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Abstract

This paper studies a simple dynamic investment decision problem
of a firm where adjustment costs have capital size effects. This type
of setting possibly results in multiple steady states thresholds and a
discontinuous policy function. We study the global dynamic proper-
ties of the model by employing the Hamilton-Jacobi-Bellman method
and dynamic programming that help us in the numerical detection of
multiple equilibria and thresholds. We also explore the model’s im-
plications concerning the effects of aggregate demand, interest rates
and tax rates. Finally, an empirical study on the firm size distribu-
tion is provided using U.S. firm size data. We utilize two different
approaches, Kernel density estimation and Markov chain transition
matrix to study an ergodic distribution. Our results suggest twin-peak
distribution of firm size in the long run which empirically supports the
theoretical conjecture of the existence of multiple steady states.
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1 Introduction

In the theory of investment a firm maximizes the discounted value of its future
net cash flows. What the firm wants to know is the optimal investment
schedule over time. Generally speaking, by solving a firm’s optimization
problem, we want to obtain a policy function which tells us the optimal
investment policy corresponding to each level of capital stock. This policy
function has been perceived to be continuous. We, however, demonstrate
the possibility of a discontnuous policy function in this paper. The key
factor is to introduce adjustment costs with capital size effects, whereby
the growth rate of capital is the source of adjustment costs. Interestingly,
a recent work by Hartl, Kort, Feichtinger and Wirl (2000) provides a very
simple investment model of this type. The purpose of our study is to solve
a firm’s dynamic investment decision problem where multiple steady states
and a discontinuous investment strategy may arise. We study global dynamic
properties of the model and pursue a numerical detection of the threshold.

It should be noted that economists have long been interested in studying
the implication of adjustment costs on the dynamics of investment. An earlier
version of such an investment study was presented by Jorgenson (1963). In
his study, the optimal path of the capital stock for an exogenously given
output is derived. The optimal path of investment rate is determined only
when assuming distributed lag function. Those necessary ad hoc assumptions
were recognized by Lucas (1967), Gould (1968), Uzawa (1968, 1969), and
Treaday (1969). Their solution was to introduce the adjustment costs.

Generally speaking there are two types of adjustment costs: with and
without capital size effects. Lucas (1967), Gould (1968) and Treadway (1969)
developed the models with adjustment costs without size effects, whereas the
models with adjustment costs with size effects have been studied by Uzawa
(1968, 1969) and Hayashi (1982). Their works were stimulated by the earlier
work on the adjustment costs by Eisner and Stroz (1963). Our model focuses
on the role of adjustment costs with capital size effects. As it turns out, the
capital size effects are central to the generation of multiple steady states
and the associated itneresting dynamic properties. In addition to history
dependence, both continuous and discontinuous policy functions can arise.
Recently Hartl et al. (2000), using a simple framework with adjustment costs
with size effects, discussed the case of multiple steady states. Our model in
this paper is crucially based on their model but focuses more on the study of
global dynamics using the HJB method, stresses the analysis of comparative
dynamics and the policy implications, and explores the empirical support of
the model’s prediction on the firm size distribution.

The most important economic implication of the multiple steady states is
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that it has the property of history dependence. The history dependence arises
if solution paths converge toward distinct attractors depending on the initial
conditions. The existence of two or more stable steady states implies the
existence of thresholds. At a threshold, the firm will be indifferent between
an investment strategy converging toward one or the other stable steady
states.

Hartl et al (2000) solve their model by using Pontriyagin’s maximum
principle and study the local properties of each steady state. We rather
focus on comparing the values of the candidate paths and derive the global
solution. We use the Hamiltonian-Jacobi-Bellman (HJB) method to derive
a global value function and pave the way to detect thresholds numerically.

The remainder of the paper is organized as follows. Section 2 gives a brief
review of the literature on adjustment costs in the investment theory. Sec-
tion 3 presents a traditional model with adjustment costs with no capital size
effects where we will obtain a unique and a continuous policy function. In
other words, the optimal investment rate is continuous in Tobin’s q. In Sec-
tion 3, we present the model with capital size effects. Using the HJB method,
the global value function and the threshold will be derived. The policy func-
tion can be both continuous and discontinuous. Numerical simulations are
attached at the end of the section 3. Section 4 explores the model’s impli-
cations concerning the effects of aggregate output (booms and recessions),
interest rates and tax rates. Section 5 and 6 provide a empirical study on
firm size distribution using the U.S. firm size data. We utilize two different
approaches, Kernel density estimation and Markov chain transition matrix
to obtain an ergodic distribution. Our results suggest twin-peak distribution
of firm size in the long run which can be viewed as empirical supports of our
theoretical model.

2 The Benchmark Model without Size Effects

We first present a traditional model without size effects. The model used here
has been developed by Abel (1982), Hayashi (1982), and Summers (1981) and
is known as the q theory model of investment. Generally speaking, this type
of model has a unique equilibrium and a continuous policy function.

