation

and income distribution dynamics in its dependence on the rate of employ-

ment, respectively. These estimations can be viewed as laying the ground

for a new investigation of time series with no secular trend by decomposing

them into cyclical ”trends’ and ordinary business cycles simultaneously. In

the case of the US economy after World War II we obtain approximately
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six business cycles that are superimposed on one long cyclical fluctuations in

employment, inflation and income distribution. From a methodological point

of view we here use smooth estimation of cycles and long loops, a field which

is only rudimentary explored in statistics (see also Fisher 1995).

The paper is organized as follows. In section 2 we present the estimation rou-

tine with its theoretical background. The link to Generalized Linear Mixed

Models is derived which is used for smoothing parameter selection. Section 3

discusses simulations as well estimation for our two bivariate data examples,

the inflation and the income distribution cycles. Section 4 concludes.

2 Estimating bivariate Business Cycles

2.1 B-spline Estimation

Assume we observe data points (yt1, yt2) in pairs with t as index referring

to the time point. We assume that the data are noisy observations of a

smooth two dimensional function g(t) = (g1(t), g2(t))
T , where g is smooth

in the following sense. The trajectory g(t) follows loops or circles around the

origin, and both, the velocity as well as the radius have no rapid changes. In

particular this means, that locally and ignoring the implicit role of t, g1(·)
is a smooth function of g2(·) and vice versa, respectively. More precisely we
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formulate g(t) in the polar coordinate functions

radius: ρ(t) =
√

g1(t)2 + g2(t)2 (2.1)

angle: φ(t) = arctan

(
g2(t)

g1(t)

)

+ 1{g1(t)<0}
[
1{g2(t)>0} − 1{g2(t)<0}

]
π (2.2)

which are smooth functions in t, where 1{.} is the indicator function. Clearly,

smoothness of ρ(t) refers to smooth changes of the radius while smoothness

of φ(t) means circular smoothness with jumps at −2π. Retransformation

allows to write g(t) as

g(t) =
(
ρ(t) cos φ(t) ρ(t) sin φ(t)

)T

(2.3)

We assume now that yt = (yt1, yt2)
T are noisy observations of g(t), that is

yt = g(t) + εt (2.4)

with εt = (εt1, εt2)
T as residuals. For simplicity, and to make the machinery

of estimation running, we first assume that εt are independent over time, but

it seems necessary to allow for correlation between εt1 and εt2. With normal-

ity assumed we denote this as εt ∼ N(0,Σε) with Σε as covariance matrix.

Functions ρ(t) and φ(t) are estimated using a P-spline approach in the style

of Eilers and Marx (1996) and Ruppert, Wand, and Carroll (2003). We

therefore set

ρ(t) = exp (ρ̃(t)) = exp {Bρ(t)bρ} (2.5)
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where Bρ(t) is a spline basis built over the support of t. The exp{·} link

in (2.5) is used for technical reasons to ensure a positive radius and ρ̃(t) is

the linear combination of the splines, i.e. ρ̃(t) = Bρ(t)bρ. The spline basis

is chosen in a rich manner with knots for spline functions placed every 4-5

observed time points. A more theoretical investigation on how many spline

functions should be chosen asymptotically is provided in Ruppert (2002).

In principle, the choice of the basis functions in Bρ(·) is left to the user

and any spline shape function could be used. For simplicity, both in terms

of numerical behavior and notation, we work with B-spline bases of third

order as introduced in de Boor (1978). The B-spline basis is built from

piecewise polynomials connected at knots τ0, τ1, . . . , τK . In our example we

use equidistant knots covering the support of t. A short sketch on how B-

splines are built is given in the Appendix. Analogously to the radius we

model the basis for changes of the angle φ(t). This is accommodated by

setting

φ(t) = mod
(
φ̃(t)

