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cerned with the occurrence of multiple equilibria in economic optimization
models and with the resulting history dependence of optimal solutions. Typ-
ically, the existence of multiple equilibria is associated with convex-concave
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thresholds is frequently not continuous; and (5) local stability analysis may
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state space, with an extension to the two-dimensional case. Since in most
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present three numerical methods for their investigation.
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1 Introduction

Recent work on dynamic economics has stressed the fact that economic outcomes

may be history dependent. The term history dependence has been made popular by

the work of Bryan Arthur describing economic paths of new technologies that ex-

hibit increasing returns and positive feedbacks. Such increasing returns and positive

feedbacks may arise globally or locally only. Locally increasing returns, for example,

can already be found in early models in development economics using first convex

and then concave production functions. From the onset it has been recognized that

such convex-concave production functions may imply multiple steady-states – usu-

ally, two saddle-point outer and one unstable middle steady-state. As a consequence,

the long-term behavior of the economy will be history dependent: According to the

conditions prevailing in the first phases of development, the economy will converge

to the one or the other saddle-point. Consequently, there exists a threshold where

the dynamics leading to these two different long term solutions separate. Following

the pioneering article of Skiba (1978), such thresholds have been occasionally called

Skiba points in the economic literature. We equivalently use both denominations.

In the 1980s, dynamic models with multiple steady-states and history dependence

have been proposed in numerous areas in economics. Such models can be found in

development economics, in trade and resource allocation, in labor market search and

matching theory, in the economic theory of addiction, in endogenous growth theory,

in resource and environmental management problems, in models of monetary policy,

in regulatory economics, and in game theory. Those are reviewed in Section 2 of

this paper.

As this review will show, the roads leading to multiple steady-states and history

dependence are numerous. In the rest of the paper, we concentrate on the class of

models where the emergence of multiple steady-states may arguably be considered

the most unlikely, namely, on representative agent dynamic optimization models

under perfect foresight. Already at this point, it may be useful to give an intuitive

flavor of the relationship between history dependence, the existence of multiple

steady-states, and the existence of a threshold in such models. First of all, note that

history dependence is given if and only if, depending on the initial conditions, the

optimal solutions of the dynamic system of interest converge towards two or more

distinct attractors. These attractors can be saddle-points, stable steady-states, or

other points such as the origin if the feasible state-space is bounded by non-negativity

conditions, or such as + infinity if the optimal trajectories grow without bounds.

With some abuse of language, all these attractors will be termed stable steady-states

in this paper. Second, the existence of two or more stable steady-states implies the
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existence of at least one unstable steady-state – this time in the strict sense of an

unstable stationary solution. Third, the existence of optimal trajectories towards

the one or the other attractor implies the existence of a optimal (set of) point(s)

on which one is indifferent between converging towards to one or the other stable

steady-state, that is, of a Skiba point (set) or threshold.

Thus motivated, the paper gives a synthetic presentation of the properties nec-

essary for the emergence of multiple steady-states (meaning at least two attractors

and one unstable steady-state) in efficient dynamic optimization models. Contrary

to a common belief, it is shown that history dependence is possible even in strictly

concave models. Furthermore, the paper discusses in detail another little known

property. If strict concavity is not given, the Skiba points generically do not co-

incide with the unstable steady-states, and the latter are not necessarily optimal.

Local eigenvalue analysis can give information on whether one can expect this to be

the case.

Most of the analysis is restricted to one-dimensional problems. However, the

paper also addresses the occurrence of multiple steady-states and thresholds in two-

dimensional dynamic optimization problems. These thresholds, or Skiba curves, are

a straightforward but non-trivial generalization to two-dimensional spaces of the

one-dimensional Skiba points. The optimal actions of the agents are indeterminate

on any point on the Skiba curve, since on this curve the optimal pay-off (the value

function ) is the same whether one tends towards the one or the other steady-state.

When the Skiba points – or Skiba curves – do not coincide with unstable steady-

states, it is in general impossible to determinate them analytically. Numerical pro-

cedures are required. The paper proposes three different numerical procedures to

find Skiba points while gaining insight on the global dynamics of the underlying

economic problem. Those methods build on the Hamilton-Jacobi-Bellman (HJB)

equation, on Pontryagin´s maximum principle and the associated Hamiltonian, and

on dynamic programming. Their respective strenghts and weaknesses in detecting

thresholds are discussed.

The paper is organized as follows. Section 2 gives a short survey of the literature

on multiple steady-states and history dependent outcomes. Section 3 introduces the

basic framework, that is, the class of dynamic optimization problems considered.

Section 4 presents and discusses different necessary conditions for history depen-

dence. Section 5 is devoted to the presentation of numerical methods for finding

the Skiba points. Section 6 concludes the paper. The appendix demonstrates the

usefulness of the HJB-equation for computing the value function and thresholds.
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2 Dynamic optimization models with multiple steady-

states

Numerous examples of dynamic economic models with multiple steady-states (that

is, with at least two optimal attractors and one unstable steady-state) and history

dependence can be found in the economic literature.

1. Convex-concave production function. One of the simplest is given by

one-dimensional models of capital accumulation with a convex-concave pro-

duction function to be found, among others, in the literature on development

economics. There, a convex-concave production function may arise due to

social inputs such as institutions or human capital. A Skiba point separates

paths leading to stable high and low income steady-states. Thus, these models

can explain the co-existence of countries with low and of countries with high

per capita income as a function of their respective initial conditions alone. A

widely used version of convex-concave production function can be found in

Skiba (1978) and Azariadis and Drazen (1990).1 Similarly, multiple steady-

states can also arise in a one-capital-good model if nonlinear adjustment costs

of investment are assumed. This type of model can be found in Blanchard

(1983) and is shown to give rise to multiple steady-states in Semmler and

Sieveking (1999a). Related to this is the observation of Arthur (1989, 1994)

that increasing returns to scale lead to outcomes highly sensitive to initial

conditions and thus path dependent.

2. Expectation formation. Other roads can lead to multiple steady-states in

one-state-variable dynamic models. Among them are expectational mecha-

nisms. Krugman (1991) considers for example a two-sectors economy where

the first sector exhibits constant, the second increasing returns to scale with

respect to the only input, labor. The marginal productivity of labor and thus

the wage rate is higher (lower) in the first sector than in the second depend-

ing on whether most of the labor force is employed in the first or the second

sector. Therefore, it is rational for a worker to move to the sector to which

he or she expects that the others are going to move. The model has three

steady-states, an unstable middle one, and two saddle-point ones where all

workers have moved to either the first or the second sector. The emergence of

multiple outcomes through an expectations formation mechanism can be also

found in Arthur’s (1994) El-Farrol problem.