The model is represented in the equations (1)-(3):

max
I

∫ ∞

0

e−rt{R(K)− I − A(I)}dt (1)

s.t. K̇ = I − δK; K0 = given (2)
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where

R(0) = 0, R′′(K) < 0, A(0) = 0, A′(I) > 0 for I > 0, A′(I) < 0 for I < 0, A
′′

(I) > 0
(3)

R(K) is a representative firm’s revenue function and K(t) is a represen-
tative firm’s capital stock. I(t) is the firm’s investment. We also assume the
purchase price of a unit of investment goods is 1 and thus the cost of pur-
chase investment goods is I. A(I) represents simply adjustment costs which
depends only on the firm’s investment I. The depreciation rate of capital
stock is δ .

For more specific results, we use the following specific functions which
satisfy (3):

R(K) = aK − bK2 (4)

A(I) = cI2 (5)

We employ the Hamilton-Jacobi-Bellman (HJB) method to study the
analytical solution of this problem. The HJB equation for the present model
has the form:

rV (K) = max
I

[R(K)− I − A(I) + V ′(K)(I − δK)] (6)

Solving ∂
∂I
[·] = 0 gives the first order condition:

−1− A′(I) + V ′(K) = 0. (7)

Also, notice that V ′(K) is equivalent to Tobin’s q. Therefore, we have
the following rule for optimal investment:

I(t) = A
′−1[q − 1];











I > 0 for q(t) > 1

I = 0 for q(t) = 1

I < 0 for q(t) < 1

(8)

We can interpret q as the market value of a unit of capital. Since we
assume that the purchase price of a unit of capital is 1, the economic inter-
pretation of (8) is that a firm invests if the market value of capital exceeds
the purchase price of capital and disinvest if the market value of capital is
less than the purchase price of capital.

With specific functions, the optimal investment policy reads
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I =
1

2c
(V ′(K)− 1). (9)

If e is a steady state level of capital stock then from (2),

I − δe = 0. (10)

and, at the steady state, we obtain

rV (e) = R(e)− δe− A(δe) (11)

V ′(e) =
R′(e)

r + δ
. (12)

Thus, from the first order condition (7)and (2), the steady state e satisfies

−1− A′(δe) +
R′(e)

r + δ
= 0. (13)

Using specific functions, (13) becomes

−1− 2cδe+
a− 2be

r + δ
= 0. (14)

Therefore, we have a unique steady state:

e =
a− (r + δ)

2cδ(r + δ) + 2b
(15)

To establish a policy function, we construct a phase diagram in {I,K}
space. There exists a unique global stable manifold associated with a unique
steady state. The global stable manifold in {I,K} space is equivalent to the
policy function and thus the policy function is continuous as Figure 1 shows.
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Figure 1: Continuous policy function

3 The Model with Adjustment Cost and Size

Effects

We here follow the model developed by Hartl, et al (2000). The model
is a simple dynamic investment model with relative adjustment costs with
capital size effects. The simplest example is an adjustment cost function of
investment to capital ratio as in Hartl et al. (2000). Multiple steady states
and a discontinuous policy function may arise depending on parameters. We
employ the Hamilton-Jacobi-Bellman method again to solve the problem with
the aim to obtain a global value function. We want to detect the threshold
numerically when we construct a policy function. The policy function can
be both continuous and discontinuous depending on parameters.

Consider a firm acting to maximize the present value of the sum of future
net cash flows.

max
I

∫ ∞

0

e−rt

[

R(K)− I − A
( I

K

)

]

dt (16)

s.t. K̇ = I − δK, K0 = given (17)

where R(K) is a revenue function, K is a capital stock, I is investment,

A
(

I
K

)

is adjustment costs with size effects, i.e. the size of capital stock, K,
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affects adjustment costs, δ is a depreciation rate, and r is a discount rate.
Here, by replacing the expression I

K
by u, our new control variable is u:

max
u

∫ ∞

0

e−rt[R(K)− uI(t)− A(u)]dt (18)

s.t. K̇(t) = u(t)K(t)− δK(t), K0 = given. (19)

We assume that R(K) and A(u) are continuously twice-differentiable, and

R(0) = 0, R′(0) > 0, R′′(K) < 0 for allK (20)

A(0) = 0, A′(0) = 0, A′(u) > 0 for u > 0, (21)

A′(u) < 0 for u < 0, A′′(u) > 0 for all u.

We also assume that

R′(0) > r + δ (22)

so that the trivial solution u = 0 for all t is excluded.

For more specific results, let us assume that revenue and adjustment cost
functions are quadratic:

R(K) = aK − bK2 (23)

A(u) = cu2 (24)

where a, b, c > 0.
The HJB equation for the present model has the form

rV (K) = max
u

[R(K)− uK − A(u) + V ′(K)(uK − δK)]. (25)

Step 1: Compute the steady states for the stationary HJB-equation.

Solving d
du
[·] = 0 gives the first order condition:

−K − A′(u) + V ′(K)K = 0. (26)

Again, it’s important to notice that V ′(K) is equivalent to Tobin’s q. The
following rule of optimal investment is derived:
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u(t) = A
′−1[(q − 1)K];











u > 0 for q(t) > 1

u = 0 for q(t) = 1

u < 0 for q(t) < 1

(27)

Comparing the investment rule under the relative adjustment cost with
size effects (27) with (8), the rule under the adjustment cost with no size
effects, the only difference is the capital stock K appears in the function u in
a multiplicative way in (27). This implies that the firm with larger capital
stock has higher incentive to invest and an increasing return to scale exists
locally. This can be understood as the source of multiple steady states.