)
= mod

(
Bφ(t)bφ

)
(2.6)

where mod(x) = 2π
(

x
2π
− ⌊

x
2π

⌋)
and bxc returns the smallest integer value

of x. Again φ̃(t) is the linear combination of the splines. Note that mod(·)
is used for graphical reasons only and the discontinuity is not a technical

problem. In fact, we have for instance sin(φ(t)) = sin(φ̃(t)). Spline basis

Bφ(t) in (2.6) can in principle be chosen differently from Bρ(t), but to keep

the procedure simple we choose Bφ(t) = Bρ(t). Assuming normality for the
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residuals we achieve to the log likelihood

l(b,Σε) = −n

2
log|Σε| − 1

2

n∑
i=1

(yi − g(ti))
T Σ−1

ε (yi − g(ti)) (2.7)

with b = (bT
ρ ,bT

φ ) and g(·) as defined in (2.3). Simple parameter maxi-

mization of (2.7) would provide unsatisfactory estimates since bases Bρ(t)

and Bφ(t) were chosen high dimensional and the corresponding estimates

would be jagged. We therefore pursue a penalized fit instead, by imposing

a penalty on bρ and bφ, respectively. This is achieved by maximizing the

penalized likelihood

lP (b,Σε; λb) = l(b,Σε)− 1

2
λρb

T
ρ Dρbρ − 1

2
λφb

T
φDφbφ (2.8)

with λb = (λρ, λφ) as penalty parameters and Dρ and Dφ as penalty matrices.

As has been suggested in Eilers and Marx (1996) a smooth fit is achieved if

spline coefficients of adjacent B-splines are of the same order. This is achieved

by imposing a penalty on first or higher order differences of the elements on

bρ and bφ, respectively. In the simplest case we penalize bρl−bρl−1, which can

be written in matrix form as Lbρ with L as (p− 1)× p dimensional contrast

matrix where p is the dimension of bρ. Setting now Dρ = LT
ρ Lρ leads to the

penalty matrix in (2.8). The same applies to the construction of Dφ.

Statistical properties of the estimate as well as optimization with respect to

the smoothing parameter λρ and λφ are listed in Appendix A.
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2.2 Business Fluctuations and Long Phase Loops

We have assumed so far that the center for cycles described by g(t) is zero

which implies that the series yt1 and yt2 are stationary without any long phase

cycle. Apparently this is a stringent assumption which will be weakened now

to a more practical situation. To do so we replace model (2.4) by

yt = c(t) + g(t) + εt (2.9)

where c(t) = (c1(t), c2(t))
T is the long phase cycle around which g(t) is os-

cillating. In (2.9) we have now decomposed the mean structure into long

phase movement c(t) and shorter phase oscillation g(t). In time series analy-

sis the decomposition of trends and seasonal effects is well established (see

e.g. Brockwell and Davis 1987). Yet in our situation we have cyclical trends,

see the next section, as well as business fluctuations in seasonally adjusted

time series data. Unlike in classical time series, the phase length of the these

cycles are unknown and the objective is to estimate these from the data.

The canonical candidate for long phase cycle estimation is the Hodrick and

Prescott (1997) filter. It leaves, however, the unsatisfactory requirement of

choosing a penalty parameter λ with its recommended setting λ = 1600.

From a statistical point of view fixing the smoothing parameter in advance

is unsatisfactory and a data driven criterium seems preferable. We therefore

pursue a smooth approach by fitting c(t) again using penalized spline fitting,
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that is we replace c(t) by

c(t) =

(
Z1(t)a1

Z2(t)a2

)
=: Z(t)a

where Zl(t) are spline bases chosen complex enough to capture long phase

cycles, l = 1, 2. Using a B spline basis for Zl(t) with same knots like for the

estimation of g(t) the spline coefficient a is now estimated in a penalized form

with penalty aT
l LT

a Laal, l = 1, 2, and La as difference matrix. In principle we

could now formulate the penalty as a priori normality and fit the resulting

structured mixed model. To keep the numerics simple and understandable,

we proceed however with a hybrid two step procedure. This means we first

estimate the long phase cycle c(t) and then fit the business cycle structure

g(t) to the residuals ỹt = yt− c(t). This hybrid approach appears justifiable

since our objective is the estimation of the shorter phase structure g(t) in its

dependence on the longer cycle. We therefore fit cl(t) componentwise with

given penalty parameters λa = (λ1, λ2), say. That is

cl(t) = Zl(t)
(
ZT

l Zl + Da(λl)
)−1

ZT
l Yl = Sl(λl)Yl , l = 1, 2

with Yl = (y1l, . . . , ynl)
T and Zl as matrix built from zl(ti), i = 1, . . . , n and

Sl(λl) as smoothing matrix. In particular, for the long phase cycle we ignore

any possible correlation among the components of y. The resulting residuals

ỹt are assumed to be distributed according to (A.5) with yt replaced by ỹt.

