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Abstract: The attempt to match asset price characteristics such as the risk-free interest rate,

equity premium and the Sharpe ratio with data for models with instantaneous consumption de-

cisions and time separable preferences has not been very successful. Many recent versions of

asset pricing models have, in order to match those financial characteristics better with the data,

employed habit formation where past consumption acts as a constraint on current consumption.

In those models, surplus consumption, consumption over and above past consumption, improves

welfare, yet habit formation gives rise to an additional state variable. By studying such a model

we also allow for adjustment costs of investment. The asset price characteristics that one obtains

from those models may depend on the solution techniques employed. In this paper a stochastic

version of a dynamic programming method with adaptive grid scheme is applied to compute the

above mentioned asset price characteristics where past consumption decisions are treated as an

additional state variable. Since, as shown in Grüne and Semmler (2004), our method produces

only negligible errors it is suitable to be used as solution technique for such models with more

complicated decision structure. Using our solution methods shows that there are still remaining

puzzles for the consumption based asset pricing model.
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1 Introduction

Intertemporal asset pricing models with time separable preferences, such as power utility
or log utility, have been shown to have difficulties to match financial market characteristics
such as risk-free interest rate, equity premium and the Sharpe-ratio, a measure of the risk-
return trade off. In those models the risk-free interest rate turns out to be too high (and
too smooth) and the mean equity premium and Sharpe-ratio too low as compared to what
one finds in time series data.

The conjecture has been that the solution methods to solve the optimal consumption path
in feedback form and to use the growth of marginal utility of consumption as discount
factor for pricing assets have been insufficient. Thus, one needs to be concerned with the
accuracy of the solution method to solve the model. One conjecture in the literature was
thus that the solution of stochastic growth models through linearizations for cases with
more complicated decision structure may not be appropriate. Recently, global solution
techniques to the Hamilton-Jacobi-Bellman equation have been developed that can ad-
dress this concern. A global solution method that is useful in this context is stochastic
dynamic programming with discretization of the state space and adaptive gridding strat-
egy which generates quite accurate solutions.1 A full discussion of the literature on this
and other methods is given in sect. 2.

Another concern has been that asset pricing models have often used models with exogenous
dividend stream2 and the difficulties to match stylized financial statistics may have come
from the fact that consumption is not endogenized. There is a tradition of asset pricing
models that is based on the stochastic growth model with production originating in Brock
and Mirman (1972) and Brock (1979, 1982) which endogenizes consumption. The Brock
approach extends the asset pricing strategy beyond endowment economies to economies
that have endogenous state variables including capital stocks that are used in production.
Authors, building on this tradition,3 have argued that it is crucial how consumption
is endogenized. In stochastic growth models the randomness occurs to the production
function of firms and consumption and dividends are derived endogenously. Yet, models
with production have turned out to be even less successful. Given a production shock,
consumption can be smoothed through savings and thus asset market features are even
harder to match.4

Recent development of asset pricing studies has therefore turned to extensions of in-
tertemporal models conjecturing that the difficulties to match real and financial time
series characteristics may be related to the simple structure of the basic model. In order
to match better asset price characteristics of the model to the data economic research
has extended the baseline stochastic growth model to include different utility functions,

1For deterministic versions, see Grüne (1997), Santos and Vigo–Aguiar (1998), and Grüne and Semmler
(2004).

2Those models originate in Lucas (1978) and Breeden (1979) for example.
3See Rouwenhorst (1995, Akdeniz and Dechert (1997), Jerman (1998), Boldrin, Christiano and Fisher
(2001), Lettau and Uhlig (1999) and Hansen and Sargent (2002), the latter in a linear-quadratic economy.
The Brock model has also been used to evaluate the effect of corporate income tax on asset prices, see
McGrattan and Prescott (2001).

4For a recent account of the gap between models and facts, see Boldrin, Christiano and Fisher (2001),
Cochrane (2001, ch. 21), Lettau, Gong and Semmler (2001) and Semmler (2003, chs. 9-10).
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in particular habit formation, adjustment costs of investment, idiosyncratic technology
shocks to firms or the effect of leverage on firm value.5 In this paper we will focus on an
intertemporal decision model with habit formation and adjustment costs of investment.

Since, as aforementioned, time separable preferences fail to match financial market char-
acteristics an enormous effort has been invested into models with time non-separable
preferences, such as habit formation models, which allow for adjacent complementarity in
consumption. Past consumption enters here as a constraint, defined as external habit per-
sistence where the aggregate level of consumption serves as a benchmark level, or internal
habit persistence where a household’s own past consumption is viewed as a benchmark
over and above welfare is considered to be increasing. If one chooses internal habit per-
sistence, given by past consumption, as benchmark, it is then in general time varying.

There is a long tradition in economic theory where it is assumed that habits are formed
through past consumption.6 Habit persistence is nowadays used to understand a wide
range of issues in growth theory (Carrol et al. 1997, 2000, Alvarez-Cuadrado et al. 2004)
macroeconomics (Fuhrer, 2002), and business cycle theory (Boldrin et al, 2001). In all of
those models of habit persistence high level of consumption in the past depresses current
welfare and high current consumption depresses future welfare. This can be written
as ratios of current over past consumption (Abel 1990, 1999) or in difference form as
(1 − α)Ct + α(Ct − Ct−1) with Ct current, Ct−1 past consumption and α a respective
weight. This form of habit formation will be chosen in this paper.

This type of habit specification gives rise to time non-separable preferences where risk
aversion and intertemporal elasticity substitution are separated and a time variation of
risk aversion will arise. If we define surplus consumption as st = Ct−Xt

Ct
with Xt, the

habit, and γ, the risk aversion parameter, then the time variation of risk-aversion is γ
st

:
the risk aversion falls with rising surplus consumption and the reverse holds for falling
surplus consumption. A high volatility of the surplus consumption will lead to a high
volatility of the growth of marginal utility and thus to a high volatility of the stochastic
discount factor.

