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Abstract OPTCON is an algorithm for the optimal control of nonlinear

stochastic systems which is particularly applicable to econometric models.

It delivers approximate numerical solutions to optimum control problems

with a quadratic objective function for nonlinear econometric models with

additive and multiplicative (parameter) uncertainties. The algorithm was

programmed in C# and allows for deterministic and stochastic control, the

latter with open-loop and passive learning (open-loop feedback) information

patterns. The applicability of the algorithm is demonstrated by experiments
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with a small quarterly macroeconometric model for Slovenia. This illustrates

the convergence and the practical usefulness of the algorithm and (in most

cases) the superiority of open-loop feedback over open-loop controls.

KeywordsOptimal control; Stochastic control; Algorithms; Econometric

modeling; Policy applications
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1 Introduction

Optimum control theory has a great number of applications in many areas

of science from engineering to economics. In particular, there are many

studies on determining optimal economic policies for econometric models.

Most of these optimum control applications use algorithms for linear dynamic

systems or those that do not take the full stochastic nature of the econometric

model into account. Examples of the former are Kendrick (1981), Coomes

(1987), and the references in Amman (1996), and Chow (1975, 1981) for

the latter. An algorithm that is explicitly aimed at providing (approximate)

solutions to optimum control problems for nonlinear econometric models and

other dynamic systems with different kinds of stochastics is OPTCON, as

introduced by Matulka and Neck (1992). However, so far OPTCON has

been severely limited by being based on very restrictive assumptions about

the information available to the decision-maker. In particular, learning about

the econometric model while in the process of controlling the economy was

ruled out by assumption. In reality, however, new information arrives in

each period, and econometric models are regularly re-specified using this

information. Therefore, extensions of the OPTCON algorithm to include

various possibilities of obtaining and using new information about the system

to be controlled are highly desirable.

The present extension of the OPTCON algorithm from open-loop control

only (OPTCON1) to the inclusion of passive learning or open-loop feedback

control where the estimates of the parameters are updated in each period

results in the algorithm OPTCON2. It can deliver approximately optimal
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solutions to dynamic optimization (optimum control) problems for a rather

large class of nonlinear dynamic systems under a quadratic objective function

with stochastic uncertainty in the parameters and in the system equations

under both kinds of control schemes. In the open-loop feedback part, it is

assumed that new realizations of both random processes occur in each period,

which can be used to update the parameter estimates of the dynamic system,

i.e. of the econometric model. Following Kendrick’s (1981) approach, the

parameter estimates are updated using the Kalman filter in order to arrive

at more reliable approximations to the solution of stochastic optimum control

problems. Whether this hope will materialize depends upon the comparative

performance of open-loop feedback versus open-loop control schemes in actual

applications. Some indication of this will be provided by comparing the two

control schemes within a control problem for a small econometric model. This

also serves to show that the OPTCON2 algorithm and its implementation

in C# actually deliver plausible numerical solutions, at least for a small

problem, with real economic data.

The paper has the following structure: In Section 2, the class of problems

to be tackled by the algorithm is defined. Section 3 briefly reviews the OPT-

CON1 algorithm. Section 4 explains the OPTCON2 algorithm. In Section

5, the small econometric model for Slovenia SLOVNL is introduced, the ap-

plicability and convergence of OPTCON2 as implemented in C# is shown,

and the quality of open-loop and open-loop feedback (passive-learning) con-

trols in Monte Carlo simulations for this model are compared. Section 6

concludes. More details about the mathematics of the algorithm are given in

Blueschke-Nikolaeva et al. (2010).
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2 The problem

The OPTCON algorithm is designed to provide approximate solutions to op-

timum control problems with a quadratic objective function (a loss function

to be minimized) and a nonlinear multivariate discrete-time dynamic system

under additive and parameter uncertainties. The intertemporal objective

function is formulated in quadratic tracking form, which is quite often used

in applications of optimum control theory to econometric models. It can be

written as

J = E

[

T
∑

t=1

Lt(xt, ut)

]

, (1)

with

Lt(xt, ut) =
1

2







xt − x̃t

ut − ũt







′

Wt







xt − x̃t

ut − ũt






. (2)

xt is an n-dimensional vector of state variables that describes the state of

the economic system at any point in time t. ut is an m-dimensional vector

of control variables, x̃t ∈ Rn and ũt ∈ Rm are given ‘ideal’ (desired, target)

levels of the state and control variables respectively. T denotes the terminal

time period of the finite planning horizon. Wt is an ((n + m) × (n + m))

matrix, specifying the relative weights of the state and control variables in

the objective function. In a frequent special case, Wt is a matrix including a

discount factor α with Wt = αt−1W . Wt (or W ) is symmetric.