In a second step estimate ĝ(t) is obtained based on the observations corrected

by the long phase cycle. It remains to select appropriate penalty parameters
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for λa. We propose an Akaike based criterion here using a grid search for λa.

This means we intend to find the minimum value for

AIC(λa) = n log

∣∣∣∣∣
n∑

i=1

(yi − ĉ(ti)− ĝ(ti)) (yi − ĉ(ti)− ĝ(ti))
T

∣∣∣∣∣ + 2dfc + 2dfg

where ĉ(·) is the penalized fit with penalty parameters λa and ĝ(·) is the fit

based on ỹt using the Mixed Model formulation from above. The degrees of

freedom of the fits are calculated from

dfc = tr
(
Z

(
ZTZ + Da(λa)

)−1
ZT

)
and

dfg = tr

(
I
(
b̂, λ̂b

)−1

I
(
b̂, λb = 0

))
.

3 Application

3.1 Simulation

We demonstrate the performance of our routine with a small simulation

study. We simulate data on a circle, i.e. ỹt1 = sin(t2π) + εt1 and ỹt2 =

cos(t2π) + εt2, where εt1, εt2 are independent N(0, 0.252) residuals and t

ranges from 0 to 1 in n = 200 equidistant steps. The short term fluctua-

tion is overlayed with a long term trend so that yt1 = ỹt1 + 0.5 cos(10πt)

and yt2 = ỹt2 + 0.5 sin(10πt). We have used in all numerical estimations the

same B-Spline Basis of order 3, i.e. Bρ(t) = Bφ(t) = Z1(t) = Z2(t), and

the same penalty matrices of order 2, i.e. Dρ = Dφ = Da. In Figure 2

we show simulated data and the corresponding estimates. The Figure, as

well as all subsequent Figures, are organized as follows. The first two plots
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show the two time series yt1 and yt2. The resulting long phase estimate is

superimposed as solid line. The final estimate ĉ(t) + ĝ(t) is shown with

confidence bands for both series. The bottom row shows the observations

(yt1, yt2) with the long term trend ĉ(t) (bottom left plot) and the residuals

(ỹt1, ỹt2) = (yt1 − ĉ1(t), yt2 − ĉ2(t)) with the fitted shorter phase structure

ĝ(t). Finally, the two right hand side plots show the fitted radius ρ̂(t) (upper

right hand side plot) and the fitted angle φ̂(t) (bottom right hand side plot).

The separation of long term and short term fluctuation seems adequate for

the data. The smoothing parameters for the long term trend are thereby

selected following the Akaike criterion proposed above. The corresponding

dfc1

df
c 2

2 4 6 8 10

2
4

6
8

10

Figure 1: Shape of the AIC function for resulting degrees of freedom for the
smoothing parameter of the long phase cycle
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shape of AIC(λa) is shown exemplary in Figure 1. Clearly the existence of

two phases is visible in the AIC function, where the value of AIC is given for

the resulting degrees of freedom for c1(t) and c2(t). We can also see that the

angle is estimated nearly linearly, indicating a constant rotation speed for

g(t). In the same way, the radius is about constant over time. Apparently,

the true function is reproduced for this simulation.

3.2 Business and long phase cycles in inflation and in-
come distribution

Econometric studies often focus on the methodological level as well as in

empirical research on the problem of how to separate the business cycle from

the trend in important macroeconomic time series. Yet, economic growth

theory in its advanced form provides us with insights on which economic

ratios may exhibit a secular trend (like capital intensity when not measured

in efficiency units) and which ones will not (like the output-capital ratio or

the rate of employment as two measures of macroeconomic factor utilization).

In contrast to a variety of econometric studies, macrodynamic growth theory

therefore generally uses appropriate ratios or growth rates in its analytical

investigations. In particular ratios are used that allow for the determination

of steady state positions and which therefore should not exhibit a trend in

the very long run.