1Econometric tests of such models with threshold effects are undertaken in Durlauf and Johnson
(1995) and Bernard and Durlauf (1998).
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3. Search and matching. Further examples can be found in labor market

search and matching theory. There, the co-existence of persistent high or

low rates of unemployment can be derived from a microeconomic foundation

of labor market search theory along the lines of Diamond (1982). Thus, in

Mortensen (1989) and Howitt and McAffee (1992), nonlinearities in firms’

pay-offs stem from a combination of labor market search cost and net pay-

offs arising from employing an additional unit of labor. In the Mortensen

(1989) model the search cost is constant. By contrast, in Howitt and McAffee

(1992) the search cost depends upon unemployment and job vacancies and is

nonlinear. In either case, multiple unemployment steady-states can arise.

4. Monetary policy models. Some recent monetary policy models exhibit sim-

ilar properties, see Benhabib, Schmitt-Grohe and Uribe (1998). In this model,

consumers’ welfare is affected positively by consumption and cash balances

and negatively by the labor effort and an inflation gap from some target rates.

The model admits unstable as well as stable high level and low level inflation

rate steady-states. Moreover, there can be indeterminacy in the sense that any

initial condition in the neighborhood of one of the unstable steady-states is

associated to an optimal path. The same kind of dynamics can also be found

in Greiner and Semmler (1999).

5. Models of addiction. Multiple steady-states play also an important role

in models of addiction, see Orphanides and Zervos (1995, 1998). Here, three

steady-states exists, the middle one being unstable. As a consequence of small

shocks in drug consumption or of the impact of enforcement policies, the sys-

tem can converge towards either the low level steady-state where there is no

drug consumption, or towards the high level steady-state with addiction. The

threshold separating the optimal trajectories leading to either the low or the

high level steady-state does not necessarily coincide with the middle unstable

steady-state.

6. Endogenous growth. Recent literature on economic growth considers en-

dogenous growth models with two types of capital goods, either physical cap-

ital and human capital along the line of Lucas (1988) or physical capital and

knowledge capital following Romer (1990). Multiple steady-states can arise in

both cases. For extended Lucas models, they are shown to exist in Chamley

(1993), Benhabib and Perli (1994), Xie (1994) and Ladron-de-Guevara, Or-

tigueira and Santos (1997). These authors obtain the multiple steady-states

either by introducing externalities in the production for human capital, or by
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including leisure in the utility function of the representative agent. Extensions

of the Romer (1990) model are used in Benhabib and Perli (1994) and Evans,

Honkapohja and Romer (1999) to study multiple steady-states arising from

complementarities between inputs. See also Matsuyama (1991) and Santos

(1999). Likewise, multiple steady-states can arise in a one-capital-good model

where the adjustment cost is a nonlinear function of the change of investment

as, for example, in Haunschmied, Kort, Hartl and Feichtinger (2000). This

model, however, is a two-state-variables model. This significantly complicates

the determination of the threshold (which is given by a Skiba curve instead of

a Skiba point).

7. Renewable resources. Dynamic models of renewable resources with two

state variables can easily exhibit multiple steady-states. In the two-resources

model of Sieveking and Semmler (1997), the resource dynamics may exhibit

at least three steady-states depending on the type of interaction between the

resources — competitive, predator-prey or cooperative. Again, the middle

steady-state is unstable, while the outer two are saddle-points. Similarly,

multiple steady-states have been shown to exist in ecological management

problems, see Lewis and Schmalensee (1983), Tahvonen and Salo (1996), and

Tahvonen and Withagen (1996). Recently, Brock and Starret (1999), Dechert

and Brock (1999), Mäler (2000), Mäler, Xepapadeas and de Zeeuw (2000)

studied a lake management problem where multiple steady-states arise due to

non-concavity. The middle steady-state is unstable. At the stable low level

steady-state, the lake’s self-regenerative forces are strong enough to keep it

clean. The high level stable steady-state corresponds to a situation where the

lake has flipped over.

8. Regulatory economics. Another category of dynamic convex-concave mod-

els with history dependent outcomes can be found in regulatory economics.

Brock and Dechert (1985) investigate dynamic Ramsey pricing, with the in-

teresting result that the maintenance of a public service (say, of a railroad

network) depends on the initial conditions (rails won’t make it anymore in

Australia and Africa but will be kept in Europe). Furthermore, the viabil-

ity of a service does not imply that a private firm will maintain the service.

Profit maximization may imply liquidation in the long run, although a vi-

able and stable steady-state exists. All these properties are attributed to

convex-concave functions, with the convexity resulting from locally increasing

returns. Along similar lines, Dechert (1984) considers the familiar Averch-
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Johnson effect within a dynamic framework using a convex-concave produc-

tion function. Brock (1983) investigates a positive problem, lobbying, within

a convex-concave setting. These models all support the by now familiar result

of multiple steady-states, Skiba points, etc.

9. Differential games. In differential games, multiple feedback Nash equilib-

rium steady-states can arise even in the case of a linear-quadratic game with

one state variable. This results from the fact that the differential equation im-

plied by the Hamilton-Jacobi-Bellman equation, that characterizes the optimal

feedback strategies, lacks a boundary condition. The multiplicity of equilibria

was first noted in Tsutsui and Mino (1990). In an early application, Dockner

and Long (1993) argue that a proper choice of nonlinear strategies can resolve

in a non-cooperative way the tragedy of the commons. Less known is the

existence of multiple open-loop Nash equilibria, including the possibility of

limit cycles, see Wirl, Feichtinger, Dawid and Novak (1997). These equilibria

form a continuous family, to which another, typically unstable steady-state

may be associated. Thus, differential games allow, in nonlinear strategies in

linear quadratic games, for an entire family of solutions. However, there is no

history dependence if one requires the strategies to be stable.

This survey has confirmed a generally acknowledged fact: Multiple steady-states,

thresholds, and history dependence are fairly ubiquitous in dynamic economic mod-

els. Numerous mechanisms may generate them. In the remainder of this paper,

we exclude the arguably most straightforward possibilities for generating history

dependence – externalities, expectation formation, coordination failures, ... – by

restricting our discourse to the emergence of unstable steady-states and history

dependence in representative agent intertemporal optimizations models under per-

fect foresight. Two little known and, possibly, counter-intuitive points will emerge

from the analysis. Multiple steady-states and history dependence is possible also

in strictly concave models. The unstable steady-states are not necessarily optimal,

and do not always coincide with the thresholds separating the domains of attraction

between stable steady-states.