The dynamic system of nonlinear difference equations has the form

xt = f(xt−1, xt, ut, θ, zt) + εt, t = 1, ..., T, (3)
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where θ is a p-dimensional vector of parameters whose values are assumed to

be constant but unknown to the decision-maker (parameter uncertainty), zt

denotes an l-dimensional vector of non-controlled exogenous variables, and

εt is an n-dimensional vector of additive disturbances (system error). θ and

εt are assumed to be independent random vectors with expectations θ̂ and

On respectively and covariance matrices Σθθ and Σεε respectively. f is a

vector-valued function, f i(.....), is the i-th component of f(.....), i = 1, ..., n.

3 OPTCON1

The basic OPTCON algorithm determines approximate solutions to opti-

mum control problems with a quadratic objective function and a nonlinear

multivariate dynamic system under additive and parameter uncertainties. It

combines elements of previous algorithms developed by Chow (1975, 1981),

which incorporate nonlinear systems but no multiplicative uncertainty, and

Kendrick (1981), which deals with linear systems and all kinds of uncertainty.

The version OPTCON1 is described in detail in Matulka and Neck (1992);

here only its basic idea is presented.

It is well known in stochastic control theory that a general analytical so-

lution to dynamic stochastic optimization problems cannot be achieved even

for very simple control problems. The main reason is the so-called dual effect

of control under uncertainty, meaning that controls do not only contribute

directly to achieving the stated objective but also affect future uncertainty

and hence the possibility of indirectly improving on the system performance

by providing better information about the system (see, for instance, Aoki
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(1989); Neck (1984)). Therefore only approximations to the true optimum

for such problems are feasible, with various schemes existing to deal with the

problem of information acquisition.

A useful distinction was adapted from the control engineering literature

by Kendrick (1981): open-loop policies preclude the possibility of receiving

information (measurements) while the system is in operation; open-loop feed-

back (or passive learning) policies use current information to determine the

control but do not anticipate future measurements; and closed-loop (or active

learning) policies make some use of information about future measurements

as well. Alternatively, Kendrick and Amman (2006) propose the terms op-

timal feedback and expected optimal feedback for open-loop and open-loop

feedback respectively. Given the intricacies of the interplay between control

and information, even for very simple stochastic control problems (for ex-

ample, a linear scalar system with a time horizon of only two periods), an

exact analytical or even numerical solution is impossible; hence numerical

approximations are required that make use of simplifying assumptions.

The OPTCON1 algorithm determines policies belonging to the class of

open-loop controls. It either ignores the stochastics of the system altogether

(deterministic solution, identical to the Chow algorithm) or assumes the

stochastics (expectation and covariance matrices of additive and multiplica-

tive disturbances) to be given once and for all at the beginning of the planning

horizon (stochastic solution). The problem with the nonlinear system is tack-

led iteratively, starting with a tentative path of state and control variables.

The tentative path of the control variables is given for the first iteration. In

order to find the corresponding tentative path for the state variables, the

7



nonlinear system is solved numerically using the Newton-Raphson method.

Alternatively, the Gauss-Seidel method or perturbation methods (e.g. Chen

and Zadrozny (2009)) may be used for this purpose.

After the tentative path is found, the iterative approximation of the op-

timal solution starts. The solution is sought from one time path to another

until the algorithm converges or the maximal number of iterations is reached.

During this search the system is linearized around the previous iteration’s

result as a tentative path and the problem is solved for the resulting time-

varying linearized system. The criterion for convergence demands that the

difference between the values of current and previous iterations be smaller

than a pre-specified number. The approximately optimal solution of the prob-

lem for the linearized system is found under the above-mentioned simplifying

assumptions about the information pattern; then this solution is used as the

tentative path for the next iteration, starting off the procedure all over again.