Habit persistence in asset pricing has been introduced by Constantinides (1990) in order
to account for high equity premia. Asset pricing models along this line have been further
explored by Campbell and Cochrane (1999), Jerman (1998), and Boldrin et al. (2001).
Yet, asset pricing introducing habit persistence in stochastic models with production may
just produce smoother consumption. But with income different from consumption, for
example due to shocks, habit formation amplifies investment and demand for capital
goods. Yet, Boldrin et al. (2001) have argued if there is, however, perfectly elastic supply
of capital there is no effect on the volatility of the return on equity. As the literature
has demonstrated (Jerman 1998, and Boldrin et al. 2001) one also needs adjustment
costs of investment to minimize the elasticity of the supply of capital. It seems to be both
habit persistence and adjustment costs for investment which are needed to generate higher
equity premia. By choosing such a model we will not, following Jerman (1998), allow for
elastic labor supply, but rather employ a model with fixed labor supply, since the latter,

5For further detailed studies of those extensions see, for example, Campbell and Cochrane (1999), Jerman
(1998), Boldrin, Christiano and Fisher (2001) and Cochrane (2001, ch. 21).

6See the description in Marshall (1920), Veblen (1899) and Duesenberry (1949). For a first use of habit
persistence in a dynamic decision model see Ryder and Heal (1973).
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as shown in Lettau and Uhlig (2000), provides the most favorable case for matching the
model with the financial market characteristics.

Since accuracy of the solution method is an intricate issue for models with more compli-
cated decision structure, we first have to have sufficient confidence in the accuracy of the
stochastic dynamic programming method that we will use. In our method we do not use
fixed grids, but adaptive space discretization. In the method applied in our paper efficient
and reliable local error estimation is undertaken and used as a basis for a local refinement
of the grid in order to deal with regions of steep slopes or other non-smooth properties
of the value function (such as non-differentiability). This procedure allows for a global
dynamic analysis of deterministic as well as stochastic intertemporal decision problems.

In Grüne and Semmler (2004) a stochastic dynamic programming algorithm with flexible
grid size has been tested for the most basic stochastic growth model as based on Brock
and Mirman (1972) and Brock (1979, 1982). This model can analytically be solved for
the sequence of optimal consumption in feedback form. Asset prices, the risk-free interest
rate, the equity premium and the Sharpe-ratio, can, once the model is solved analytically
for the sequence of optimal consumption, easily be solved numerically and those solutions
can be compared to the numerical solutions obtained from our numerical procedure. As
has been shown in Grüne and Semmler (2004) the errors, as compared to the analytical
solutions, are negligibly small. Thus, the method we employ here can confidently be
applied to extensions of the basic model with more complicated decision structure.

The paper is organized as follows. Section 2 discusses related literature. Section 3 presents
the stochastic dynamic programming algorithm. Section 4 introduces our model of asset
pricing with habit persistence and adjustment costs of investment and the measures of
the financial characteristics we want to study. Section 5 reports the numerical results of
our study which are evaluated in section 6. Section 7 concludes the paper.

2 Related Literature on Solution Methods

In the literature on solving asset pricing models one can find a vast amount of different
approaches most of them using linear approximations.7 The most promising approaches
are those ones that are employing the dynamic programming approach since it is closely
related to the Hamilton-Jacobi-Bellman equation for asset pricing. Many of the recent
versions of dynamic programming use state–of–the art mathematical and numerical tech-
niques for making this approach more efficient. Here we apply an adaptive gridding
algorithm that works for very general Hamilton-Jacobi-Bellman equations, see Section 3
for details. In the present section we briefly review similar approaches and highlight
similarities and differences to our approach.

One of the fundamental difficulties with the dynamic programming approach is that the
computational load grows exponentially with the dimension of the problem, a phenomenon
known as the “curse of dimensionality” (see Rust (1996) for a comprehensive account on
complexity issues). In our case, for computing asset pricing in the context of stochastic
growth models, starting with Brock and Mirman (1972) as suggested in the literature,

7For an extensive survey of those techniques, see Taylor and Uhlig (1990).
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the problem to be solved is two dimensional, hence this is not a crucial aspect here.
Nevertheless, for the sake of completeness we want to mention approaches like randomly
distributed grid points (Rust (1997)) or so called low discrepancy grids (Rust (1996),
Reiter (1999)) which are able to break the curse of dimensionality. In principle also
Monte–Carlo techniques like in Keane and Wolpin (1994) allow for breaking the curse of
dimensionality, but as Rust (1997) points out, the specific algorithm in Keane and Wolpin
(1994) uses an interpolation technique which again is subject to exponential growth of
the numerical cost in the space dimension.

For low dimensional problems the goal of the numerical strategy is not to avoid the curse
of dimensionality but rather to reduce the computational cost for a problem of fixed
dimension. For this purpose, two main approaches can be found in the literature, namely
higher order approximations and adaptive gridding techniques; the latter will be used in
our numerical approach.

The idea of high order approximations lies in exploiting the smoothness of the optimal
value function: if the optimal value function turns out to be sufficiently smooth, then
methods using approximations by smooth functions, like Chebyshev polynomials (Rust
(1996), Judd (1996), Jermann (1998)), Splines (Daniel (1976), Johnson et al. (1993),
Trick and Zin (1993, 1997)) or piecewise high–order approximations (Falcone and Ferretti
(1998)) can be very efficient. Smoothness is also the basis of other high–order strategies,
like in finite difference approximations (Candler (2001)), Gaussian Quadrature discretiza-
tion (Tauchen and Hussey (1991), Burnside (2001)) and in perturbation techniques (Judd
(1996)). Yet, the last should also work if the value function is only piecewise smooth.8

Some of these methods (like Spline and piecewise high order approximation) use a (fixed)
grid discretization of the state space similar to our approach. The combination of adaptive
grids with higher order approximation is currently under investigation and it will be
interesting to see whether adaptive discretization ideas based on our local error estimation
technique work equally well with these approximation techniques.

Concerning discretization techniques it should be noted that from the complexity point of
view it turns out to be optimal to solve the dynamic programming problem on successively
finer grids, using a one–way multigrid strategy (Chow and Tsitsiklis (1991), see also
Rust (1996)). In fact, our adaptive gridding algorithm is similar to this approach since
the approximation on the previous grid Γi is always used as the initial value for the
computation on the next finer adaptive grid Γi+1. This also explains the large reduction
in computation time observed for our approach compared to the computation on one fixed
equidistant grid.