3 Framework and optimality conditions

We consider in this paper inter-temporal optimization problems P (a) of the type:
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V (a) ≡ max
u(t)∈U

∫ ∞

0

e−rtf0(x(t), u(t))dt, (1)

s.t.
·
x = f(x(t), u(t)), x(0) = a, (2)

where x is the state, u the control, U a compact set of admissible controls, t the time

index, and r > 0 a discount factor. Furthermore, f0(x(t), u(t)) is a return function,

f(x(t), u(t)) is a transition function that describes the state dynamics, and V (a)

is the value function, i.e. the maximum aggregate present value of benefits when

starting at x(0) = a. The problem is parameterized in terms of a since the initial

conditions are a crucial ingredient of a history dependent outcome.

In line with most of the previously mentioned and surveyed literature, we restrict

ourselves in the following to one-dimensional models, i.e., x ∈ �, and assume a
scalar control, u ∈ �. However, we will address extensions to the case x ∈ �2.

To simplify the notation, we omit arguments whenever possible without risk of

confusion. In particular, the variables are not indexed with time t in the rest of the

paper. Similarly, the word optimal will be typically omitted. Thus, for example, an

optimal trajectory (optimal solution) will be termed trajectory (solution).

Much of the argumentation will be conducted in terms of the current value

Hamiltonian H(u, x, λ) :

H(u, x, λ) ≡ f0(u, x) + λf(u, x). (3)

In terms of this Hamiltonian, the first order conditions for an optimal policy u are:

max
u

H
for an interior solution⇒ Hu = 0,

.

λ = rλ−Hx and lim exp(−rt)λ = 0.
t→∞

We assume throughout this article that Huu ≤ 0. We speak of a concave model if

H is jointly concave in the state x and the control u, i.e., if HuuHxx − H2
ux ≥ 0.

Otherwise, we speak of a non-concave model if HuuHxx − H2
ux ≤ 0, or of a convex

model if Hxx > 0. Note, however, that we do not require concavity or convexity

globally, but only over some compact set of interest for the concrete problem studied.

Furthermore we assume, unless otherwise specified, that Huu < 0. This insures that

the equation Hu = 0 can be solved for the control.

Besides the Hamiltonian approach, another method based on the Hamilton-

Jacobi-Bellman (HJB) equation is used at places, in particular, in Section 5. This
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approach is based on the fact that the value function V must satisfy the HJB func-

tional equation:

rV (x) = max
u∈U

[f0(x, u) + V ′(x)f(x, u)] . (4)

A third approach, discrete time dynamic programming, can be employed to study

global dynamics and to detect thresholds based on a discretization of (4) . Further

details on these last two methods are given in Section 5.

4 Thresholds and necessary conditions

In this section, we classify and compare the necessary conditions for different types of

thresholds separating optimal trajectories towards different steady-states. For the

considered class of problems P (a), convexity or at least non-concavity is usually

considered to be the very property that causes the long-term behavior to depend

upon the initial state, i.e., that leads to history dependence. This history dependence

due to ’increasing returns’, ’positive feedbacks’, etc., plays a central role in many

policy related discussions, ranging from the choice of a technology to differences in

economic development, among others. The first subsection reviews this traditional

road to multiple steady-states. The next subsection draws attention to the fact that

this is not the only route and that a strictly concave framework does not rule out

history dependent outcomes – a result, that may appear surprising and, in any event,

has been largely overlooked if not negated in the literature. A separate subsection

is devoted to the comparison of these two different backgrounds for multiple steady-

states – the common denominator between the two being that the existence of an

unstable steady-state is a necessary condition for history dependence. However,

before comparing the two mechanisms, a subsection extends the analysis to the case

of linear control models. The last subsection cursorily addresses extensions to higher

dimensional systems.

4.1 Convexity and non-concavity

The theoretical contributions of Skiba (1978) and Dechert-Nishimura (1983) have

sharpened our understanding of history dependent evolutions due to convexities

and non-concavities. Our presentation of their results is based on the well known

Ramsey model. In this model, u is consumption, f0 the utility from consumption,

x the capital stock, and δ is the capital depreciation rate. The problem P (a) takes

the form:
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max
u

∫ ∞

0

e−rt (f0(u)) dt, (5)

s.t.
·
x = f (x, u) = F (x)− u− δx, x(0) = a. (6)

where F is the production function. The non-concavity arises through a local con-

vexity of the production function, F ′′ > 0 for x < x̄, F ′′ < 0 for x > x̄, some

x̄ > 0. This local convexity reflects increasing returns to scale for small capital

stocks, x < x̄.

The first order conditions yield the famous Ramsey rule:

F ′ = r + δ (7)

Since F ′ is monotonically declining and ranges over all positive real numbers for F
satisfying the Inada conditions, the Ramsey rule defines a unique steady-state xR

in the standard case of global diminishing returns. However, if F is locally convex,

it allows for two steady-states xR and xR, with xR < xR. The lower steady-state

xR lies in the convex domain of F , xR < x̄. The upper steady-state xR lies in the

concave domain, xR > x̄. Of these two steady-states, the one in the convex domain,

xR, is unstable. This gives rise to a threshold xs that separates two domains of

attraction: x(t) → xR for x0 > xs, and (asymptotically for f0 satisfying the Inada

conditions) x(t) → 0 for x0 < xs. Typically, the threshold lies in a vicinity of the

unstable steady-state xR.

Locally increasing returns to scale underlie many economic models and are ar-

guably the most typical cause for convexity or non-concavity. The economic sources

of these increasing returns have already been mentioned in section 2. They can,

for example, arise from fixed costs in public infrastructure and networks such as

telephone networks. They can give rise to multiple steady-states if ’average’ costs

are high for low values of the stock, that is e.g. if the telephone network deserves

only a small number of users.

4.2 Thresholds in concave models

The existing literature strongly suggests that convexities (or at least of non-concavities)

are necessary in order to obtain multiple steady-states. For example, Arthur (1989)

states that increasing returns give rise to lock-ins and thus to history dependence,

but that the outcome is independent of history if technologies are subject to con-

stant or diminishing returns. The purpose of this subsection is to correct this overall

perception by showing that multiple steady-states and history dependence are pos-

sible in strictly concave inter-temporal optimization problems. Very early examples
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for this can be found in Kurz (1968) and Liviatan and Samuelson (1969). However,

they appear to have been neglected in most of the subsequent literature.