Every iteration, i.e. every solution of the problem for the linearized sys-

tem, has the following structure: the objective function is minimized using

Bellman’s principle of optimality to obtain the parameters of the feedback

control rule. This uses known results for the stochastic control of LQG prob-

lems (optimization of linear systems with Gaussian noise under a quadratic

objective function). A backward recursion over time starts in order to cal-

culate the controls for the first period. Next, the optimal values of the state

and the control variables are calculated by applying forward recursion, i.e.

beginning with u1 and x1 at period 1 and finishing with uT and xT at the

terminal period T . If the convergence criterion is fulfilled, the solution of

the last iteration is taken as the approximately optimal solution to the prob-
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lem and the algorithm stops. Finally, the value of the objective function is

calculated for this solution. For more details, see Matulka and Neck (1992).

Figure 1 summarizes the OPTCON1 algorithm.

Solve the system,
find tentative (x◦

t
)T
t=1

for t=T, ..., 1
- linearize the system around (x◦

t
, u◦

t
)

- minimize J , find (Gt, gt)

for t=1, ..., T
(u∗

t
, x∗

t
)T
t=1

stop criterion
for non-linearity loop

(convergence?)
J∗

(x◦

t
, u◦

t
)T
t=1

= (x∗

t
, u∗

t
)T
t=1

no

yes

nonlinearity-loop

Figure 1: Flow chart of OPTCON1

4 OPTCON2

4.1 Characterization of the OPTCON2 algorithm

The new version of the algorithm, OPTCON2, incorporates both open-loop

and open-loop feedback (passive-learning) controls. The idea of passive learn-

ing corresponds to actual practice in applied econometrics: at the end of each

time period, the model builder (and hence the control agent) observes what

has happened, that is, the current values of state variables, and uses this in-

formation to re-estimate the model and hence improve his/her knowledge of
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the system. It should be mentioned that two kinds of errors, namely additive

(random system errors) and multiplicative (‘structural’ errors in parameters),

are taken into account but not possible specification errors, hence it is as-

sumed that no re-specifications of the model are performed. Whether taking

passive learning into account really improves the performance of the system

is, however, an open question because the ‘true’ optimum is not known.

The main research aim is to obtain evidence as to whether applying pas-

sive learning can indeed improve the final solution. The prediction and op-

timization procedures for open-loop control assume that the model is not

affected by random disturbances occurring during the optimization process.

But in reality some random errors will disturb the optimization process.

OPTCON2 can deal with two kinds of uncertainties, parameter and system

errors. The passive-learning strategy implies observing current information

and using it in order to adjust the optimization procedure. For the purpose

of comparing open-loop and open-loop feedback results, it is not possible to

observe current and true values, so one has to resort to Monte-Carlo simula-

tions. Large numbers of random time paths for the additive and multiplica-

tive errors are generated, representing what new information could look like

in reality. In this way ‘quasi-real’ observations are created and both types of

controls, open-loop and passive-learning (open-loop feedback), are compared.

The procedure applied is as follows.

M (a number, usually between 100 and 1000) different sets of realizations

of random noises (εmt )
T
t=1 and µm, m = 1, ...,M , are generated. It is assumed

that there is an unknown ‘real’ model with the ‘true’ constant parameter

vector θ̂. But the policy-maker does not know these ‘true’ parameters θ̂ and
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works with the ‘wrong’ parameters θm resulting from the estimates using the

realization of the random variable µm: θm = θ̂+µm. After this, the following

procedure is run for every random scenario: a forward loop is started from 1

to T . In each time period S an (approximately optimal) open-loop solution

for the subproblem is determined, i.e the problem for the time periods from

S to T . Then the predicted x∗

S and u∗

S for the time period S are fixed. The

assumption is that the policy-maker knows the realized values of the state

variables xa∗
S at the end of period S, which are, however, disturbed by the

additive errors: the difference between x∗

S = f(xa∗
S−1, x

∗

S, u
∗

S, θ
m, zS) and xa∗

S =

f(xa∗
S−1, x

a∗
S , u∗

S, θ̂, zS)+εmS comes from the realization of the random numbers

εmS and µm. Next, the new information is used by the policy-maker to update

and adjust the parameter estimate θm. After that, the same procedure is

applied for the remaining subproblem from S + 1 to T , and so on.

4.2 Detailed description of the algorithm

STEP I: Compute a tentative state path (
◦

xt)
T
t=1 by solving the system of

equations f(.....) with the Newton-Raphson algorithm (or Newton-Raphson

with line-search expansion), given the tentative policy path (
◦

ut)
T
t=1.