Let us now turn to the methodology employed here, i.e., adaptive gridding techniques.
Perhaps closest to our approach are the techniques discussed in Munos and Moore (2002).
Here a number of heuristic techniques are compared which lead to local and global error
indicators which can in turn be used for an adaptive grid generation. Some of the in-
dicators discussed in this paper bear some similarity with our residual based estimator,
though rigorous estimates as given in our paper below are not given there. In any case,
the authors report that these techniques are unsatisfactory and argue for a completely

8For an early survey of those methods, see Taylor and Uhlig (1990) where one can find a comparative
numerical study of several methods.
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different approach which measures the influence of local errors in certain regions on the
global error by analyzing the information flow on the Markov chain related to the dis-
cretization of the (deterministic) problem at hand. The reason for this lies in the fact that
the model problem treated by Munos and Moore (2002) has a discontinuous optimal value
function, which often happens in technical problems with boundary conditions. In fact,
also our adaptive scheme performs rather poorly in presence of discontinuities but since
our economic problems do always have continuous optimal value functions, Munos’ and
Moore’s conclusions do not apply here. A roughly similar technique is the endogenous
oversampling used by Marcet (1994). This is again a heuristic method, which, however,
does not lead to adaptive grids but rather selects suitable parts of the state space where
the optimally controlled trajectories stay with high probability.

Probably the adaptive approaches with the most solid mathematical background are pre-
sented in the papers of Trick and Zin (1993, 1997).9 In these papers an alternative
approach for the solution of the fully discrete problem is developed using advanced linear
programming techniques which are capable of solving huge linear programs with many
unknowns and constraints. In Trick and Zin (1993) an adaptive selection of constraints
in the linear program is used based on estimating the impact of the missing constraint, a
method which is closely related to the chosen solution method but only loosely connected
to our adaptive gridding approach. The later paper (Trick and Zin (1997)), however,
presents an idea which is very similar to our approach. Due to the structure of their
solution they can ensure that the numerical approximation is greater than or equal to the
true optimal value function. On the other hand, the induced suboptimal optimal control
strategy always produces a value which is lower than the optimal value. Thus, comparing
these values for each test point in space one can compute an interval in which the true
value must lie, which produces a mathematically concise error estimate that can be used
as a refinement criterion. While this approach is certainly a good way to measure errors,
which could in particular be less conservative than our measure for an upper bound, we
strongly believe that it is less efficient for an adaptive gridding scheme, because (i) the
estimated error measured by this procedure is not a local quantity (since it depends on
the numerical along the whole suboptimal trajectory), which means that regions may be
refined although the real error is large elsewhere, and (ii) compared to our approach it is
expensive to evaluate, because for any test point one has to compute the whole suboptimal
trajectory, while our residual based error estimate needs only one step of this trajectory.

Let us comment on the idea of a posteriori error estimation. In fact, the idea to evaluate
residuals can also be found in the papers of Judd (1996) and Judd and Guu (1997), using,
however, not the dynamic programming operator but the associated Euler equation. In
these references the resulting residual was used to estimate the quality of the approxi-
mating solution, but to our knowledge it has not been used to control adaptive gridding
strategies, and we are not aware of any estimates such as ours which is a crucial prop-
erty for an efficient and reliable adaptive gridding scheme, particularly needed to solve
stochastic problems in asset pricing models.

Summarizing our discussion, there are a number of adaptive strategies around which are

9As mentioned above, this approach also uses splines, i.e., a smooth approximation, but the ideas developed
in these papers do also work for linear splines which do not require smoothness of the approximated
optimal value function.
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all reported to show good results, however, they are either heuristic10 and better suited for
other classes of problems than asset pricing models or they have nice theoretical features
but are practically inconvenient because their implementation is numerically much more
expensive than our approach.

3 Stochastic Dynamic Programming

Next we describe the stochastic dynamic programming algorithm that we use to solve the
asset pricing characteristics of the intertemporal decision we want to study. Our approach
is characterized by using a combined value function and policy iteration and permitting
grid refinements due to error estimates.

We consider the discrete stochastic dynamic programming equation

V (x) = max
c∈C

E{u(x, c, ε) + β(x, ε)V (ϕ(x, c, ε))}. (3.1)

Here x ∈ Ω ⊂ R
2, C ⊂ R, Ω and C are compact sets and ε is a random variable with

values in R . The mappings ϕ : Ω × C × R → R
2 and g : Ω × C × R → R are supposed

to be continuous and Lipschitz continuous in x. Furthermore, we assume that either
ϕ(x, c, z) ∈ Ω almost surely for all x ∈ Ω and all c ∈ C , or that suitable boundary
values V (x) for x 6∈ Ω are specified, such that the right hand side of (3.1) is well defined
for all x ∈ Ω. The value β(x, ε) is the (possibly state and ε dependent) discount factor
which we assume to be Lipschitz and we assume that there exists β0 ∈ (0, 1) such that
β(x, ε) ∈ (0, β0) holds for all x ∈ Ω. We can relax this condition if no maximization takes
place, in this case it suffices that all trajectories end up in a region where β(x, ε) ∈ (0, β0)
holds. This is the situation for the asset price problem, cf. the discussion in Cochrane
(2001:27).

Associated to (3.1) we define the dynamic programming operator

T : C(Ω, R) → C(Ω, R)

given by
T (W )(x) := max

c∈C
E{u(x, c, ε) + β(x, ε)W (ϕ(x, c, ε))}. (3.2)

The solution V of (3.1) is then the unique fixed point of (3.2), i.e.,

T (V ) = V. (3.3)

For the numerical solution of (3.3) we use a discretization method that goes back to
Falcone (1987) and in Santos and Vigo–Aguiar (1998) in the deterministic case. Here we
use unstructured rectangular grids: We assume that Ω ⊂ R

n is a rectangular and consider
a grid Γ covering Ω with rectangular elements Ql and nodes xj and the space of continuous
and piecewise multilinear functions

WΓ := {W ∈ C(Ω, R) |W (x + αej) is linear in α on each Ql for each j = 1, . . . , n}

10In order to avoid misunderstandings: We do not claim that heuristic methods cannot perform well; in
fact they can show very good results. Our main concern about these methods is that one can never be
sure about the quality of the final solution of a heuristic method.
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where the ej , j = 1, . . . , n denote the standard basis vectors of the R
n, see Grüne (2003)

for details of the grid construction. With πΓ : C(Ω, R) → WΓ we denote the projection of
an arbitrary continuous function to WΓ, i.e.,

πΓ(W )(xj) = W (xj) for all nodes xj of the grid Γ.