The following exposition draws on Wirl and Feichtinger (1999), that derives the

following necessary condition:

d
.
x

dx
= fx + fuux > 0 at a steady-state (8)

for the existence of an unstable steady-state and of a threshold within a concave

framework. This condition can only be satisfied if at a steady-state either:

r > fx > 0 (9)

or:

fuux = fu
−Hux

Huu

> 0. (10)

Condition (9) requires ’growth’, i.e., fx > 0 , but below the rate of discount. Thus,

the standard Ramsey and the standard renewable resource models do not allow

for an unstable steady-state. Condition (10) also requires growth, but this growth

is now indirectly induced by the optimal control. This requires that the mixed

derivative characterizing the state-control interactions be the proper magnitude and

sign: Hux > 0 for fu > 0, otherwise Hux > 0. In this regard, note that Kurz

(1968) emphasizes the ’growth’ condition (9) . Specifically, he introduces a wealth

externality into the standard Ramsey model of optimal growth, that leads to an

unstable steady-state with r > fx > 0. On the other hand, while starting like

Kurz with the Ramsey framework, Liviatan and Samuelson (1969) argue that an

externality is not needed and rely on the control-state interactions (10) to insure

the existence of an unstable steady-state.

To demonstrate the usefulness and the simplicity of the Wirl-Feichtinger ap-

proach, and in particular of the growth condition (9), consider the traditional Ram-

sey model with a strictly concave production function F. However, assume that the

utility function f0 now includes wealth effects as in Kurz (1968) and Wirl (1994):

max
u

∫ ∞

0

e−rt (v(u) + w(x)) dt, (11)

s.t.
·
x = F (x)− u− δx, x(0) = a. (12)

In this formulation, f0 = v(u)+w(x). That is, total utility is the sum of utility from

consumption v = v (u), and of a wealth effect w = w (x). The separable specification

of f0 and f rules out (10) as a source for an unstable steady-state. Without the

wealth effect, the Ramsey rule implies that (9) would also not be satisfied. Indeed,

10



the Ramsey rule requires F ′ = r + δ, while (9) demands F ′ < r + δ. The wealth

effect, however, increases the stationary capital stock, thus decreasing F ′. Thus, the
model with wealth effect satisfies the growth condition r > ∂

.
x

∂x
= F ′ − δ > 0 for any

steady-state between the traditional Ramsey rule, F ′ = r + δ, and the maximum

sustainable consumption, F ′ = δ. An steady-state in this range is a candidate for

an unstable steady-state even if the model is concave.

F' = �
x

xR

unstable

0�x�

0���

�

Figure 1: Phase diagram of the Ramsey model with wealth effects.

From the Hamiltonian:

H = v(u) + w(x) + λ [F (x)− u− δx] (13)

one derives the first order conditions for interior solutions:

v′ − λ = 0, (14)

.

λ = (r + δ − F ′)λ− w′. (15)

Substituting the optimal control determined by the maximum principle (14), u =

C(λ), C ′ = 1
v′′ < 0, into the state differential equation yields the canonical equations

in (x, λ) sketched in the phase diagram of Figure 1. The downwards sloping curve

λ = v′
r+δ−F ′ characterizes the {

.

λ = 0} isocline. The { .
x = 0} isocline is U-shaped

with its minimum at the point where stationary consumption is maximized (F ′ = δ),
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and poles at the points of zero consumption (x = 0 and F (x) = δx) for v satisfying

the Inada conditions. This highlights that multiple steady-states may exist. In fact

very simple numerical examples can be used to verify this existence – see e.g. Hof

and Wirl (2000).

Some commentators have critically noted that conditions (8), (9) and (10) are

only necessary. However, so are the familiar conditions of either convexity (with

respect to the state) or lack of (joint) concavity. For example, the model of saving

and growth with habit formation of Caroll, Overland and Weil (2000) has a glob-

ally non-concave utility function (a fact that, incidentally, is not mentioned by the

authors). Yet, the long run outcome is unique.

4.3 Models linear in the control

A model that is linear in the control, Huu = 0, has the same canonical equation

system than in the previous case, with the only modification that the optimal control

now depends discontinuously on the state and the co-states:

u = u(x, λ) =
ū
singular arc if Hu = f0u + λfu

u

>
=
<
0,

where u and ū denote lower and upper bounds on the control, u ∈ U = [u, ū]. A

steady-state is determined by the intersection of the singular arc, Hu = 0, with

the
.

λ = 0 isocline. The singular arc is defined by λsing = −f0u/fu. Because of

Huu = 0, a concave Hamiltonian implies Hux = 0. Thus, λ
sing is a constant and the

.

λ = 0 isocline is monotonically declining. Consequently, multiple steady-states are

impossible in a concave model, see Wirl and Feichtinger (1999).

Yet, if there is a local convexity with respect to the state, multiple steady-states

are possible even in a separable model. Brock (1983) provides a nice example in the

context of lobbying and entry deterrence. Moreover, even the milder condition of

a lack of joint concavity allows for multiple steady-states and history dependence.

Although concavity with respect to the state implies that the
.

λ = 0 isocline is

monotonic, a singular arc depending on x may be sufficient for the isoclines to

intersect more than once. This can be the case even if this dependence is linear,

thus preserving concavity in x but not joint concavity in x and u. This can be shown

on the following simple example of renewable resource extraction with an interaction

in utility between the catch u and the biomass x:

f0 = αu+ βx+ γux and f = g(x)− u, g(x) = x(1− x), (16)
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where g(x) is the growth function for the biomass. The singular arc specifies the

costate as a linear function of the state, λsing = α + γx. The differential equation

for the costate is given by:

.

λ = (r − g′)λ− γu− β.

Substituting the control that ensures a steady-state, u = x(1−x), into the differential
equation for the costate and solving for λ leads to:

.

λ | .
x=0= 0⇐⇒ λ =

β + αg(x)

r − g′
.

A steady-state is determined by the intersection of
.

λ | .
x=0= 0 with λ

sing. For a proper

choice of the parameters, there can be two positive steady-states, see Figure 2.

x

� � sing
�� � 0

0.0250.050.0750.10.1250.150.1750.2
0

2

4

6

8

Figure 2: Phase diagram for (16) and the parameter values r = 1.5, α = 0.5,
β = 0.05, γ = 50.