STEP II: Generate M paths of random normally distributed system noises

(εmt )
T
t=1 and parameter noises µm (θm = θ̂ + µm) using the given means and

covariance matrices. The given covariance matrix is Cholesky decomposed in

order to get the lower-triangular matrix. Applying this to uncorrelated ran-

dom numbers produces a vector with the covariance properties of the system
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being modeled.

STEP III: For each independent random scenario with (εmt )
T
t=1 and µm,

i.e. for each Monte Carlo run m (m = 1, ...,M), perform the following steps:

Step III-1: For each S from 1 to T , find the open-loop solution for the

subproblem (S, ..., T ), according to the procedure already implemented in

OPTCON1; cf. Section 3 above.

Step III-1a: The nonlinearity loop is run until the stop criterion is

fulfilled, i.e. until the difference between the values of the current and the

previous iteration is smaller than a pre-specified number or the maximal

number of iterations is achieved.

When the stop criterion has been achieved, the approximately optimal

solution (x∗

t , u
∗

t )
T
S has been found. Then go to the next step III-1b. It

should be noted that after several runs of the nonlinearity loop only the

solution (x∗

S, u
∗

S) for the time period S will be taken as the optimal solution.

The calculations of the pairs (x∗

t′ , u
∗

t′) for other periods (t′ > S) have to be

done again, taking into account the re-estimated parameters for all periods.

Step III-1b: Calculate the following for only one time period S:

xa∗
S = f(xa∗

S−1, x
a∗
S , u∗

S, θ̂, zS) + εmS .

Step III-1c: Update the parameter estimates θm using the Kalman filter

and the current (realized) values of the variables xa∗
S :
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[1] Prediction:

x̂S/S−1 = f(xa∗
S−1, x̂S/S−1, u

∗

S, θ
m
S−1/S−1

, zS) = x∗

S, θmS/S−1
= θmS−1/S−1

,

Σxx
S/S−1

= F x
θS−1Σ

θθ
S−1/S−1

(F x
θS−1)

′ + Σεε
S

and

Σxθ
S/S−1

= (Σθx
S/S−1

)′ = F x
θS−1Σ

θθ
S−1/S−1

, Σθθ
S/S−1

= Σθθ
S−1/S−1

.

(4)

[2] Correction:

Σθθ
S/S = Σθθ

S/S−1
− Σθx

S/S−1
(Σxx

S/S−1
)−1Σxθ

S/S−1

and

θmS/S = θmS/S−1
+ Σθx

S/S−1
(Σxx

S/S−1
)−1[xa∗

S − x∗

S ] and x̂S/S = xa∗
S .

(5)

Thus the update results in the new values θmS/S and Σθθ
S/S.

Step III-1d: Set θm = θmt/t and Σθθ = Σθθ
t/t

and run the procedure for the period S+1. This loop is finished when S = T

and the approximately optimal open-loop feedback control and state vari-

ables for all periods have been found.

Step III-2: Compute the expected (approximately) minimal welfare loss:

J∗ =

T
∑

t=1

Lt(x
a∗
t , u∗

t ) (6)
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with

Lt(x
a∗
t , u∗

t ) =
1

2







xa∗
t − x̃t

u∗

t − ũt







′

Wt







xa∗
t − x̃t

u∗

t − ũt






. (7)

The main steps of OPTCON2 are summarized in Figure 2.

5 An application

The OPTCON2 algorithm was implemented in C#. In order to test its

convergence, a very simple, small macroeconometric model for Slovenia was

used. Section 5.1 gives the details of this model. The optimization results of

this model for two different open-loop policies, a deterministic and a stochas-

tic case, are presented in Section 5.2. In Section 5.3, the results of open-loop

and passive-learning (open-loop feedback) control solutions are compared.

5.1 The model SLOVNL

The small nonlinear macroeconometric model of the Slovenian economy,

called SLOVNL (SLOVenian model,Non-Linear version), consists of 8 equa-

tions, 4 of them behavioral and 4 identities. The model includes 8 state

variables, 4 exogenous non-controlled variables, 3 control variables, and 16

unknown (estimated) parameters. The quarterly data for the time periods

1995:1 to 2006:4 yield 48 observations and admit a full-information maxi-

mum likelihood (FIML) estimation of the expected values and the covariance

matrices for the parameters and system errors. The start period for the op-

timization is 2004:1 and the end period is 2006:4 (12 periods).
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S
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, ., u∗
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S
= f(xa∗