Note that our approach easily carries over to higher order approximations, the use of mul-
tilinear approximations is mainly motivated by its ease of implementation, especially for
adaptively refined grids.11 Also, the approach can easily be extended to higher dimensions.

We now define the discrete dynamic programming operator by

TΓ : C(Ω, R) → WΓ, TΓ = πΓ ◦ T (3.4)

with T from (3.2). Then the discrete fixed point equation

TΓ(VΓ) = VΓ. (3.5)

has a unique solution VΓ ∈ WΓ which converges to V if the size of the elements Ql tends to
zero. The convergence is linear if V is Lipschitz on Ω, see Falcone (1987), and quadratic
if V is C2, see Santos and Vigo–Aguiar (1998).

For the solution of (3.5) as well as for the computation of η(x) we need to evaluate the
operator TΓ. More precisely, we need to evaluate

max
c∈C

E{u(xj , c, ε) + β(xj , ε)W (ϕ(xj , c, ε))}.

for all nodes xj of Γ.

This first includes the numerical evaluation of the expectation E. If ε is a finite ran-
dom variable then this is straightforward, if ε is a continuous random variable then the
corresponding integral

∫
(u(x, c, ε) + β(x, ε)V (ϕ(x, c, ε)))f(ε)dε

has to be computed, where f is the probability density of ε. In our implementation we
approximated this integral by a trapezoidal rule with 10 equidistant intervals.

The second difficulty in the numerical evaluation of T lies in the maximization over c. In
our implementation we used a recursive discrete approximation of the feasible values in
the set C, i.e., of those values c ∈ C with c−αXt > 0. The maximum is approximated by
comparing finitely many values in C, then a neighborhood of this candidate is refined to
obtain a new approximate maximum, a procedure which is repeated recusrively for several
times. It can be shown that for unimodal functions this procedure indeed converges to
the maximum and even though for our functions this property cannot be shown rigorously
this procedure shows very good results in practice.

For the solution of the fixed point equation (3.5) we use the Gauss–Seidel type value space
iteration where we subsequently compute Vi+1 = SΓ(Vi) with SΓ being a Gauss–Seidel type
iteration operator (including the maximization over c ) obtained from TΓ. This iteration

11The combination of adaptive grids and higher order approximations is currently under investigation.
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is coupled with a policy space iteration: Once a prescribed percentage of the maximizing
u–values in the nodes remains constant from one iteration to another we fix all control
values and compute the associated value function by solving a linear system of equations
using a modified Gauss-Seidel-method, (CGS or BICGSTAB method, in our examples the
CGS method turned out to show more reliable convergence behavior). After convergence
of this method we continue with the value space iteration using SΓ until the control values
again converge, switch to the linear solver and so on. This combined policy–value space
iteration turns out to be much more efficient (often more than 90 percent faster) than the
plain Gauss–Seidel value space iteration using SΓ

12 The details of the adaptive gridding
strategy based on error estimates are presented in the appendix.

4 The Stochastic Decision Problem in Asset Pricing

Our stochastic decision problem arising from the stochastic growth model in the Brock
tradition which we want to solve and for which we want to compute certain financial
measures is as follows. Before we introduce the baseline stochastic growth model that we
want to apply our solution technique too, see sect. 5, we outline an asset pricing model
in a very generic form. The problem we are concerned with is to solve an optimal control,
ct, for the dynamic decision problem

V (k, z) = max
ct

E

(
∞∑

t=0

βiu(ct, Xt)

)
(4.1)

with habit Xt, subject to the dynamics

kt+1 = ϕ1(kt, zt, ct, εt)

zt+1 = ϕ2(kt, zt, ct, εt)

Xt+1 = ct

using the constraints ct ≥ 0 and kt ≥ 0 and the initial value k0 = k, z0 = z, X0 = X.
Here (kt, zt, Xt) ∈ R

3 is the state and εt are i.i.d. random variables. We abbreviate
xt = (kt, zt, Xt) and ϕ(x, c, ε) = (ϕ1(k, z, c, ε), ϕ2(k, z, c, ε), ct), i.e.,

xt+1 = ϕ(xt, ct, εt). (4.2)

This optimal decision problem should allow the computation of c in feedback form, i.e.
ct = c(xt) for some suitable map c : R

2 → R. Based on this c we compute the stochastic
discount factor13

m(xt) = β
u′(c(xt+1))

u′(c(xt))
(4.3)

(note that m depends on εt and the derivative u′ is taken with respect to ct), which serves
as an ingredient for the next step, which consists of solving the asset pricing problem

p(x) = E

(
∞∑

t=1

t∏

s=1

m(xs)d(xt)

)
, (4.4)

12The latter in turn is considerably faster than the Banach iteration Vi+1 = TΓ(Vi).
13The following financial measures are introduced and studied in detail in Cochrane (2001).



ASSET PRICING and DYNAMIC PROGRAMMING 10

where d(xt) denotes the dividend at xt and x0 = x and the dynamics are given by

xt+1 = ϕ(xt, c(xt), εt)

with c from above.

Finally, we use these values to compute the Sharpe ratio, which represents the ratio of the
equity premium to the standard deviation of the equity return. Hereby Rf is the risk-free
interest rate.

S =

∣∣∣∣
E(R(x)) − Rf (x)

σ(R(x))

∣∣∣∣ =
−Rf (x)cov

(
m(x), R(x)

)

σ(R(x))
. (4.5)

The upper bound of the Sharpe-ratio is

SB =
σ(m(x))

E(m(x))
. (4.6)

Here

Rf (x) =
1

E(m(x))
(4.7)

is the risk-free interest rate and

R(xt) =
d(xt+1) + p(xt+1)

p(xt)
(4.8)

is the gross return.