4.4 Common features and differences

The economic implications of multiple equilibria, as we just discussed them, appear

largely independent of the question whether or not the underlying model is concave.

In any case, if there are multiple steady-states, there exists a threshold (in the form

of a Skiba point or a Skiba curve), that is, a (set of) critical values of the state x

with the following property: The optimal policy is different depending on which side

of the threshold the current state lies. In the case of a one-dimensional system, the

optimal policy will thus be to let x grow if its current value lies on the one side, to

13



let it decline if it lies on the other side of the Skiba point. This may possibly lead

to an optimal steady-state that is ”inefficient” (i.e., if x is a positively valued stock)

or ”boundary” (e.g. x = 0).

However, there are important differences between the unstable steady-states that

arise in the one or the other case. In order to recognize them, let us first investigate

the eigenvalues of the Jacobian of the canonical equations. The eigenvalues of this

Jacobian are always real for a concave Hamiltonian, see Wirl and Feichtinger (1999).

Thus, in the concave case, any unstable steady-state is a node. By contrast, much

of the literature on non-concave applications describes the unstable steady-states as

spirals. Thus, one might be led to believe that the type of local dynamics around the

unstable steady-states, node or spiral, allows for properly differentiating between the

concave and the non concave/convex cases. Yet this is not the case. Non-concavity

or convexity allows for complex eigenvalues and thus for a spiral, but does not rule

out a node.

Another feature emphasized throughout the literature is that history dependence

involves a jump in the control at the threshold. Yet, a jump is impossible within a

concave framework, since the policy must be unique. Hence, the existence a jump

seems to be a truly distinctive characteristic of non-concave and convex models, as

opposed to concave ones.

This point can be best illustrated in terms of the value function, V (a). Suppose

there are three steady-states, x1 < x2 < x3, with x2 unstable. In the case of a

concave framework, the value function is unique, see the left drawing in Figure

3. Therefore, in particular, there is an unique optimal control associated with the

unstable steady-state x2. Moreover, x2 is optimal. By contrast, in a non-concave

or convex framework, at least two value functions, say V1 and V3, exist, the first

being associated with x1 and the second with x3. Since the problem of interest is a

maximization, one should choose for any given initial state a the solution that yields

the highest possible payoff. If V1(a) < V3(a), then it is optimal to choose the optimal

control path that leads ultimately to x3, and if V1(a) > V3(a), the one leading to

x1. At the value â of the initial state for which V1 and V3 intersect, i.e. for which

V1(â) = V3(â), one is indifferent between heading towards x1 or towards x3. If indeed

several value functions do exist, the threshold value â will only incidentally coincide

with the unstable steady-state x2. Moreover, x2 will not be optimal. This can

be seen by substituting the stationary control satisfying the first-order conditions

associated with x2 into the steady-state equation. The payoff at this steady-state

falls short of the maximum, see the right drawing in Figure 3. Since the value

functions cross at â, the derivatives of the value functions will typically differ. But,
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according to the Hamilton-Jacobi-Bellman equation, the optimal control depends

on this derivative. Thus, it jumps at â.

x

V1(x)

threshold

V3(x)

V´3(x)

V´1(x)

jumpx

x

x

x

V(x)

unstable

stable

stable

threshold

x1 x2 x3 x1 x3

x

x2

x

â

â

x

Figure 3: Camparing unique (concave) and multiple value functions

Concavity insures that there is an unique optimal policy. By contrast, non-

concavity or convexity always imply multiple policy functions when the unstable

steady-state is a spiral: a simple inspection of the phase diagram shows that the same

policy function cannot continuously connect the steady-states. However, matters

are less clear when the unstable steady-state is a node. For example, consider the

relative adjustment cost framework in Hartl, Kort, Feichtinger and Wirl (2000):

max
u

∫ ∞

0

e−rt[v(x)− C(u/x)]dt,

·
x = u− δx, x(0) = a,

where v is the concave gross profit function, x the capital stock, u the gross invest-

ment, C a convex costs function with the ratio of replaced capital as argument. This

framework seems particularly well suited to trace out the rather subtle points we are

addressing here, because (a) it insures the existence of multiple equilibria (or exam-

ple, for the quadratic specification v = x− 1
2
x2 and C = 1

2
γ

(
u
x

)2
, the model admits

three steady-states) and (b) the unstable equilibrium can fall into the concave or

the non-concave domain and be either a node or a spiral. In the case of an unstable

node in the non-concave domain, Hartl, Kort, Feichtinger and Wirl (2000) present

a numerical example with a phase diagram that allows for a continuous connection

between the steady-states, see Figure 4. Thus, for specific values of the parameters,

a unique value function may indeed exist. More precisely, while the uniqueness of

V is guaranteed by concavity, but often violated in the convex case, it can not be
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excluded in the presence of non-concavities or convexities, presumably at least as

long as these remain mild. This point clearly requires further research. In any event,

it suggest the need for correcting the loose and often incorrect statements found in

the literature where, typically, an unstable spiral is assumed without carrying out

the necessary eigenvalues analysis.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2
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0���

0�x�

�

x

Figure 4: Phase Diagram for the relative adjustment cost framework,
quadratic specification, γ = 3

2
, r = 1, δ = 0.1.

For the concave variant of the above model the value function and the threshold –

which in this case coincides with the middle unstable equilibrium – are computed

using the HJB-equation; see appendix 1.

4.5 Higher order systems

We consider only such two-dimensional systems, x ∈ �2, that can be derived from

one-dimensional ones using the embedding approach developed in Feichtinger, Novak

and Wirl (1994). With this approach, the originally one-dimensional problem is

transformed into a two-dimensional one by introducing control adjustments costs,

denoted v. For simplicity’s sake, these costs are assumed here to be quadratic:
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Max
u(t)∈U

∫ ∞

0

e−rt

(
f0(x, u)− 1

2
cv2

)
dt, (17)

s.t. ẋ = f(x, u), x(0) = a, u̇ = v, u(0) = u0, (18)

Since v = 0 at a steady-state, the original one-dimensional and the derived two-

dimensional problems both have the same steady-states. Moreover, an unstable

steady-state of the original problem remains unstable for the derived problem, since

det(J) > 0 ⇐⇒ det(J̃) < 0, where J is the determinant of the canonical equations

system of the original, and J̃ the Jacobian of the four-dimensional canonical equa-

tions system of the derived problem. It is impossible to stabilize an unstable system

by introducing adjustment costs.