In applying the methodology developed in this paper we will in fact concen-

trate on secularly trendless magnitudes, namely the employment rate on the
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external labor market, the wage share in national income and the inflation

rate (here of producers’ prices). There are a variety of smaller as well as

larger macrodynamic models in the tradition of Friedman (1968) and Good-

win (1967) which show the existence of persistent cycles in the interaction

between the employment rate and the wage share on the one hand and the

employment rate and the inflation rate on the other hand which tend to long

phased when simple constant parameter estimates are used for their numer-

ical investigation (see also Atkinson 1969). In these models the ordinary

business cycle fluctuations must therefore be explained by something else,

namely by systematic variations in the parameters of the model which then

add cycles of period lengths of about eight years to the fifty years cycles

these models are generating when used with average or constant parameter

values. Based on earlier work (see Flaschel, Kauermann, and Teuber 2006)

we now investigate the working hypothesis that there are long phase cycles

interacting with business cycles in the data as far as employment, income

distribution and inflation are concerned. The method developed in this pa-

per now in fact allows us to ceck this hypothesis in a way much more refined

then just by using the Hodrick-Prescott filters with an arbitrarily given λ pa-

rameter. Moreover, we pursue the hypothesis in spirit of the two-dimensional

phase plots of the employment–inflation cycle and the employment–income

distribution cycle of the literature on the Friedman inflation cycle and the

Goodwin growth cycle. Applying the technique developed leads to the esti-
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mates show in Figure 3 and Figure 4. We first focus on inflation dynamics

that is Figure 3. We see that the unemployment rate is leading compared

to the inflation rate in the long phase cycle (the solid lines in the two time

series plots top-left). In the bottom figure showing angle estimate φ̂(t) we see

moreover that there are approximately 6 business cycles surrounding these

long phase cycles, as φ̂(t) crosses about 6 times the 2π full circle, marked as

horizontal dashed lines. This finding is in line with Chiarella, Flaschel, and

Franke (2005) and other work. The fitted angle also shows that the anti-

clockwise rotation of the long phase cycle is by and large also characterized

by the business cycles surrounding it, though there are exceptions to this

rule (periods at the beginning and the end of the considered time span), see

also the figure top-right. We note that we follow the tradition here which

uses the unemployment rate in place of the employment rate on the hori-

zontal axis (the latter would give rise to an anti-clockwise orientation of the

business and the long phase cycles shown in these figures). The long phase

cycle (bottom left plot of Figure 3) indicates that indeed 50 years of data

are needed in order to get the indication of the existence of such a cycle. We

observe that long periods where unemployment and inflation are both ris-

ing (i.e., where stagflation occurs) and also periods where the opposite takes

place and therefore falling unemployment rates do not lead to rising inflation

rates immediately. We stress again that our extraction of the business cycle

component as shown in Figure 3 through a phase as well as a radius plot is
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an integral part of our treatment of the long phase evolution of the economy.

With respect to the other long phase cycle model, the Goodwin (1967) growth

cycle model, we have now look at Figure 4. As far as the evolution of the

wage share (top-left plot) is concerned we have now more volatility as was

the case with the inflation rate. This may be due to the involvement of

labor productivity as constituent part of the definition of the wage share.

Nevertheless one can see a single long phase cycle in the solid line shown in

the time series presentation of the wage share. Again, the employment rate

is leading with respect to this long phase cycle in the wage share. We know

from Goodwin (1967) and the numerous articles that followed his approach

that the interaction of the employment rate with the wage share is generating

a clockwise motion. In Figure 4 we can in this regard confirm that the cycles

of business cycle frequency are moving in a clockwise fashion as it is suggested

by the again basically downward sloping angle line bottom-right. To the right

of this figure we again see (if minor cycles are neglected) now by and large

7 business cycles overlaid over the long phase cycles as they are also shown

in the figure bottom-right. Looking at the long-phase cycle (bottom-middle

plot) we see indeed a cycle that is nearly closed (and thus approximately of

fifty years length) and that is moving clockwise as suggested by the simple

Goodwin (1967) growth cycle model (see Solow 1990 for early comments on

an empirical phase plot of this cycle) and its many extensions. We conclude

that the method developed in this paper provides a helpful approach to the
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separation of long-phased cycles that describe the evolution from high to

low inflation regimes and from high to low wage share regimes from cycles

of business cycle frequency. This method therefore allows in a distinct way

the discussion of long waves in inflation and income distribution in modern

market economies after World War II.

4 Conclusions

In the paper we attempted to fit and visualize long phase and business cycles.