With specific functions (23) and (24), (27) can read

u =
1

2c
(V ′(K)− 1)K. (28)

If e is a steady state then from (19),

ue− δe = 0. (29)

Since for any positive steady state e > 0, u = δ,

rV (e) = R(e)− δe− A(δ). (30)

V ′(e) =
1

r
[R′(e)− δ]. (31)

Thus, the first order condition (26) at the positive steady state e > 0
becomes

−e− A′(δ) +
1

r
[R′(e)− δ]e = 0. (32)

From the specific functions,

R′(K) = a− 2bK (33)

A′(u) = 2cu. (34)

therefore, we obtain positive steady states from the condition (32):

−e− 2cδ +
1

r
[a− 2be− δ]e = 0. (35)

Thus,
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{

u = 0 for e = 0

u = δ for e > 0
(36)

and we have three steady states:

e =

{

0
a−r−δ±

√
(a−r−δ)2−16bcδr

4b
.

(37)

Note that two positive steady states exist if a− r − δ > 4
√
bcδr.

Step 2: Solve the dynamic HJB-equation starting from the equilibrium
candidates.

From the optimal investment rule (27), the satisfactory HJB-equation is

rV (K) = R(K)− A
′−1((V ′(K)− 1)K)K − (38)

A(A
′−1((V ′(K)− 1)K)) + V ′(K)(A

′−1((V ′(K)− 1)K)K − δK)

For specific results, we substitute the optimal investment rule (28) and
the satisfactory HJB-equation will be

V ′(K)2 − 2K + 4δc

K
V ′(K)− 4crV (K)

K2
+

4ac

K
− 4bc+ 1 = 0. (39)

Then we obtain an ordinary differential equation in V :

V ′(K) =
K + 2δc

K
−
√

(K + 2δc)2

K2
+

4crV (K)

K2
− 4ac

K
+ 4bc− 1 for K ≥ e

(40)

V ′(K) =
K + 2δc

K
+

√

(K + 2δc)2

K2
+

4crV (K)

K2
− 4ac

K
+ 4bc− 1 for K < e

(41)
with

V (e) =
1

r
[ae− be2 − δe− cδ2] for each e > 0 (42)
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as initial conditions.1

Step 3: Solve the global value function.

We can compute the global value function for the original problem by

V (K) = maxVi. (43)

The local value functions Vi are generally computed numerically. The
global value function is shown in Figure 2 corresponding to Figure 3, the
phase diagram in {u,K} space. This example shows the case when the
middle unstable steady state has a focus property. The point where the local
value function changes is called threshold or Skiba point. The phase diagram
in {u,K} space can also be expressed in {I,K}.

Using some numerical examples presented by Hartl et al. (2000), we carry
out some simulations.

Case 1: (continuous policy function) the Skiba point coincides with the
middle equilibrium candidate e2.

Example:

r = 0.3, δ = 0.1, b = 0.6, c = 0.3, a = 0.74, K2 = 0.07047, K3 = 0.2129

Case 2: (discontinuous policy function) the Skiba point does not coincide
with the middle equilibrium candidate e2.

Example:

r = 0.2, δ = 1.2, b = 0.6, c = 0.3, a = 1, K2 = 0.017679, K3 = 0.5665,
threshold= 0.01.

Once we have multiple steady states, there generally exist multiple lo-
cal stable manifolds satisfying the system and the transversality condition.
Our model has three steady states and there are two local stable manifolds
corresponding to two stable steady states. Moreover, depending on the lo-
cal dynamic property of the middle unstable steady state, these two stable
manifolds overlap about the middle unstable steady state as Figure 3 shows.
Our strategy to compare the values of those candidate paths is to use the
global value function (43). Using the global value function shown in Figure 2,
we can uniquely choose the optimal global stable manifold which generates

1As we see in (36) and (39), u = 0 for e = 0 and u = δ for e > 0. Thus, the value of
the value function at each steady state is expressed as
V (e) = 1

r
[ae− be2 − δe− cδ2] for e > 0 and V (0) = 0 for e = 0.
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the maximum value among the multiple candidate stable manifolds. The
global stable manifold in {u,K} space (or in {I,K} space) is equivalent to
the policy function and thus the policy function can be discontinuous as in
Figure 3. Discontinuity will be easily obtained depending on parameters and
we cannot rule out this case a priori. Note that the discontinuity occurs at
threshold(s) where the local value function switches. For our parameter set
above the threshold is found2 to be at 0.01, thus to the left of the middle
equilibrium candidate, K2.

0

KV

K

2
e

3
e

Threshold

Figure 2: Global value function

2That threshold for the above parameter set is computed in Grüne and Semmler (2004).
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Figure 3: Discontinuous Policy Function in {u,K} Space

4 The Effects of Demand, Interest Rate, and

Tax Rate

In this section, we analyze the effects of exogenous changes in demand, in-
terest rate, and taxes on the steady states and the equilibrium path. The
exogenous increase in demand raises output of the firm and thus the revenue
will increase for the same amount of capital, entailing an upward shift of the
revenue function R(K). This corresponds to an increase in a in our specific
revenue function.