Note that the equality E(m(x)R(x)) = 1 holds, which can serve as a indicator for the
accuracy of our numerical solution.

We solve the asset pricing problem in the following three steps: (i) We compute the
optimal value function V of the underlying optimal control problem, and compute c from
V , (ii) we compute the prices p(x) from c and m, and (iii) we compute the risk-free interest
rate, the equitiy premium and the Sharpe ratio S (and its bound SB) from c, m and p.

For our baseline stochastic growth model introduced below, which we solve numerically,
both c and p are actually available analytically. This allows us to test each single step of
our algorithm by replacing the numerically computed c in (ii) and (iii) and/or p in (iii)
by their exact values.

For each of the steps we do now sketch our technique for the numerical computation using
the algorithm described above in Section 3.

Step (i):

For the solution of the optimal control problem we use a dynamic programming algorithm
with adaptive grid. In order to solve (4.1) we solve the equivalent dynamic programming
equation

V (x) = max
c

E (u(c) + βV (ϕ(x, c, ε))) =: T (V )(x) (4.9)

For solving this equation we choose a computational domain Ω ⊂ R
2 and approximate

V on a rectangular grid Γ covering Ω, using multilinear interpolation between the grid
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nodes. For continuous and piecewise multilinear function VΓ on Γ, we solve the fixed point
equation

VΓ(xi) = T (VΓ)(xi) (4.10)

for all nodes xi of Γ.

As mentioned in sect. 3 in order to solve (4.10) we use a mixed value-policy iteration
method: We first iterate (4.10) (using a Gauss–Seidel like acceleration method) until we
observe convergence of the maximizing control values c. Then we fix the values and solve
the resulting system of linear equations (using the CGS method). Iteratively, we continue
this process until convergence.

As also aforementioned, here in each step of the iteration we have to perform a maximiza-
tion over c and an evaluation of the expectation. Knowing the density function p(ε) of
the underlying random variable ε, the latter problem lies in evaluating the integral

∫
V (ϕ(t, x, c, ε))p(ε)dε,

which is efficiently accomplished by a numerical quadrature rule.

The maximization turns out to be a more severe numerical problem. In our implemen-
tation we have used a simple and straightforward method by discretizing the set C of
possible values of c and maximizing by comparing the finitely many discrete values.14

Another crucial point in solving (4.10) is the choice of an appropriate grid. Here we make
use of an adaptive gridding strategy as outlined in the appendix. After the solution VΓ is
computed, we evaluate the error estimates

η(x) = |VΓ(x) − T (VΓ)(x)|.

This value gives an upper and lower bound for the real global error. Thus, we evaluate
η in a number of test points in each grid element and refine those elements carrying a
large error estimate. This way, we can iteratively construct a grid which is adjusted to
the problem.

Once VΓ is computed with sufficient accuracy we can obtain the optimal control value
c(x) in each point by choosing c(x) such that (4.9) is maximized, i.e., such that

E (u(c(x)) + βVΓ(ϕ(x, c(x), ε))) = max
c

E (u(c) + βVΓ(ϕ(x, c, ε)))

holds. Once c is known, m of equ. (4.2) can be computed from this value.

Step (ii):

For computing p(x) we follow the same approach as in Step (i), except that here c(x) is
known in advance and hence no maximization needs to be done.

For the computation of p we first solve the dynamic programming equation

p̃(x) = E(d(x) + m(x)p(ϕ(x, c(x), ε)))

14However, it turns out that for higher accuracy this method is not so efficient and is suggested to be
replaced by a more efficient method in future research.
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which is simply a system of linear equations which we solve using the CGS method. This
yields a numerical approximation of the function

p̃(x) = E

(
∞∑

t=0

t∏

s=1

m(xs)d(xt)

)

(with the convention
∏0

s=1 m(xs) = 1), from which we obtain p by

p(x) = p̃(x) − d(x).

In our numerical computations for the computation of p we have always used the same
grid Γ as in the previous computation of V in Step (i). The reason is that it did not seem
justified to use a finer grid here, because the accuracy of the entering values c from Step
(i) is limited by the resolution of Γ, anyway. However, it might nevertheless be that using
a different grid (generated e.g. by an additional adaptation routine) in Step (ii) could
increase the numerical accuracy.

Step (iii):

The last step is in principle straightforward, because we do now have all the necessary
ingredients to compute the risk-free interest rate, the equity premium and Sharpe ratio
S and its upper bound SB. However, since all the numerical values entering these com-
putations are subject to numerical errors we have to be concerned with the numerical
stability of the respective magnitudes. While the bound SB = σ(m(x))/E(m(x)) for the
Sharpe ratio turns out to be numerically nice, the first formula for the Sharpe ratio, wher
the numerator represents the equity premium, as the spread between the expected equity
return and the risk-free interest rate,

∣∣∣∣
E(R(x)) − Rf (x)

σ(R(x))

∣∣∣∣ . (4.11)

This turns out to be considerably less precise than the second formula

−Rf (x)cov
(
m(x), R(x)

)

σ(R(x))
. (4.12)

Since the denominator is the same in both formulas, the difference can only be caused by
the different numerators. A further investigation reveals that the numerator of the first
formula can be rewritten as

Rf (x)(1 − E(m(x))E(R(x)))

while that of the second formula reads

Rf (x)(E(m(x)R(x)) − E(m(x))E(R(x))).

Note that in both formulas we have to subtract values which have approximately the same
values, which considerably amplifies the numerical errors. As mentioned above, we know
that E(m(x)R(x)) = 1, which shows that these formulas are theoretically equivalent. Yet
the second formula is more accurate.15

15The higher accuracy of the second formula can be explained as follows: Assume that we have a small
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5 Numerical results

We have applied our numerical scheme to the model given by

kt+1 = ϕ1(kt, zt, ct, εt) = kt +
kt

1 − ϕ

[(
It

kt

)1−ϕ

− 1

]

ln zt = ϕ2(kt, zt, ct, εt) = ρ ln zt + εt,

where It = ztAkα
t −ct, where in our numerical computations we used the variable yt = ln zt

instead of zt as the second variable.