The intention was to treat cycles in a bivariate form and separation between

long and short phase was possible by the use of nonparametric smoothing

techniques. Particularly, the use of an Akaike criterion helped to decom-

pose the two time trends. The underlying technique was built on P-spline

smoothing which proves as flexible and general estimation tool. The plots

accompanying the fit allow for empirical insight in business cycle theory. The

joint estimation of the long phase cycle and business cycles confirm the clas-

sical economic models. The results showed that the Friedman and Goodwin

cycles take about 50 years and are superposed by the business cycles with an

approximately length of 8 years.
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A Technical Details

A.1 Estimation and Properties of Estimates

We reformulate the model 2.4 by defining B(t) = diag(Bρ(t),Bφ(t)) with

diag(·) as block diagonal matrix. This yields the linear predictor as η(t) =

B(t)b. We denote the derivative of g(·) with respect to η by

∇g(t) = ρ(t)

(
cos φ(t) sin φ(t)
− sin φ(t) cos φ(t)

)
. (A.1)

This allows to write the first derivative of (2.8) as

∂lP (b, λb)

∂b
=

n∑
i=1

BT (ti)∇g(ti)Σ
−1
ε (yti − g(ti))−D(λb)b = 0, (A.2)

where D(λb) is a block diagonal of the form diag (λρDρ, λφDφ). Solving

∂lP (·)/∂b = 0 provides the penalized estimate which can be calculated in

the ordinary way using a Newton Raphson procedure (or Fisher scoring).

Accordingly, the penalized Fisher matrix results to

I(b, λb) = −E

[
∂2lP (b, λb)

∂b∂bT

]

=
n∑

i=1

BT (ti)∇g(ti)Σ
−1
ε ∇g(ti)

TB(ti) + D(λb) (A.3)

Moreover, we can use conventional likelihood theory to derive asymptotic

properties for b̂, keeping the penalty parameter fixed. Under the technical

assumption that design points ti at which observations are collected become

dense the variance of the estimate is asymptotically given by

Var

(
ˆ̃ρ(t0)
ˆ̃φ(t0)

)
= B(t0)I

(
b̂, λb

)−1

I
(
b̂; λb = 0

)
I
(
b̂, λb

)−1

BT (t0). (A.4)
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Based on this result, the variance for radius and angle estimates is then

obtained by the delta rule

Var
(
ρ̂(t), φ̂(t)

)
≈ Ĉ(t)Var

(
ˆ̃ρ(t), ˆ̃φ(t)

)
Ĉ(t)T

with C(t) = diag
(
exp

(
ˆ̃ρ(t)

)
, 1

)
, where, as motivated above, we ignored the

mod(·) function. Accordingly, the variance for the cycle estimate g(t) results

as Var(ĝ(t)) ≈ Ĝ(t)Var(ˆ̃ρ(t), ˆ̃φ(t))Ĝ(t)T with

Ĝ(t) = ρ̂(t)

(
cos φ̂(t) − sin φ̂(t)

sin φ̂(t) cos φ̂(t)

)
.

The results follow directly in the line of Ruppert, Wand, and Carroll (2003).

A.2 Generalized Linear Mixed Models

It has shown to be advantageous, both in terms of numerics and theory, to

link spline smoothing with linear mixed models. For P-spline smoothing this

connection has been demonstrated in Wand (2003). We extend this idea

here by formulating the penalization as an a priori distribution on the spline

coefficients. This is available with the following reformulation:

yt|b ∼ N (g(t),Σε) Lb ∼ N (0,Λb) (A.5)

with g(t) as defined in (2.3) and L = diag (Lρ,Lλ) and Λb = Λb(λb) as block

diagonal having Ikρλ
−1
ρ and Ikφ

λ−1
φ on the diagonal where kρ and kφ are the

dimensions of spline bases Bρ and Bφ, respectively. Now, penalty parameter

λ = (λρ, λφ) expresses the a priori precision, that is 1/λ gives the a priori
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variance for spline coefficients treated as random coefficients. Integrating out

Lb we obtain the marginal log likelihood based on the mixed model (A.5)

lmm (Σε, λb) = log

∫
1

|Λb|1/2
exp{lp (b,Σε; λb)}dLb (A.6)

The objective is now to maximize (A.6) with respect to λb and Σε and predict

the spline coefficients b to achieve a smooth fit. Note that maximization with

respect to λb provides an estimate for the amount of penalization required.