S−1
, ., u∗

S
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t
, u∗m

t
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S=T ?

stop

yes

yes

no

Figure 2: Flow chart of OPTCON2

Model variables used in SLOVNL

Endogenous (state) variables :
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x[1] : CR real private consumption

x[2] : INV R real investment

x[3] : IMPR real imports of goods and services

x[4] : STIRLN short term interest rate

x[5] : GDPR real gross domestic product

x[6] : V R real total aggregate demand

x[7] : PV general price level

x[8] : Pi4 rate of inflation

Control variables:

u[1] TaxRate net tax rate

u[2] GR real public consumption

u[3] M3N money stock, nominal

Exogenous non-controlled variables:

z[1] EXR real exports of goods and services

z[2] IMPDEF import price level

z[3] GDPDEF domestic price level

z[4] SITEUR nominal exchange rate SIT/EUR

Model equations :

The first four equations are estimated by FIML, the remaining equations are identities.

Standard deviations are given in brackets.
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CRt = 240.9398 + 0.740333 CRt−1 + 0.111727 GDPRt (1− TaxRatet

100 )

(189.7449) (0.1115) (0.0330)

− 1.007353 (STIRLNt − Pi4t) − 4.773533 Pi4t

(2.5848) (2.4966)

INV Rt = 75.41731 + 0.932211 INV Rt−1 + 0.264523 (V Rt − V Rt−1)

(176.8549) (0.1423) (0.0924)

− 0.455511 (STIRLNt − Pi4t) − 2.981241 Pi4t

(6.9044) (3.1277)

IMPRt = IMPRt−1 + 0.826449 (V Rt − V Rt−1) − 38.14954 SITEURt

(0.0724) (18.9336)

STIRLNt = 0.811606 STIRLNt−1 − 0.000877 (M3N)t
PVt

· 100

(0.1375) (0.0008)

+ 0.002746 GDPRt

(0.0026)

GDPRt = CRt + INV Rt + GRt + EXRt − IMPRt

V Rt = GDPRt + IMPRt

PVt = GDPRt

V Rt

·GDPDEFt + IMPRt

V Rt

· IMPDEFt

Pi4t = PVt−PVt−4

PVt−4

· 100

The objective function penalizes deviations of objective variables from

their ‘ideal’ (desired, target) values. The ‘ideal’ values of the state and control
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variables (x̃t and ũt respectively) are chosen as follows:

Table 1: ‘Ideal’ values

CR INV R IMPR STIRLN GDPR V R PV P i4 TaxRate GR M3N
1% 1% 2% -0.25 1% 1.5% 0.75% 3 25.2 1% 1.75%

The ‘ideal’ values for most variables are defined in terms of growth rates

(denoted by % in Table 1) starting from the last given observation (2003:4).

For Pi4 and TaxRate, constant ‘ideal’ values are used; for STIRLN , a linear

decrease of 0.25 per quarter is assumed to be the goal.

The weights for the variables, i.e. the matrix W in the objective function,

are first chosen as shown in Table 2a (‘raw’ weights) to reflect the relative

importance of the respective variable in the (hypothetical) policy-maker’s

objective function. These ‘raw’ weights have to be scaled or normalized ac-

cording to the levels of the respective variables to make the weights compa-

rable. To do so, the ‘raw’ weights are multiplied by normalization coefficients

NC i = (ML/MAi)2, where ML is the mean of a reference series and MAi

is the mean of the respective series i. The ‘correct’ weights obtained in this

way are shown in Table 2b. The weight matrix is assumed to be constant

over time (no discounting).

Next, the OPTCON2 algorithm is applied to this optimization problem

in order to determine approximately optimal fiscal and monetary policies for

Slovenia under the assumed objective function and the econometric model

SLOVNL. Two different experiments are run: in experiment 1, two open-

loop solutions are compared, a deterministic one where the variances and

covariances of the parameters are ignored, and a stochastic one where the
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Table 2: Weights

2a: ‘raw’ weights 2b: ‘correct’ weights

variable weight variable weight
—————— ———– —————— ————
CR 1 CR 3.457677
INV R 1 INV R 12.16323
IMPR 1 IMPR 1.869532
STIRLN 1 STIRLN 216403.9
GDPR 2 GDPR 2
V R 1 V R 0.333598
PV 1 PV 423.9907
Pi4 0 Pi4 0
TaxRate 2 TaxRate 37770.76
GR 2 GR 63.77052
M3N 2 M3N 0.090549

estimated parameter covariance matrix is taken into account. In experiment

2, the properties of the open-loop and the open-loop feedback solutions are

compared. This exercise is not meant to determine actually optimal policies

for Slovenia during the period considered (for this, the quality of the econo-

metric model is not sufficient); instead, it should deliver some information

about the convergence and the applicability of the OPTCON2 algorithm as

implemented in C#.