The utility function is given by

u(ct, Xt) =
(ct − bXt)

1−γ − 1

1 − γ

for γ 6= 1 and by
u(ct, Xt) = ln(ct − bXt)

for γ = 1. Since we are working with internal habit, in our case, we have Xt = Ct−1.

For our numerical experiments we employed the values

A = 5, α = 0.34, ρ = 0.9, β = 0.95, b = 0.5

and εt was chosen as a Gaussian distributed random variable with standard deviation σ =
0.008, which we restricted to the interval [−0.032, 0.032]. With this choice of parameters
it is easily seen that the interval [−0.32, 0.32] is invariant for the second variable yt.

Motivated by our 2d studies (Grüne and Semmler (2004)) we would like to solve our
problem for kt in the interval [0.1, 10]. However, the habit persistence implies that for
a given habit Xt only those value ct are admissible for which ct − bXt > 0 holds, which
defines a constraint from below on ct depending on the habit Xt. On the other hand, the
condition It ≥ 0 defines a constraint from above on ct depending on kt and yt = ln zt. As
a consequence, there exist states xt = (kt, yt, Xt) for which the set of admissible control

systematic additive numerical error in R(x), e.g., Rnum(x) ≈ R(x) + δ. Such errors are likely to be
caused by the interpolation process on the grid. Then, using Rf (x) = 1/E(m(x)), in the first formula
we obtain

Rf (x)(1 − E(m(x))E(Rnum(x))) ≈ Rf (x)(1 − E(m(x))E(R(x) + δ))

≈ Rf (x)(1 − E(m(x))E(R(x))) − δ,

while in the second formula we obtain

Rf (x)(E(m(x)Rnum(x)) − E(m(x))E(Rnum(x)))

≈ Rf (x)(E(m(x)(R(x) + δ)) − E(m(x))E(R(x) + δ))

≈ Rf (x)(E(m(x)R(x)) + E(m(x))δ − E(m(x))E(R(x)) − E(m(x))δ)

≈ Rf (x)(E(m(x)(R(x))) − E(m(x))E(R(x))),

i.e., systematic additive errors cancel out in the second formula.
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values ct is empty, i.e., for which the problem is not feasible. On the one hand, we want
to exclude these points from our computation, on the other hand we want to have a
computational domain which is of a simple shape. A solution for this problem is given by
a coordinate transformation which transforms a suitable set Ω̃ of feasible points to the set
Ω = [0.1, 10]× [−0.32, 0.32]× [0, 7] on which we perform our computation. The coordinate
transformation Ψ : R

3 → R
3 we use for this purpose shifts the k–component of a point

x = (k, y, X) in such a way that the non–feasible points are mapped to a point x̃t 6∈ Ω. It
is given by

Ψ(k, y, X) := (k − s(y, X), y, X)

with

s(y, X) =

(
s0 + bX

exp(y)A

) 1

α

− 0.1

where s0 = 0.1α exp(−0.32)A is chosen such that for y = −0.32 and X = 0 the coordinate
change is the identity. This map is built in such a way that for all points xt ∈ Ω̃ =
Ψ−1(Ω) a value ct with ct − bXt ≥ s0 is admissible. Note that forward invariance of
Ω̃ is not automatically guaranteed by this construction and indeed there are parameter
combinations for which this property does not hold.

This coordinate transformation allows us to set up our dynamic programming algorithm
on a set of feasible points without having to deal with a complicated domain Ω̃, because
numerically we can now work on the simple set Ω using the transformed dynamics

xt+1 = Ψ ◦ ϕ(Ψ−1(xt), ct, εt)

instead of (4.2).

In addition to the parameters specified above, for our numerical experiments we have used
the following sets of parameters:

(a) ϕ = 0, γ = 1, b = 0

(b) ϕ = 0, γ = 1, b = 0.5

(c) ϕ = 0, γ = 3, b = 0.5

(d) ϕ = 0.8, γ = 1, b = 0.5

(e) ϕ = 0.8, γ = 3, b = 0.5

Note that (a) corresponds to the setting from Grüne and Semmler (2004).

Our first set of numerical results shows the behavior of the kt–component of the optimal
trajectories of the optimal control problem (4.1) in Figure 5.1 (a)–(e), the stochastic
discount factor along these trajectories in Figure 5.2(a)–(e) and the consumption in Figure
5.3(a)–(e). For all trajectories we used the initial value (k0, y0, X0) = (2, 0, 4) which is near
the point around which the optimal trajectory oscillates. Furthermore, for all trajectories
we have used the same sequence of the random variables εt.
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Figure 5.1: k–component of optimal trajectories
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Figure 5.2: Stochastic discount factor β along optimal trajectories
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Figure 5.3: Consumption c along optimal trajectories
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The following Table 5.1 shows several characteristic values obtained from our algorithm.
The values were obtained by averaging the values along the optimal trajectories described
above.

parameter set Sharpe ratio equity premium risk free interest rate

(a) 0.0085 0.00008 1.051

(b) 0.0153 0.00021 1.049

(c) 0.0540 0.00227 1.084

(d) 0.0201 0.00031 1.060

(e) 0.0572 0.00329 1.085

Table 5.1: Numerically computed values

As can be observed from the figures 5.2 (c) and (e) the stochastic discount factor is most
volatile for the combination of a high γ and habit persistence, whereas habit persistence by
itself increases the stochastic discount factor only moderately. Moreover, as the figures 5.3
(a)-(b) show, the consumption path itself is only very little affected by habit persistence
and adjustment costs of capital.16 From the table 5.1 we can observe that the Sharpe
ratio and equity premium increase strongly with habit persistence and adjustment costs,
though not sufficiently to match empirical facts, but the risk free interest rate is still much
too high.

6 Interpretation of the Results

It is interesting to compare the numerical results that we have obtained, by using stochas-
tic dynamic programming, to previous quantitative studies undertaken for habit forma-
tion, but using other solution techniques. We in particular will restrict ourselves to a
comparison with the results obtained by Boldrin et al. (2001) and Jerman (1998).