Apparently, due to the non linear link used for the mean structure, (A.6)

does not yield an analytic solution. Instead, a Laplace approximation can

be used in the line of Breslow and Clayton (1993) or Lindstrom and Bates

(1990). It is shown in the Appendix that the penalized fit from above is

equivalent to a posterior mode estimate in the mixed model. Moreover,

smoothing parameter λ = (λρ, λφ) can be chosen to maximize the (Laplace

approximated) marginal likelihood. In particular we get the estimate

1

λ̂ρ

=
tr

{
(I(b, λ)−1)ρρ Dρ

}
+ b̂T

ρ Dρb̂ρ

kρ

(A.7)

Finally, based on the Laplace approximation likelihood an estimate for Σε is

defined through

Σ̂ε =

n∑
i=1

{yi − ĝ(ti)}{yi − ĝ(ti)}T

n
+ O(n−1). (A.8)

29



A.3 Numerical and Practical Adjustments

Confidence regions

For each timepoint we obtain estimates and confidence intervals for the fitted

functions g1(t) and g2(t). We are however more interested in confidence

regions for the fitted two dimensional curves (g1(t), g2(t)). These are achieved

using the asymptotic arguments from above and constructing a confidence

ellipse at timepoint t through

CI(t) =
{
z : (z− ĝ(t))T Var(ĝ(t))−1(z− ĝ(t)) ≤ χ2

2, 0.95

}

with χ2
2, 0.95 as 95% Quantile of a χ2 distribution with 2 degrees of freedom.

One should note that the confidence ellipse are constructed pointwise and a

global confidence level for CR is therefore not easily available. This is, how-

ever, a standard problem in smoothing. Moreover, the confidence ellipse does

not mirror the variability due to the estimation of the smoothing parameter.

For simplicity, we do not investigate these two issues in more depth here (see

also Mao and Zhao 2003, or Härdle and Marron 1991 for a more theoretical

consideration of these points).

Correlated Errors

For time dependent data it is generally difficult to distinguish between trend

and correlation. For P-spline smoothing it has been shown in Krivobokova

and Kauermann (2004) that residual correlation in a normal smoothing model
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does only have a weak influence on the resulting fitted trend of Maximum

Likelihood or Residual based Maximum Likelihood (REML) smoothing para-

meter selection. We conjecture that this result also holds for the non-normal

model fitted here, but we have no formal proof at hand. Instead, we exem-

plify the point with some simulations below. In general, of course, a unique

decomposition of trend and correlation is impossible. It should also be noted

that in principle a two step fitting can be pursued. First, a mean structure

can be fitted which is then used to estimate the temporal correlation from

the residuals. This is again used to recalculate both, the fit as well as the

smoothing parameter. We do not go further this road, but explore an Akaike

criterion instead.

A.4 Laplace Approximation

We derive the equivalence between penalized spline smoothing with B-splines

and mixed models for the simple smoothing model

E (y|t) = g (B(t)b)

with B(t) as B-spline basis of dimension k and order p, say. Extensions to

the bivariate fitting routine described in Section 2 are straight forward. Let

u := Lb with L as difference matrix of order p, say, so that L ∈ Rk×(k−p).

We can complete L by adding linearly independent rows such that

ũ =

(
u0

u

)
=

(
L0

L

)
b = L̃b
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with L̃ invertible. For fitting we now impose penalty λbTDb on b, where

D = LTL. This penalty will be comprehend as a priori normal distribution

for u = Lb ∼ N(0, I(k−p)/λ) with I(k−p). Integrating out u leaves us with the

remaining (unpenalized) parameter u0. This leads to the marginal likelihood

for u0 and λ given through

lmm (λ,u0) = log

∫
exp (lp(u, λ)) du

with lp(u, λ) as penalized log likelihood defined through

log
{
f (y|u) ϕ

(
u, I(k−p)/λ

)}

where f(y|u) is the density of y given the linear predictor B(t)b = B(t)L̃−1ũ

and ϕ(·) is the normal density. Laplace approximation with respect to u

and maximization with respect to the remaining parameter u0 leads to the

maximized marginal log likelihood

lmm(λ, û0) ≈ lp

(
b̂, λ

)
− 1

2
log

∣∣∣∣
I(k−p)

λ

∣∣∣∣

−1

2
log

∣∣∣∣∣∣
(
0, I(k−p)

)
(L̃−1)T

∂2lp

(
b̂, λ

)

∂b∂bT
L̃−1

(
0

I(k−p)