From (35), we have3

∂e2

∂a
= − e2

(a− r − δ)− 4be2

< 0 (44)

∂e3

∂a
= − e3

(a− r − δ)− 4be3

> 0. (45)

Output increase will make the middle steady state shifting down and the
upper steady state shifting up.

3From (37), e2 = y−
√

x

4b
and e3 = y+

√
x

4b
where y ≡ a− r− δ > 0 and x ≡ (a− r− δ)2−

16bcδr > 0. Therefore, e2 <
y

4b
and e3 >

y

4b
hold. This implies the signs of (44) and (45).
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In the same way, the effects of an increase in interest rate can be analyzed
as

∂e2

∂r
= − e2 + 2cδ

(a− r − δ)− 4be2

> 0 (46)

∂e3

∂r
= − e3 + 2cδ

(a− r − δ)− 4be3

< 0 (47)

An increase in interest rate will shift the middle steady state up and the
upper steady state down.

Concerning the effects of a tax rate, we introduce an investment tax credit
for simplicity which is a direct rebate of χ percent of the price of capital. This
changes the firm’s optimal investment rule (27) as follows:

u(t) = A
′−1[(q + χ− 1)];











u > 0 for q(t) + χ > 1

u = 0 for q(t) + χ = 1

u < 0 for q(t) + χ < 1

(48)

and three steady states become:

ẽ =

{

0
a−r−δ+χr±

√
(a−r−δ+χr)2−16bcδr

4b

(49)

Therefore, the effects of an increase in the rate of tax credit on positive
steady states are:

∂ẽ2

∂χ
= − rẽ2

(a− r − δ + χr)− 4bẽ2

< 0. (50)

∂ẽ3

∂χ
= − rẽ3

(a− r − δ + χr)− 4bẽ3

> 0. (51)

An increase in the tax credit pushes the middle steady state down and
the upper steady state up and thus, the domain of attraction associated with
the upper steady state is enlarged.

Now our interest is how those changes in exogenous variables affect the
firm’s investment policy and its equilibrium path. It is convenient to con-
struct the phase diagram for this purpose. We so far have relied on the
method of HJB where the discussion can be boiled down to one dimensional
state space. Here, we employ the Maximum Principle to see explicitly the
equilibrium path in the control and state space, that is the equilibrium rela-
tionship between investment decision and the level of capital stock.
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We follow the model (18)-(22) with the specific functions (23) and (24).
The current value Hamiltonian4 is

H = R(K)− uK − A(u) + qK̇ (52)

= aK − bK2 − uK − cu2 + q(uK − δK)

The first-order necessary conditions are

Hu = −K − 2cu+ qK = 0 (53)

q̇ = (r + δ)q − (a− 2bK) + (1− q)u (54)

K̇ = (u− δ)K. (55)

Therefore, the system in u,K space is summarized as

u̇ = ru+
1

2c
(r + δ − a)K +

b

c
K2 (56)

K̇ = (u− δ)K. (57)

Solving u̇ = K̇ = 0 gives the steady states which are same with (37).

4Introducing the tax credit χ will modify the current value Hamiltonian as: H =
aK − bK2 − uK − cu2 + (q + χ)(uK − δK). The first order conditions are:

Hu = −K − 2cu+ (q + χ)K = 0,

q̇ = (r + δ)q − (a− 2bK + χδ) + (1− q − χ)u, and

K̇ = (u− δ)K.

The system is rewritten as

u̇ = ru+
1

2c
(r + δ − a− χr)K +

b

c
K2 and

K̇ = (u− δ)K.

Solving u̇ = K̇ = 0 gives the steady states (49).
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Figure 4: Comparative dynamic results

The phase diagram can be constructed by using the information from
(52). We know from (44)-(47) and (50)-(51) that an increase in demand, a
decrease in the interest rate, and an increase of tax credit shifts up the u̇ = 0
curve. The effects are shown in Figure 4. After the events occur, u̇ = 0
moves up and K̇ = 0 stays there. This changes the steady state values of
the middle and upper steady states and, moreover, the threshold level. The
threshold moves leftwards and therefore the domain of attraction changes,
i.e. the domain of upper steady steady state’s attraction enlarges. One of the
interesting phenomena due to the system with multiple steady states is that
such an exogenous change may bring us from one to the other trajectory, each
of which is associated with a different steady state. For example, as Figure
4 shows, even though the firm’s capital stock is on the shrinking trajectory
at the beginning, the firm may switch to the growing trajectory after any of
the suggested events, an increase in demand, a decrease in the interest rate
or an increase of tax credit happens because of the leftward movement of
the threshold. This is likely to happen when such an event occurs before the
capital stock shrinks below the new threshold. As far as the market takes a
turn for the better (an increase in demand) or the government takes a quick
action to recover from a recession (through a decrease in the interest rate
or an increase of tax credit) before things really get worse (before the firm’s
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capital stock falls below the new threshold), there will be a chance for the
firms to come back to the growing trend. It is also reasonable to think that
firms will ride on the upswing of the market in a boom time, raising their
investment. On the other hand, a recession may urge firms to make a change
of direction, tightening their investment and their capital stock may even
shrink. When the firm’s investment is shrinking, not only the scale of policy
intervention but also a quick reaction by the government is desired. When
the government action is too late, a large policy intervention is required to
alter the situation, since the government has to bring the threshold to the
very low level. A quick reaction may be desired. The quicker the policy
reaction is, the less costly and smaller intervention is required to save the
situation.