Whereas Boldrin et al. use a model with log utility for internal habit, but endogenous
labor supply in the household’s preferences, Jerman studies the asset price implication of
a stochastic growth model, also with internal habit formation but, as in our model, labor
effort is not a choice variable. All three papers Boldrin et al. (2001), Jerman (1998) and
our variant use adjustment costs of investment in the model with habit formation. Both
previous studies claim that habit formation models with adjustment costs can match the
financial characteristics of the data. Yet, both studies have chosen parameters that appear
to be conducive to results which replicate better the financial characteristics such as risk
free rate, equity premium and the Sharpe ratio.

In comparison to their parameter choice we have chosen parameters that have commonly
been used for stochastic growth models17 and that seem to describe the first and second
moments of the data well. Table 5.2 reports the parameters and the results.

16Note that our result on habit persistence is a result that Lettau and Uhlig (2000) have also predicted.
17See Santos and Vigo-Aguiar (1998).
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Both, the study by Boldrin et al. (2001) and Jerman (1998) have chosen a parameter,
ϕ = 4.05, in the adjustment costs of investment, a very high value which is at the very
upper bound found in the data.18 Since the parameter ϕ smoothes the fluctuation of the
capital stock and makes the supply of capital very inelastic, we have rather worked with a
ϕ = 0.8 in order to avoid such strong volatility of returns generated by high ϕ. Moreover,
both papers use a higher parameter for past consumption, b, than we have chosen. Both
papers have also selected a higher standard deviation of the technology shock. Boldrin et
al. take σ = 0.018, and Jerman takes a σ = 0.01, whereas we use σ = 0.008 which has been
employed in many models.19 Those parameters increase the volatility of the stochastic
discount factor, a crucial ingredient to raise the equity premium and the Sharpe ratio.

Boldrin et al.a) Jermanb) Grüne US Datac)

and Semmler (1954-1990)

b= 0.73-0.9 b= 0.83 b= 0.5

ϕ=4.15 ϕ=4.05 ϕ= 0.8

σ= 0.018 σ= 0.01 σ= 0.008

ρ= 0.9 ρ= 0.99 ρ= 0.9

β= 0.999 β= 0.99 β= 0.95

γ= 1 γ= 5 γ= 1-3

Rf = 1.2 Rf = 1.52 Rf = 5.1 − 8.5 Rf = 0.8

E(R) − Rf =6.63 E(R) − Rf =5.9 E(R) − Rf =0.33 E(R) − Rf =6.18

SR= 0.36 SR= 0.33 SR=0.057 SR=0.35

a) Boldrin et al.(2001) use a model with endogenous labor supply, log utility for habit formation and
adjustment costs

b) Jerman (1998) uses a model with exogenous labor supply, habit formation with coefficient of RRA
of 5, and adjustment costs

c) The following financial characteristics of the data are reported in Jerman (1998). Note that in the
table 5.1 we now use percentages for our financial measures.

Table 5.2: Habit formation models

Jerman, in addition, takes a very high parameter of relative risk aversion, a γ = 5, which
also increases the volatility of the discount factor and increases the equity premium when
used for the pricing of assets. Jerman also takes a much higher persistence parameter for
the technology shocks, a ρ = 0.99, from which one knows that it will make the stochastic
discount factor more volatile too. All in all, both studies have chosen parameters which
are known to bias the results toward the empirically found financial characteristics.

We also want to remark that both papers do not provide any accuracy test for their
procedure that they have chosen to solve the intertemporal decision problem. Boldrin et
al. use the Lagrangian multiplier from the corresponding planner’s problem to solve for

18See for example, Kim (2002) for a summary of the empirical results reported on ϕ in empirical studies.
19This value of σ has also been used by Santos and Vigo-Aguiar (1998).
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asset prices with no accuracy test for the procedure. Jerman uses a log-linear approach to
solve the model and an accuracy test of this procedure is also not provided in the paper.
We also want to note that there is a crucial constraint in habit formation models, namely
that the surplus consumption has to remain non-negative when the optimal solution, Ct,
is computed.20 As we have shown in section 5 this constraint has to be treated properly
in the numerical solution method.

Overall, one is, therefore, inclined to conclude that previous studies because of, first, the
specific parameter choice and, second, lacking accuracy tests of the solution procedure have
not satisfactorily solved the dynamics of asset prices and the equity premium puzzle. As
can be observed from table 5.2 our results show that even if habit formation is jointly used
with adjustment costs of investment there are still puzzles remaining for the consumption-
based asset pricing models. Finally, we want to note that in our study we have chosen a
model variant with no endogenous labor supply, which, as Lettau and Uhlig (2000) show,
is the most favorable model for asset pricing in a production economy, since including
labor supply as a choice variable, would even reduce the equity premium and the Sharpe
ratio.

7 Conclusion

Extensive research effort has recently been devoted to study the asset price characteristics,
such as the risk-free interest rate, the equity premium and the Sharpe ratio, arising from
the stochastic growth model of the Brock type. The failure of the basic model to match the
empirical characteristics of asset prices and returns has given rise to numerous attempts
to extend the basic model by allowing for different preferences and technology shocks,
adjustment costs of investment, the effect of leverage on asset prices and heterogenous
households and firms.21

The aim of this paper was two-fold. First, we wanted to study the financial characteristics
of a model with the most basic and promising extensions. We have chosen a model
with more complex decision structure, a model with habit persistence, and augmented
it, along the line of Boldrin et al (2001) and Jerman (1998), with adjustment costs of
investment. Second, we intended to apply and explore a solution method, a stochastic
dynamic programming algorithm, that provides rather accurate global solutions. We apply
this numerical procedure to an extended version of the basic stochastic growth model.

The algorithm, we apply here, has been tested for a basic stochastic growth model, where
asset prices and the Sharpe ratio can analytically be computed and the algorithm tested.
Our computations for the basic model, see Grüne and Semmler (2004) show that the
optimal consumption, the value function and the Sharpe ratio can be computed with
small absolute errors. Overall our accuracy test is very encouraging and our method thus
can safely be applied to extended versions of the stochastic growth model.

20Boldrin et al. (2001:154) just make a general statement ”that Ct ≤ bCt−1...[is] never observed in the
Monte Carlo simulations...”