Interestingly enough, the converse is not true. Under certain conditions, adjust-

ment costs may destabilize an otherwise stable steady-state, see Feichtinger, Nowak,

and Wirl (1994). In particular, in the concave case, adjustment costs can transform

a formerly stable steady-state into an unstable steady-state or a limit cycle if the

growth condition r > fx > 0 is satisfied. This may appear counter-intuitive, since

at a stable steady-state no control changes are necessary, while the destabilization

(that may lead e.g. to a Hopf cycle) requires the permanent use of costly control

changes.

Thus, the derived problem can have an unstable steady-state either because the

original problem had one, or because the adjustment costs destabilize an originally

stable steady-state. The growth condition is necessary in both cases. However,

the second road to instability does not lead to thresholds and history dependence.

These phenomena arise only in the case where the original steady-state is unstable,

det(J) > 0, which as previously indicated is the case if and only if det(J̃) < 0.

The condition for an unstable steady-state, det(J̃) < 0, is equivalent to three

eigenvalues of the Jacobian being either positive or having positive real parts, with

the fourth one being negative, see Dockner (1985). Hence, an unstable steady-

state remains conditionally stable along a one-dimensional manifold M of initial

conditions. This is illustrated in Figure 5, that shows a situation with two (saddle-

point) stable steady-states (x) and an unstable one. The unstable steady-state can

be reached from any initial condition along the dotted line, that is, from any point

on the manifoldM . This extends by one dimension the well-known property that in

the one-dimensional case the system remains in the unstable equilibrium if it starts

there. In a concave framework, the unstable steady-state is optimal, so that the

manifold M is also the threshold that separates the domains of attractions of the

stable steady-states. The points on this threshold are ’indeterminate’ in the sense
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that, starting from any of these points, it does not matter towards which of the

equilibria one converges. This indeterminacy is of measure zero and can therefore

be ignored in a discussion of generic outcomes, which are necessarily defined in terms

of stable steady-states.

For a convex model, similarly to the one-dimensional case, the threshold is given

by the intersection of the two value functions associated with the long-run outcomes

– that is, with the two points marked × in Figure 5. The projection of this in-
tersection onto the state space, a one-dimensional manifold, is now the threshold

that separates the domains of attractions of the stable steady-states. This thresh-

old can cross the one-dimensional manifold M , if the unstable steady-state and the

corresponding stationary control are not optimal.

x1

x2

x

x

x

stable

unstable

stable

stable
Manifold

=
threshold in

Concave models

Figure 5: Phase Diagram for the relative adjustment cost framework,
quadratic specification, γ = 3

2
, r = 1, δ = 0.1.

Thus, the concept of a separating threshold between stable equilibria defined for

one-dimensional models extends naturally, and directly to the case of two dimen-

sions. The main difference is that it is no longer a point, but a curve, that separates

the domains of attractions. Finding this separating curve in the concave case is

fairly straightforward, but not trivial, since it is the stable manifold associated with

the unstable equilibrium. If the model is not concave, its computation is even more

involved, as shown in the next section.
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5 Numerical Methods for Detecting Thresholds

A rigorous study of a dynamic model with multiple steady-states would require

locating the Skiba points a analytically. Unfortunately, this appears to be impossible

when the Skiba points do not coincide with unstable steady-states, due to the lack

of an appropriate ”local” equation to define them. Thus, the Skiba points have to be

determined numerically by either one of the three methods presented in this section.

The first method uses the Hamilton-Jacobi-Bellman (HJB) equation to solve

P (a) numerically. We summarize the corresponding algorithm as applied by Semm-

ler and Sieveking (1999).Two examples are computed in the appendix. The algo-

rithm, that is due to Brooks Ferebee, in general implies three steps:

1. Compute the candidates for equilibrium steady states by solving for the sta-

tionary HJB-equation

f0(e) = max
u∈U

[
f0(e, u) +

1

r
f ′

0(e)f(e, u)

]
, (19)

where f ′
0(x) is the derivative of f0(x) with respect to x, and where e is a steady-state

– and thus, a candidate for a long-run optimal steady-state (remember that every

optimal steady-state e solves (19) , but not every steady-state e is optimal).

2. Solve the dynamic HJB-equation

rV (x) = max
u∈U
[f0(x, u) + V ′(x)f(x, u)] (20)

by starting with the equilibrium candidates e as initial conditions. To obtain

V ′(x) explicitly as a function of x and V (x) compute

V ′(x) = G(V (x), x), (21)

The initial value problem

V ′(x) = G(V (x), x),

V (a) =

∞∫
0

e−rtf0(a, u)dt =
1

r
f0(a, u),

to be solved provides the solutions of (21). Then index with i the solutions obtained

for different candidates e.
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3. For every x compute Vi and then set:

V (x) =Max
i

Vi (22)

V is the desired value function indicating thresholds where the piece-wise obtained

value functions intersect.

All three steps are illustrated by Figure 6, which shows the piece-wise solution

of the value function as indicated in step 3. The Skiba point xs is located at the

intersection of the value functions V1 and V2. Note that, as it is the case in Figure

6, the Skiba point does not necessarily coincide with a candidate e.

Figure 6: Skiba point and global dynamics computed through the HJB-
equation.

The main achievement of this algorithm is to find the location of the Skiba

points from the solutions of the HJB-equation. The outer envelop defined by (22)

determinates the optimal solutions and thus the optimal global dynamics, that is,

the history-dependent solutions. Note that knowing V permits to calculate the

optimal control u(x) in feedback form using the HJB-equation. Finally, remark that

the policy function might not be continuous at the Skiba-point, see section 4.4. and

Figure 3.

The second method that can be employed is based on the maximum principle

and the Hamiltonian. Usually, the Hamiltonian does not allow to recognize the

globally optimal steady-states, since it generates only necessary conditions. In the
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case of three candidates, these necessary conditions typically imply the dynamic

properties shown in Figure 7.

Figure 7: Local dynamics about the candidates

Usually the equilibrium candidate e1 is a saddle-point, e2 is unstable node or

focus, and e3 is again a saddle-point. There are connecting orbits from the candidate

e2 to the other candidates e1 and e3. Thus, in general, one can proceed as follows to

obtain the global dynamics from the Hamiltonian H(·) associated with the problem
P (a).

1. Compute the candidates e from the optimal control (or co-state) equations

and state equations.