5 Kernel Density and Boot Strap Test

Next we want to present empirical evidence that may confirm the long run
twin-peak distribution of firm size which is implied by the above studied
dynamic investment model. To address this question we concentrate on firm
size distribution in the US-manufacturing industry.

The data of the following empirical study are taken from the pstar dataset
used in Hall and Hall (1993). The data set contains 23 variables which
quantify certain characteristics such as investment, stock price or assets’
value of US-firms in the manufacturing industry for the time period 1960 to
1991. We use the variable netcap which is defined as book value of assets,
adjusted for the effects of inflation to represent capital stock. In the following
net capital which is normalized by the average net capital of all firms will be
used as a measure of size:

k(i)t =
Net Capital of Firm i in year t

Average Net Capital in year t
(58)

Thus k(i)t = 1 indicates that firm i has a net capital that equals the
average net capital and k(i)t = 0.5 means that firm i has half of the average
net capital.

The pstar data set gives us a set of observed data points or capital stocks
respectively which can be interpreted as a sample of an unknown probability
density function for several years. To analyze certain characteristics of this
density, such as the number of modes (which are defined as local maximums
in the density), one has to determine the unknown density. If for example
the density function has changed from being unimodal to a bimodal one it
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can be regarded as a hint for the conclusion of the above stated theoretical
ideas.

Accordingly the aim in this section is to estimate the unknown density
function from the observed data especially at the end of the sample period
to see if it is bimodal. To address this aim a nonparametric approach is
used. Whereas the parametric approach makes strong assumptions about
the distribution of the data (e.g. normal distribution) the nonparametric
approach is characterized by less rigid assumptions on the distribution of the
observed data.5 The only necessary assumption which will be made is that a
probability density function exist, thus ‘letting the data itself determine the
density function’. In literature there are various kinds of nonparametric den-
sity estimators like kernels, splines, orthogonal series or histograms.6 We will
concentrate on one of the most common, namely kernel density estimation
which recently has become a standard method in explorative data-analysis.7

The idea of kernel density estimators is based on Rosenblatt (1957) and
Parzen (1962) and the simplest form is defined as

f̂(x) =
1

nh

n
∑

i=1

W (
x−Xi

h
) (59)

where xi, (i = 1, . . . , n) are the observations of the data set, n is the
window width or equivalently denoted smoothing parameter or bandwidth and
W = W (u) represents the kernel. Let ˆf(x, h) be a kernel density estimate
which uses data x and h as window width, then Figure 6 displays the number
of modes in the Gaussian kernel density estimation in 1990 as a (step stair)
function of the window width h, whereas the critical window widths are the
points of discontinuity.

5See Silverman (1986), p. 1.
6For an detailed overview see for example Bean and Tsokos (1980) and Tapia and

Thompson (1978).
7See Turlach (1993), p.1.
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Figure 5: Number of Modes in the Gaussian Kernel Estimation in 1990

From Figure 5 it is obvious that inferences which can be drawn from
the kernel estimator strongly depend on the choice of the window width h.
Unfortunately yet there is no generally accepted approach to determine the
”correct” window width. Recent approaches range from subjective choice to
rather automatic ones, which try to define optimal criteria.8

Terrell (1990) assumes that the most part of density estimations are based
on subjective choice, thus the researcher chooses the window width that best
fits his aims. On this basis a lot of effort was undertaken to identify ap-
propriate, data-driven window width selection methods.9 The most popular
choice for the window width is the so called optimal bandwidth introduced
by Silverman (1986) and is defined as

h = 1.06σn−1/5 (60)

8The reader who is interested in a brief summary of these methods is referred to Turlach
(1993).

9See for example Jones (1991), Silverman (1986) and many others.

18



The use of Silverman’s optimal bandwidth for a Kernel estimate for the
year 1990 results in an optimal bandwidth h=0.3183 which implies a kernel
density estimation with one mode therefore indicating unimodality. This is
shown in figure 6.

Figure 6: Kernel Density Estimate in 1990

Another way for addressing the problem of the number of modes is to
perform hypothesis testing and therefore it is appropriate to construct a
bootstrap test for multimodality which tests the hypothesis that a Gaussian
density estimation has one, two or in general m modes. The approach of
a bootstrap multimodality test is used because for example normal tests or
permutation tests of multimodality are not efficient in this case. However, a
Bootstrap test is an effective way to test for multimodality.

In the context of this work suppose that the data on firms’ capital stocks
for every year is an i.i.d. sample from an unknown distribution F with
continuous density p(x). To obtain certain properties of the density like
the number of modes one can apply the bootstrap multimodality test which
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requires drawing bootstraps10 from the empirical distribution Fn.
11

Accordingly, the sample of firms’ capital stocks can be used to represent
the empirical distribution. The problem, considered in this section is test-
ing the null hypothesis H0 that the density has one single mode versus the
alternative hypothesis H1 that it has two or more modes.

H0 : f(x) has 1 mode versus H1 : f(x) has more than 1 mode.