21A model with heterogenous firms in the context of a Brock type stochastic growth model can be found
in Akdeniz and Dechert (1997) who are able to match, to some extent, the equity premium by building
on idiosynchratic stochastic shocks to firms.
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In this paper we have employed the most promising extensions of the basic model stochas-
tic growth model, namely habit persistence and adjustment costs of investment. By doing
so we, however, employ not extreme, but rather realistic parameter values and solve for
the asset price characteristics. Our results, based on an algorithm with reliable accu-
racy test, shows that, even if habit persistence is jointly used with adjustment costs of
investment, there are still puzzles remaining for consumption based asset pricing models.
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Appendix: Adaptive Gridding Strategy

The basic idea of our adaptive gridding algorithm lies in evaluating the residual of the
operator T applied to VΓ, and as described in sect. 3 as made precise in the following
definition. Here for any subset B ⊂ Ω and any function W ∈ C(Ω, R) we use

‖W‖∞,B := max
x∈B

|W |.

(i) We define the a posteriori error estimate η as a continuous function η ∈ C(Ω, R) by

η(x) := |T (VΓ)(x) − VΓ(x)|.

(ii) For any element Ql of the grid Γ we define the elementwise error estimate

ηl := ‖η‖∞,Ql

(iii) We define the global error estimate ηmax by

ηmax := max
l

ηl = ‖η‖∞.

It is shown in Grüne (2003), that for this error estimate the inequalities

ηmax

1 + β0
≤ ‖V − VΓ‖∞ ≤

ηmax

1 − β0

holds. These inequalities show that the error estimate is reliable and efficient in the sense
of numerical error estimator theory, which is extensively used in the numerical solution
of partial differential equations. Furthermore, η(x) is continuous and one can show that
a similar upper bound holds for the error in the derivative of V and VΓ.

If the size of a grid element tends to zero then also the corresponding error estimate tends
to zero, even quadratically in the element size if VΓ satisfies a suitable “discrete C2”
condition, i.e., a boundedness condition on the second difference quotient.

This observation shows that refining elements carrying large error estimates is a strategy
that will eventually reduce the element error and consequently the global error, and thus
forms the basis of the adaptive grid generation method which we will describe in the next
section.

Clearly, in general the values ηl = maxx∈Ql
η(x) can not be evaluated exactly since the

maximization has to be performed over infinitely many points x ∈ Ql. Instead, we ap-
proximate ηl by

η̃l = max
xT∈XT (Ql)

η(xT ),

where XT (Ql) is a set of test points. In our numerical experiments we have used the test
points indicated in Figure 7.4.
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Figure 7.4: Test points XT (Ql) for a 2d element Ql

The adaptive grid itself was implemented on a tree data structure in the programming
language C. The adaptive refinement follows the standard practice in numerical schemes
and works as follows:

(0) Choose an initial grid Γ0, set i = 0, fix a refinement threshold θ ∈ (0, 1)

(1) Compute VΓi
and the (approximated) error estimates η̃l and η̃max. If a desired

accuracy or a maximally allowed number of nodes is reached, then stop

(2) Refine all elements Ql with η̃l ≥ θη̃max, denote the new grid by Γi+1

(3) Set i := i + 1 and go to (1)

Here for the solution of VΓi
for i ≥ 1 we use the previous solution VΓi−1

as the initial value
for the iteration described in Section 3, which turns out to be very efficient.

During the adaptation routine it might happen that the error estimate causes refinements
in regions which later turn out to be very regular. It is therefore advisable to include
a coarsening mechanism in the above iteration. This mechanism can, e.g., be controlled
by comparing the approximation VΓi

with its projection π
Γ̃i

VΓi
onto the grid Γ̃i which is

obtained from Γi by coarsening each element once. Using a specified coarsening tolerance
tol ≥ 0 one can add the following step after Step (2).

(2a) Coarsen all elements Ql with η̃l < θη̃max and ‖VΓi
− π

Γ̃i
VΓi

‖∞,Ql
≤ tol.

This procedure also allows to start from rather fine initial grids Γ0, which have the advan-
tage of yielding a good approximation η̃l of ηl. Unnecessarily fine elements in the initial
grids will this way be coarsened afterwards.

In addition, it might be desirable to add additional refinements in order to avoid large dif-
ferences in size between adjacent elements, e.g., to avoid degeneracies. Such regularization
steps could be included as a step (2b) after the error based refinement and coarsening has
been performed. In our implementation such a criterion was used; there the difference in
refinement levels between two adjacent elements was restricted to at most one. Note that
the values in the hanging nodes (these are the nodes appearing at the interface between
two elements of different refinement level) have to be determined by interpolation in order
to ensure continuity of VΓ.

In addition, our algorithm allows for the anisotropic refinement of elements: consider an
element Q of Γ (we drop the indices for notational convenience) and let Xnew,i be the
set of potential new nodes which would be added to Γ if the element Ql was refined in
coordinate direction ei, cf. Figure 7.5.
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Figure 7.5: Potential new nodes Xnew,1 (left) and Xnew,2 (right) for a 2d element Q

Define the error estimate in these nodes for each coordinate direction ei by ηdir,i :=
maxx∈Xnew,i

η(x) and define the overall error measured in these potential new nodes by
ηdir := maxi=1,...,n ηdir,i. Note that ηdir ≤ ηl always holds. If we include all the points in
Xnew :=

⋃
i=1,...,n Xnew,i in our set of test points XT (Q) (which is reasonable because in

order to compute ηdir,i we have to evaluate η(x) for x ∈ Xnew, anyway) then we can also
ensure ηdir ≤ η̃l.

Now we refine the element only in those directions for which the corresponding test points
yield large values, i.e., if the error estimate ηdir,1 is large we refine in x–direction and if
the error estimate ηdir,2 is large we refine in y–directions (and, of course, we refine in both
directions if all test points have large error estimates).

Anisotropic refinement can considerably increase the efficiency of the adaptive gridding
strategy, in particular if the solution V has certain anisotropic properties, e.g., if V is
linear or almost linear in one coordinate direction. Note that this is the case in our
example and the anisotropic refinement is clearly visible in Figure 3.1. On the other
hand, a very anisotropic grid Γ can cause degeneracy of the function VΓ like, e.g., large
Lipschitz constants or large (discrete) curvature even if V is regular, which might slow
down the convergence. However, according to our numerical experience the positive effects
of anisotropic grids are usually predominant.
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