2. Compute the local dynamics about the candidates.

3. Compute the integrals along the stable manifold from the right and from the

left of the middle unstable steady-state. The intersection of the two integral

curves is the Skiba point, as shown in Figure 8.
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Figure 8: Skiba points and global dynamics computed through the Hamil-
tonian Local dynamics about the candidates

The point where the two integral curves intersect is the Skiba point because at

this point the pay-offs for going to e1 are the same as for going to e3. At the middle

candidate e3 there are typically two solutions satisfying the first-order conditions for

optimality. However, one is superior to the other. For details, see Beyn, Pampel and

Semmler (2000), that also indicate how to compute thresholds in higher dimensional

systems.

This second method has been suggested by Skiba (1978), analytically further

pursued by Brock and Malliaris (1996) and Brock and Starret (1999), and numer-

ically implemented by Beyn, Pample, and Semmler (2000), and by Haunschmied,

Kort, Hartl, and Feichtinger (2000). Although it is useful for computing the global

dynamics, it has shortcomings. The precision with which the Skiba point can be

computed depends crucially on the approximation of the connecting orbits, that is,

of the stable manifolds for the candidates e1 and e3 as shown in Figure 7. In order

to obtain the correct integrals, the connecting orbits should be precisely computed

on grid points in the state space, starting from e2 and moving to the left to e1 and

to the right of e2 to e3.

A third method, dynamic programming, can also be employed to compute the

Skiba points. Using the continuous dynamic programming equation (20) is equiva-

lent to iterating on the value function. If the iteration is properly done and con-

verges, the value function will be greater at a non-optimal steady-state than the

value obtained from the stationary control at the candidate. That is, the optimality

of the candidate can be checked by direct inspection.
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Generically, however, the dynamic programming method is more efficient at find-

ing strong attractors (for example limit cycles) than thresholds or Skiba points, see

Sieveking and Semmler (1997). Strong attractors are not influenced severely by nu-

merical errors such as rounding inaccuracies. By contrast, the search for a Skiba

point can be considerably affected, as this search amounts to numerically locate in a

one-dimensional state space a point where the control u starts changing direction or

jumps as in the case of a discontinuous control. Yet, the use of dynamic program-

ming on a grid for the state and control equations generates numerical rounding

errors that pile up in the iteration of the value function, and also impact the con-

trol u. To rely on dynamic programming to numerically find the Skiba points, it is

necessary to have trustworthy estimates of the associated error bound and a very

refined algorithm. The problems of discretization and estimation of error bounds

are discussed in Semmler and Sieveking (1999a), who also give an example of the

difficulty to find a threshold through dynamic programming. In any event, it is

necessary to point out that results obtained from dynamic programming may be

less reliable than the results obtained from first the two methods.

6 Conclusions

Multiple equilibria constitute a low level, manageable form of complexity. A decision-

maker, or a researcher, may have difficulty grasping and coping with, say, the full

richness of chaotic non-linear dynamics. Multiple equilibria, that confront him with

a finite set of well defined alternatives, offer a much simpler basis for reflection

and action. At the same time, however, they seriously undermine the historical

determinism that underlies many of the standard models of economics.

This paper has given a state-of-the art review of the conditions under which

multiple equilibria can arise in representative agents perfect foresight dynamic op-

timization models. It has developed a typology of these conditions, clarified the

properties of equilibria associated with different necessary conditions,and presented

numerical approaches to study the models’ global dynamics and Skiba thresholds.

One of its main contributions, furthermore, is to have stressed a largely ignored

fact. Even if there are no externalities, perfect foresight, and strict convexity (the

economists’ workhorse in insuring uniqueness of optimal solutions), multiple equi-

libria are possible. This suggests that history dependence may be a much more

pervasive phenomenon in economics than usually assumed. Even in a very well

behaved world, the far future may be very different depending on the current con-

ditions. Since the latter are always subject to accidental events, otherwise similar
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economies need not systematically take the same road.

The results presented here are valid for centrally planned or representative agents

economies. If there are heterogenous agents, the relationship between individual

optimal and aggregate behavior can be different, and possibly more complicated,

than described here. While all evidence shows that taking into account agents’

heterogeneity increases, if anything, the scope for multiple steady-states, their proper

modeling and analysis is the subject matter of future research.
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A Computing the Value Function by Using the

HJB-Equation

We want to demonstrate the usefulness of the HJB-equation to compute the value

function and the threshold (Skiba point) that separate different domains of attrac-

tion. We present two examples. Both examples represent models of optimal invest-

ment where relative adjustment cost gives rise to multiple steady state equilibria.

The second model, however, permits borrowing from capital market and considers

the budget constraint of the firm.

A.1 Optimal Investment with Adjustment Cost

Our first example builds on the model of section 4.4. Details of this model can be

found in Feichtinger et al (2000) and the computation of the value function and the

thresholds for this model is undertaken in Kato and Semmler (2001).

The present value problem to be solved is as follows

V (x) = max
u

∫ ∞

0

e−rt[v(x)− C(u/x)]dt, (A.1)

·
x = u− δx, x(0) = a, (A.2)

where v is a concave gross profit function, x a stock variable , u the increase of the

stock, C(u/x), a convex cost function with relative adjustment cost as argument.

Feichtinger et al (2000) take quadratic specifications v = x− 1
2
x2 and C = 1

2
γ

(
u
x

)2
.

The model admits three steady-states and the unstable equilibrium can fall into the

concave domain.

The HJB-equation of section 5 has, for the present model, the form

rV (x) = max
u
[(v(x)− C(u/x)) + V ′(x)(u− δx)] (A.3)

We can compute the value function and thresholds for the solution of this problem

in three steps.

Step 1: Compute the steady states for the stationary HJB-equation

If e is an equilibrium then

u− δx = 0

and

rV (e) = v(e)− C(δ). (A.4)
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Thus

V (e) =
1

r
[v(e)− C(δ)]

and

V
′
(e) =

1

r
v

′
(e). (A.5)

The equilibrium e satisfies

rV (e) = max
u

[
v(e)− C

(u
e

)
+ V

′
(e)(u− δe)

]
. (A.6)

Substituting (A4) and (A5) into (A3) yields

v(e)− C(δ) = max
u

[
v(e)− C

(u
e

)
+
1

r
v

′
(e)(u− δe)

]
.