To carry out this test it is necessary to specify a test statistic.
A reasonable choice is the critical window width ĥ1 respectively the smallest
window width needed to obtain a kernel density estimation with 1 mode. A
large value of ĥ1 implies that a lot of smoothing has to be done to obtain a
kernel estimator with 1 mode and thus is evidence against H0.

Next, one has to define the estimated distribution under the null hy-
pothesis, respectively an estimated null distribution for the test of H0. A
reasonable choice may be f̂0(x; ĥ1) which intuitively is the density estimate
that uses the smallest amount of smoothing among all estimates with one
mode. The problem of using f̂0(.; ĥ1) is that it artificially increases the vari-
ance of the bootstrap sample relative to the variance of the actual data set.
To avoid this problem f̂0(.; ĥ1) will be adjusted or rescaled respectively to
have the same variance as the bootstrap sample variance and will be denoted
smoothed density estimate ĝ0(.; ĥ1).

Finally, it remains to assess the significance level of the observed value of
ĥ1. The bootstrap multimodality hypothesis test is based on the so called
achieved significance level ASLboot:

ASLboot = Pĝ0(.;ĥ1){ĥ∗1 > ĥ1}, (61)

where ĥ1 is fixed at its observed value from the data set and ĥ∗1 is the
critical window width producing one mode of the bootstrap sample x∗i , (i =
1, . . . , n).

10Formally a bootstrap sample is constructed by randomly sampling n times with re-
placement from a data sample. The data sample or the distribution from which the
bootstraps are drawn is denoted empirical distribution Fn and the replacement of F by
Fn is called the “plug-in”-principle.

11It can be shown that Fn is a nonparametric maximum likelihood estimator of F
and therefore it is justified to estimate the true unknown distribution by the empirical
distribution if no other information on F is available (for instance such that F belongs to
a specific parametric class).
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To approximate the ASLboot it is necessary to draw the bootstrap from the
smoothed density estimate ĝ0(.; ĥ1). The smoothed bootstrap data x∗i , (i =
1, 2, . . . , n) will be obtained by drawing with replacement a sample y∗i , (i =
1, 2, . . . , n) from the actual data set and then set

x∗i = y∗ + (1 + h2
1/σ̂

2)−1/2(y∗i − y∗ + h1εi), (i = 1, 2, . . . , n), (62)

where y∗ denotes the mean of y∗i , (i = 1, 2, . . . , n), σ̂2 denotes the sample
variance of x∗i , (i = 1, 2, . . . , n) and εi are i.i.d. standard normal random
variables. Now the ASLboot is approximated by

ˆASLboot =
#{ĥ∗1(b) ≥ ĥ1}

B
, (63)

where B is the number of bootstrap replicates, # is the mathematical
symbol for number and (b = 1, 2, . . . , B).

If for instance a significance level of 10% will be used, then H0 will be
rejected if ˆASLboot < 10%.

After describing the basic ideas of the bootstrap multimodality test in
the following it will be applied. Applying the bootstrap multimodality test

H0 : f(x) has 1 mode vs. H1 : f(x) has two or more modes

ˆASLboot =
#{ĥ∗

1
(b)≥ĥ1}

B
,

with 500 smoothed bootstraps of the original data on logarithm of netcap
in 1990, a significance level of 10% and ĥ1 = 0.35032 results in 435 smoothed
bootstrap samples that have ĥ∗1(b) ≥ ĥ1 and therefore

ˆASLboot = #{ĥ∗1(b) ≥ ĥ1}/B = 87%.

Analogous to the latter result the test indicates that the null hypothesis
can not be rejected in favor of the hypothesis of a bimodal density distribu-
tion. The ˆASLboot is about 87% which supports the hypothesis of just one
single peak in the true density.

The main problem, however, using a (nonparametric) density estimator
concerning long-run dynamics of firms is that it does not consider potential
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dynamics of firm distributions over time. In other words, although the true
long-run distribution may indeed is bimodal, a density estimate in the year
1990 or even 2003 has not necessarily to be bimodal because it may take
some long time for firms to group around two stable steady states. Therefore
a density estimate that is unimodal for a certain time period does not con-
tradict the hypothesis of a future (long-run) bimodal firm size distribution.
To model the dynamics of firm size distribution and to determine long-run
distributions that may be stationary (with two steady states) are studied in
the next section. The Markov chain approach will be used to remedy the
latter disadvantage.

6 Markov Chain Approach

Assume that the population of US-manufacturing firms is classified into sev-
eral discrete size classes (states) according to some criteria that represent
capital stock. In this work the value of a firm’s book assets (netcap) in rela-
tion to the average value of all firms will be used, whereas other variables like
investment, etc. could also be used, because in general it will be expected
that they are strongly correlated. The relative netcap now is defined as

ki(n) =
Ki(n)

∑

iKi(n)
, (64)

where ki(n) denotes the relative netcap in year n, Ki(n) is the absolute
value of netcap in year n and the state space is considered as following:

0 ≤ k ≤ 1
4
, 1

4
< k ≤ 1

2
, 1

2
< k ≤ 1, 1 < k ≤ 2, k > 2

The main problem of applying the Markov chain approach is the deter-
mination of the corresponding transition probabilities. It is obvious that the
transition probabilities and the probability distribution respectively are not
known and accordingly they have to be estimated from the observed data.
To address this issue, one considers the variable ”relative netcap” and in-
terprets it as given realizations of a Markov chain. With the help of these
realizations it is possible to determine the maximum likelihood estimator of
the true transition probabilities. The procedure of obtaining the maximum
likelihood estimates of the true transition probabilities begins with the de-
termination of so called transition numbers. Transition numbers indicate the
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number of firms’ transitions from state i to state j during two successive time
points. The realizations of transition numbers can be summarized in form of
a matrix, called fluctuation matrix F(n− 1, n) = [fij(n− 1, n)]i,j∈S,n∈N, .