5.2 Experiment 1: open-loop control

For experiment 1, two different open-loop solutions are calculated: determin-

istic and stochastic. The deterministic scenario assumes that all parameters

of the model are known with certainty. In the stochastic case, the covariance

matrix of the parameters as estimated by FIML is used but no updating of

information occurs during the optimization process.
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The results for two variables, GR and GDPR, are shown in Figures 3 and

4. Each figure shows the optimization results for the deterministic and the

stochastic case and the ‘ideal’ and historical values of the respective variable.
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Figure 3: Deterministic vs. stochastic open-loop case (GR)

Figures 3 and 4 show that both the deterministic and the stochastic so-

lution approximate the ‘ideal’ values rather well. This is also supported by

the values of the objective function, which is 2,618,460.238 in the uncon-

trolled solution, 904,385.766 in the deterministic solution and 918,296.046 in

the stochastic solution, showing a considerable improvement in system per-

formance. An interesting detail is that the deterministic and the stochastic

open-loop solutions are very similar, which goes in line with previous findings

in a related study by Neck and Karbuz (1995).

In both cases (deterministic and stochastic) the algorithm needs 3 non-

linearity runs to converge. The entire procedure took 2 seconds for the de-
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Figure 4: Deterministic vs. stochastic open-loop case (GDPR)

terministic case and 4 seconds for the stochastic case on a personal computer

with 2 GHz Intel Core 2 Duo CPU and 4GB RAM. The results show that

the OPTCON2 algorithm (OL-strategy) can be used to determine optimal

open-loop controls, at least for small nonlinear econometric models.

5.3 Experiment 2: open-loop feedback control

The aim of experiment 2 is to compare open-loop and open-loop feedback

controls. There is a problem concerning how to compare both strategies

because open-loop controls do not take random disturbances into account

during the optimization process. In order to make both strategies compa-

rable, some adjustments to the open-loop controls are necessary: first the

open-loop controls (u∗

t )
T
t=1 are calculated for all periods, using the generated

θm (θm = θ̂ + µm). Then, assuming that the ‘true’ model is known with
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the parameters θ̂ and system error εmt , the actual values of open-loop states

(xa∗
t = f(xa∗

t−1, x
a∗
t , u∗

t , θ̂, zt) + εmt , t = 1, ..., T ) are determined, the only in-

formation which is available to the decision-maker. So the policies remain

unchanged but the state variables are calculated taking the disturbances µm

and εm into account. The open-loop feedback solution is determined accord-

ing to the algorithm sketched in Section 4. In this way, a comparison of both

strategies under simulated ‘real’ uncertainty (disturbances) becomes possible.
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Figure 5: Open-loop vs. open-loop feedback control, value of objective func-
tion (100 Monte Carlo runs)

Figure 5 shows the results of a representative Monte-Carlo simulation,

displaying the value of the objective function (loss) arising from applying

OPTCON2 under 100 independent random Monte Carlo runs. Diamonds

represent open-loop feedback results and squares open-loop results. One can

see from this figure that in most runs the diamonds are below the squares

(here: in 66 cases out of 100). This means that open-loop feedback con-
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trols give better results (lower values of the cost function) in the majority

of the cases investigated. But one can also see that there are many cases

where either control scheme results in high losses. Many simulations having

been run (with different numbers of Monte Carlo runs), the findings can be

summarized as follows:

• In 60-75 percent of the cases, open-loop feedback controls give better

results than open-loop controls.

• High losses occur in both the open-loop and the open-loop feedback

case.

• For open-loop controls, high losses seem to be more frequent.

This result is somewhat unexpected because it means that (passive) learn-

ing does not necessarily improve the quality of the final results; it may even

worsen them. One reason for this is the presence of the two types of stochas-

tic disturbances: additive (random system error) and multiplicative error

(‘structural’ error in the parameters). The decision-maker cannot distinguish

between realizations of errors in the parameters and in the equations as he

just observes the resulting state vector. Based on this information, he learns

about the values of the parameter vector but may be driven away from the

‘true’ parameter due to the presence of random system error. The possibility

of such a diversion can be expected to decrease during the planning horizon

as new information (new realizations of the errors) are granted relatively less

weight in the updating procedure as time passes by.