)∣∣∣∣∣∣

≈ lp(b̂, λ)− 1

2
log

∣∣∣∣F
(
b̂, λ

) I(k−p)

λ

∣∣∣∣ (A.9)

with

F (b, λ) =
(
0, I(k−p)

)
(L̃−1)T I (b, λ) L̃−1

(
0

I(k−p)

)
.
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The latter simplification results by replacing the second order derivative by

the Fisher information (A.3). It is also not difficult to show that b̂ is the

solution to the penalized score (see (A.2)) with û =
(
ûT

0 , ûT
)

= L̃b̂. Differ-

entiating (A.9) with respect to λ yields

0 = −b̂TLTLb̂ +
(k − p)

λ
− tr

(
F−1

(
b̂, λ

))
.

To simplify numerics and since F−1 (b, λ) is of order O(n−1) we approximate

the formula with

tr
(
F−1 (b, λ)

) ≈ tr

((
(L̃−1)T I (b, λ) L̃−1

)−1
)

= tr
(
I−1 (b, λ)LTL

)

which suggests the estimating equation

λ̂ =
b̂TDb̂ + tr

(
I−1

(
b̂, λ

)
D

)

k − p
(A.10)

with D = LTL. It is thereby worth pointing out that (A.10) does not provide

an analytic solution since the right hand side also depends on λρ through b̂ρ.

Equation (A.10) can however be used in a backfitting style. This means we

estimate b̂ through (A.2) by keeping λ fixed. Next, we consider b̂ as fixed

and update λ through (A.10). Iteration between these two steps mirrors the

backfitting iterations. We also refer to Krivobokova and Kauermann (2004)

for a justification of this algorithm as Newton procedure.

B B-Splines

A general construction principle for B-splines is found in de Boor (1978) and

implemented in the Splus function bspline(·). We work with B-splines of
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order three which are for equidistant grid point defined through

Bl(t) =





(t−τl−4)3

6h3 for t ∈ [τl−4, τl−3]

2/3− (t−τl−2)2

h2 − (t−τl−2)3

2h3 for t ∈ [τl−3, τl−2]

2/3− (t−τl−2)2

h2 + (t−τl−2)3

2h3 for t ∈ [τl−2, τl−1]
−(t−τl)

3

6h3 for t ∈ [τl−1, τl]
0 otherwise.

where τ−3 = τ−2 = τ−1 = τ0 and h = τj − τj−1 is the distance between two

neighbor knots.

Accordingly we use a second order difference for penalization, that is

L =




1 −2 1 0 0 · · ·
0 1 −2 1 0 · · ·

...
. . .


 .
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C Simulating and Estimating the model

C.1 Simulation studies
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Figure 2: Upper Row: The left and middle plot show the artificial time series
yt1 and yt2, with long phase estimate (solid line), final estimation (bold solid
line in the grey shaded area) with confidence region. The right plot shows the
estimated radius and its confidence region (grey shaded area). Lower Row:
The left plot shows the observations with the estimated long phase cycle
(solid line). The middle plot shows the detrended time series with estimated
business cycle (solid line) and its confidence region (grey shaded area). The
right plot shows the estimated angle with its confidence region (grey shaded
area).



C.2 Business cycles around long phase cycles: The US
Economy
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Figure 3: Upper Row: The left and middle plot show the time series Unem-
ployment Rate (yt1) and Price Inflation (yt2), with long phase estimate (solid
line), final estimation (bold solid line in the grey shaded area) with confi-
dence region. The right plot shows the estimated radius and its confidence
region (grey shaded area). Lower Row: The left plot shows the observations
with the estimated long phase cycle (solid line). The middle plot shows the
detrended time series with estimated business cycle (solid line) and its con-
fidence region (grey shaded area). The right plot shows the estimated angle
with its confidence region (grey shaded area).
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Figure 4: Upper Row: The left and middle plot show the time series Wage
Share (yt1) and Employment Rate (yt2), with long phase estimate (solid line),
final estimation (bold solid line in the grey shaded area) with confidence re-
gion. The right plot shows the estimated radius and its confidence region
(grey shaded area). Lower Row: The left plot shows the observations with
the estimated long phase cycle (solid line). The middle plot shows the de-
trended time series with estimated business cycle (solid line) and its confi-
dence region (grey shaded area). The right plot shows the estimated angle
with its confidence region (grey shaded area).