For purpose of illustration the fluctuation matrices for the time period
1973-74 is presented in table 1:

k ≤ 1
4

1
4
< k ≤ 1

2
1
2
< k ≤ 1 1 < k ≤ 2 k > 2

k ≤ 1
4

837 12 0 0 0
1
4
< k ≤ 1

2
12 177 12 0 0

1
2
< k ≤ 1 1 8 99 11 0

1 < k ≤ 2 0 0 5 78 7
k > 2 0 0 0 2 129

Table 1: Example of a fluctuation matrix

To interpret these fluctuation matrices one might look, for example, at
the first row of fluctuation matrix F(1973, 1974).

During the time period 1973 to 1974 837 firms that had a relative netcap
corresponding to interval k ≤ 1

4
in 1973 remained there after one year. Anal-

ogous 12 firms that had a relative netcap corresponding to interval k ≤ 1
4
in

1973 transit to the interval 1
4
< k ≤ 1

2
, and so on.

As in Onatski (2003) we used a sample period of 22 years (1973 - 1990)
to allow the sample to be a balanced panel. Now it is possible to assess the
maximum likelihood estimator. The maximum likelihood estimator for the
true transition probabilities on basis of s realizations of a stationary Markov
chain is given by:

p̂ij =

∑N
n=1 fij(n− 1, n)

∑N
n=1 fi(n− 1, n)

=
fij
fi·

(65)

It is worth noting that p̂ij is the empirically derived relative frequency and
therefore is only an approximation of the true transition probabilities. How-
ever, Anderson and Goodman (1957) have shown that this approximation is
in deed a maximum likelihood estimate for a first-order Markov chain.12

Applying the maximum likelihood estimator results in the following tran-
sition matrix:

12See Anderson and Goodman (1957), pp. 90.
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P =













0.951 0.023 0.008 0.005 0.013
0.228 0.692 0.067 0.005 0.007
0.162 0.069 0.700 0.062 0.010
0.155 0.008 0.085 0.674 0.078
0.158 0.006 0.006 0.032 0.799













The estimated transition matrix P makes it possible to determine the
equilibrium distribution or limiting distribution respectively of firms in the
US-manufacturing industry. To guaranty that an equilibrium exist the tran-
sition matrix has to satisfy some properties which are presented in the fol-
lowing lemma:

Lemma:

An irreducible and aperiodic Markov chain with finite state space always
has a limiting distribution which is an unique stationary distribution and
furthermore is independent of the initial distribution of the Markov chain.

On the basis of above Lemma, first, it has to be proved that the transition
matrix is irreducible and aperiodic:

1. A Markov chain is called irreducible if all states of the chain communi-
cate. Thus, it must be possible to get from every state to every other
in a finite number of steps. Respectively it must be satisfied that for
each state pair (i, j) ∈ S×S exists an integer n = n(i, j) ∈ N with pnij.
Since every probability in the transition matrix P is strictly positive
(p1
ij > 0) it is obvious that the chain is irreducible.

2. Let a set Ui contain transition numbers indicating the number of steps,
a state i returns to it with a positive probability. Then, if there is a
state i such that pnii > 0 for some n > 0 which states that there is a
positive probability that the state i may be returned and furthermore
the expression

d(i) =

{

∞ if Ui = {0}
gcd of the set Ui if Ui 6= 0

equals 1 or ∞ then the state is denoted aperiodic. It is apparent that
in this case the Markov chain is aperiodic.
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After showing that the transition matrix, respectively the Markov chain,
is irreducible and aperiodic there have to be a limiting distribution and a
stationary distribution that is independent of an initial distribution. To
determine the limiting distribution one has to solve the following equations:

p = pP (66)

p1 + p2 + p3 + p4 + p5 = 1 (67)

The solution of the equations results in a unique stationary distribution
given by

p1 = 0.787
p2 = 0.071
p3 = 0.046
p4 = 0.030
p5 = 0.066

It is obvious that this equilibrium distribution is bimodal or in the words
of Quah13 ‘twin-peaked’, since the probabilities of being in the extreme size
groups in the equilibrium state distribution are larger then being in the mid-
dle state (which sometimes is referred to as thinning in the middle).14

In contrast, the results of the kernel density estimate indicated an uni-
modal distribution of US-manufacturing firms. However, the application of
the Markov chain approach shows that in the long run a multiple steady
state with a large group at the low tail and a smaller group at the high tail
exists. Thus, the empirical study exhibits that in the long run the unimodal
distribution ceteris paribus tends to change to a bimodal one. This implies
an increase in the degree of concentration because there is a relatively small
group (state 5: 7%) of firms having a capital stock that is at least twice
as big as the average capital stock in the US-manufacturing industry, and
a relatively large group of firms (state 1: 79%) that only have a capital
stock corresponding to less then a quarter of the average capital stock in the
industry.