One possible way out of this dilemma is to introduce weights in the update
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structure. In particular, in the correction procedure the correction term for

the parameter estimate θ is extended by a weighting parameter Vt:

θt/t = θt/t−1 + VtΣ
θx
t/t−1

(Σxx
t/t−1

)−1[xa∗
t − x∗

t ], 0 < Vt ≤ 1. (8)

Adjusting the updating procedure in this way means that better results can

be expected under open-loop feedback control. The updating procedure aims

at reducing the ‘structural’ error but can be disturbed by the random system

error. Usually, this influence of the random system error can be expected to

be especially strong at the beginning of the planning period. Introducing a

time-dependent weighting parameter Vt serves to give less weight to revisions

called for by learning during the earlier periods of the planning horizon than

during the later periods. Different schemes were tried, and the weighted open-

loop feedback scheme with the parameter Vt =
t

T−1
gave the best results, so

in the simulations presented next this variant was used.

In a Monte-Carlo simulation to compare system performance under open-

loop (OL) and weighted open-loop feedback (wOLF) control, the results are

presented in Figure 6, again showing the values of the objective function

against the number of the Monte Carlo run. Diamonds represent wOLF and

squares OL results. In this simulation wOLF control gives better results:

there are more diamonds below squares (77 out of 100) and only a few wOLF

controls result in a very high loss.

Another way to show the improvement achieved by open-loop feedback,

and even more so by weighted open-loop feedback control over open-loop con-

trol was introduced by Amman and Kendrick (1999), viz. scatter diagrams
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Figure 6: Open-loop vs. weighted open-loop feedback, value of objective
function (100 Monte Carlo runs)

of values of the objective function in different runs. Figures 7 and 8 show

such scatter diagrams for 1000 runs in each case. They show the main mass

below the 45 degree line, meaning that OL results in higher losses than OLF

(in 66.4% of the runs, Figure 7), and wOLF results in higher losses than OL

(in 75.3% of the runs, Figure 8). These results corroborate those obtained

by Amman and Kendrick (1999).

After running many simulations the results can be summarized as follows:

• In 70-80 percent of the cases considered, weighted open-loop feedback

controls give better results than open-loop controls.

• Weighted open-loop feedback controls result in fewer cases of high loss

than open-loop controls.

Using a weighting scheme for parameter updating thus increases the num-
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Figure 7: Scatter diagram of OL vs. OLF, values of objective function (1000
Monte Carlo runs)
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Figure 8: Scatter diagram of OL vs. wOLF, values of objective function
(1000 Monte Carlo runs)
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ber of runs where passive learning controls result in better values of the ob-

jective function than the control scheme without learning. Additionally, a

decrease in the number of runs with very high losses can be achieved by

introducing wOLF controls.

6 Concluding remarks

The present extension of the OPTCON algorithm, OPTCON2, calculates

open-loop feedback in addition to open-loop control policies. It was pro-

grammed in the computer language C# and shown to converge for a small

econometric model. The main improvement lies in learning about stochas-

tically disturbed parameters during the control process. A comparison of

open-loop control (without learning) and open-loop feedback control (with

passive learning) shows that weighted open-loop feedback control outper-

forms open-loop control in a majority of the cases investigated for the small

econometric model of Slovenia.

The next task is to apply OPTCON2 to larger and better macroeconomet-

ric models (in terms of their theoretical and statistical quality). Additional

comparisons of the policy performance with respect to the postulated objec-

tive function are desirable; for example, it may be interesting to calculate

controls by straightforward heuristic optimization procedures (see Gilli and

Winker (2009), Winker and Gilli (2004), Lyra et al. (2010), among others)

and assess their performance compared to the more sophisticated ones calcu-

lated by OPTCON2. Moreover, major extensions will have to include various

schemes of active learning to deal with the dual nature of the control under
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uncertainty along the lines of Kendrick (1981) for the linear case. Another

challenge consists in incorporating rational (forward-looking) expectations

and hence a non-causal structure in the dynamic system; see Amman and

Kendrick (2000) for the linear case.
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