13See e.g. Quah (1997), p. 28.
14See Quah (1993), p. 430.
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With reference to the discrete Markov chain approach researcher some-
times argue that the choice of the class-size intervals has an important influ-
ence on the corresponding ergodic distribution. For instance, if one group is
by accident divided into two pieces by using different definitions or numbers
of class-size intervals, then the latter bimodal ergodic distribution may turn
into a trimodal distribution, thus leading to a totally different interpretation
of the equilibrium state.

A second problem associated with discrete Markov chains is that dis-
cretization can have great distortionary effects on dynamics if the underlying
variables (which in our case is firm asset size) are continuous.15

However, just recently an approach called the stochastic kernel approach
has been developed to overcome the shortcomings of discrete and arbitrarily
defined class-size intervals. Informal, the idea of the stochastic kernel is to
avoid the division into a discrete countable number of states and allowing
the number of states tend to infinity and then to continuity. Thus, the
resulting transition matrix becomes a matrix with a continuity of rows and
columns or a stochastic kernel respectively. The dynamics of firms’ asset size
are assumed to be governed by this stochastic kernel similar to a first-order
autoregression process.

To get an adequate understanding of the stochastic kernel consider the
following: Let R denote the real-line and B the Borel σ-algebra on it. Fur-
thermore let µ and ν elements that are probability measures on B. Then
a stochastic kernel relating µ and ν is a mapping M(µ,ν) : (R,B) → [0, 1]
satisfying the three subsequent conditions:

1. ∀x ∈ R, the restriction M(µ,ν)(x, .) is a probability measure

2. For any A ∈ B, the restriction M(µ,ν)(., A) is B-measurable

3. For any A ∈ B, µ(A) =
∫

M(µ,ν)(x,A)dv(x).

Though apparently the stochastic kernel is the uncountable generaliza-
tion of a matrix or, in our case, of the transition matrix respectively. The
stochastic kernel is completely sufficient to describe the transitions from state
x to any other portion of the underlying state space.16

Next we will show of how the stochastic kernel can be used to model the
dynamics of firms’ asset sizes.

15See e.g. Chung (1974)
16See Quah (1997), p. 46.
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By defining with λt the distribution of observations of firms’ assets at time
t, the stochastic kernel describes the law of motion as stated above through
an operator M which maps the Cartesian product of the number of firms
and the Borel set which can be measured on the space [0,1]. The simplest
form of describing the law of motion is:17

λt+1(A) =

∫

Mt(x,A)dλt(x) (68)

Accordingly, if one interprets dv(x) as the density of λ and dµ(y) as the
density of λt+s, then Mt+s(x, dy)dλt(x) has to regarded as the conditional
density of λt+s given λt. On the basis of this the stochastic kernel at time
t + s is equal to the transition matrix at t + s with infinite uncountable
numbers of rows and columns, thus each firms’ asset size value represents
its own class-size group. The problem of arbitrarily class-size intervals is
solved because it is no longer necessary to construct artificial and subjective
class-size intervals.

Again, using the balanced panel of the pstar data set for the period 1973-
1990, the stochastic kernel is estimated. The stochastic kernel is estimated
nonparametrically applying a Gaussian kernel and the optimal window width
as suggested in Silverman (1986). To estimate the stochastic kernel, first the
joint distribution of the logarithm of relative netcap is derived. Subsequently
the implied marginal distribution in 1973 is determined by numerically inte-
grating under this joint distribution. Finally, the stochastic kernel is obtained
by dividing the joint distribution by the marginal distribution. The resulting
stochastic kernel which relates the distribution of log firm assets in 1973 to
the distribution of log firm assets in 1990 is shown in Figure 7.

17See Quah (1997), p. 47.
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Figure 7: Stochastic Kernel of Log Firm Assets

The stochastic kernel estimate confirms the results of the transition ma-
trix and ergodic distribution previously obtained. Figure 7 clearly indicates
that the probability mass has two peaks at the two ends of the mass. As
stated above this result gives empirical support of divergence and polariza-
tion with the tendency of the diverging states to cluster at high firm asset
level, or at low firm asset level respectively.

7 Conclusion

In this paper we have studied a simple dynamic investment decision problem
of a firm where adjustment costs have capital size effects. We have shown
that with this type of models one can easily obtain in multiple steady states
and thresholds as well as a discontinuous policy function, giving rise to a
discontinuous behavior of investment. We study the global dynamic prop-
erties of such a model by employing the Hamilton-Jacobi-Bellman method
and dynamic programming that help us in the numerical detection of multiple
equilibria, the thresholds and the jump in investment. We also have explored
the model’s implications concerning the effects of aggregate demand, interest
rates and tax rates. Finally, an empirical study on the firm size distribution
is provided using U.S. firm size data. We utilize two different approaches,
Kernel density estimation and Markov chain transition matrix to study an
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ergodic distribution. Our results suggest twin-peak distribution of firm size
in the long run which can be viewed as empirically support of the existence
of multiple steady states as predicted in the analytical part of the paper.
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