Solving d
du

[
v(e)− C

(
u
e

)
+ 1

r
v

′
(e)(u− δe)

]
= 0 gives

−rC ′(u
e

)1
e
+ v

′
(e) = 0. (A.7)

From the specific functions for (A1), (A2) we obtain

v′(x) = 1− x (A.8)

C
′(u
x

)
= γ

(u
x

)
. (A.9)

The equilibrium condition (A7) becomes

−rγ(u
e

)1
e
+ 1− e = 0 (A.10)

or

u =
1− e

rc
e2. (A.11)

Inserting this condition into the steady state condition we obtain three steady

state equilibria from

ẋ = u− δe =
1− e

rγ
e2 − δe

= e
[1− e

rγ
e− δ

]
. (A.12)

= 0
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since this implies

e = 0 or[
1−e
rγ

e− δ
]
= 0, that is e2 − e+ rγδ = 0.

Thus, the optimal three steady states are

e =

{
0
1±√

1−4rγδ
2

= 1±√
D

2

(A.13)

where we assume D ≡ 1− 4rγδ ≥ 0.
For steady states both of the following two conditions are satisfied:

u =
1− e

rγ
e2 (A.14)

u = δe (A.15)

For γ = 1.5, δ = 0.1 and r = 1 we obtain the following three solutions as candidates

for optimal equilibria: x∗ = 0, x∗∗ = 0.184, x∗∗∗ = 0.816.

Step 2: Solve the dynamic HJB equation starting from the equilibrium candi-

dates.

Using the stationary HJB equation again we obtain

max
u
= [e− 1

2
e2 − 1

2
γ(
u

e
)2 + V

′
(e)(u− δe)]. (A.16)

Solving d
du
[e− 1

2
e2 − 1

2
γ(u

e
)2 + V

′
(e)(u− δe)] = 0 gives

−γ(u
e
)1

e
+ V

′
(e) = 0

or

V
′
(e)e2

γ
= u (A.17)

Substituting (A17) into (A16) gives

rV (e) = e− 1
2
e2 +

1

2

e2

γ
V

′
(e)2 − δeV

′
(e), (A.18)

therefore

V
′
(e)2 − 2γδ

e
V

′
(e) + 2

γ

e
− γ − 2γr

e2
V (e) = 0. (A.19)

27



Then we obtain an ordinary differential equation in V with candidates of steady

states as initial condition.

V
′
(e) =

γδ

e
±

√
(
γδ

e
)2 − (2γ

e
− γ − 2γr

e2
V (e)). (A.20)

Using this information for the solution of V we get

V
′
(x) =

γδ

x
−

√
(
γδ

x
)2 − (2γ

x
− γ − 2γr

x2
V (x)) for x ≤ e (A.21)

V
′
(x) =

γδ

x
+

√
(
γδ

x
)2 − (2γ

x
− γ − 2γr

x2
V (x)) for x < e (A.22)

with

V (e) =
1

r
[e− 1

2
e2 − 1

2
γδ2]

as initial condition.

We solve the ODE in V by using the Euler method starting at e.

Step 3: Solve the global value function. We can compute the global value

function for the original problem by

V (x) = maxVi (A.23)

The results of the piece-wise computation of the value function is shown in figure

A1.

Figure A1:
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In this model since the steady state x∗∗ = 0.184 is a node, the thresholds coincide
with the equilibria x∗∗ = 0.184 and x∗∗∗ = 0.816.

A.2 Optimal Investment, Adjustment Cost and Credit Mar-
ket

The next example permits, beside adjustment cost, borrowing by the firm from

capital markets and considers more explicitly the budget constraint of the firm; for

details, see Semmler and Sieveking (2000). The present value problem is

V (k) =Max
j

∫ ∞

0

e−rtf(k, j)dt (A.24)

s.t. k̇ = j − σk, k(0) = k0 (A.25)

Ḃ = rB − f(k, j), B(0) = B0 (A.26)

where k, the capital stock, j, investment, B, debt of the firm and a net income

function

f(k, j) = kα − j − j2k−γ (A.27)

with non-linear adjustment cost of capital. Here all variables are in efficiency units.

Moreover, σ > 0, α > 0, γ > 0 are constants: The no-Ponzi game condition for

this problem is

lim
t→∞

B(t)e−rt = 0 (A.28)

In order of the intertemporal budget constraint to hold it requires B ≤ V (k). This

is needed for the problem to have a solution, see Semmler and Sieveking (2000).

The HJB-equation for this problem reads

rV = max
j

[
kα − j − j2k−γ + V ′(k)(j − σk)

]
(A.29)

Here too, we can compute the value function and thresholds in three steps

Step 1: Compute the steady state candidates

Again note that for the steady state candidates, for which 0 = j − σk holds, we

obtain:
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V (k) =
f (k, j)

r
(A.30)

V ′(k) =
f ′(k, j)

r
=

∂
∂k
(kα − σk − σ2k2−γ)

r
(A.31)

Using the information of (A30)-(A31) in (A29) gives, after taking the derivatives

of (A29) with respect to j, the steady states for the stationary HJB equation:

−1− 2jk−γ +
αkα−1 − σ − σ2(2− γ)k1−γ

r
= 0 (A.32)

Note that hereby j = σk. The equation admits three steady states.

Step 2: Derive the differential equation V
′

We derive the differential equation V
′
by taking

∂rV

∂j
= 0;

We obtain

−1− 2jk−γ + V ′(k) = 0

Solving for the optimal j and using the optimal j in (A29) we get

V ′ = 1 + 2σk1−α ±
√
(1 + 2σk1−α)2 + 4δk−αV + kγ−α − 6 (A.33)

Next, we start the iteration with steady states as initial conditions. For e, a

steady state, we get as initial value for the solution of the differential equation

(A33):

V0 =

∫ ∞

0

e−δtg(e, j)dt

V0 =
1

δ
g(e, j)

Step 3: Compute the global value function by taking

V (k) = max
i

Vi

where V (k) is the outer envelop of the piece-wise value function.
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Figure A2a:

Figure A2b:

The results of the piece-wise computation of the value function are shown in

figures A2a and A2b. A2b shows the trajectory to the right of the steady state,

k∗∗∗ and figure A2a the value function to the left of k∗∗∗. The two value functions to
the left of k∗∗∗ , the one starting at k∗∗∗ and going to the left and the other starting
at k∗ going to the right, intersect. This intersection represents the Skiba-point.
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Extension: If one allows for endogenous credit cost one has to compute piece-

wise the value function for

k̇ = j − σk

Ḃ = H(k,B)− f(k, j)

f(k, j) = kα − j − jβk−γ

with H(k,B) the endogenous credit cost, depending on assets and liability of the

firm (networth as collateral for the firm). This extension is presented in Semmler

and Sieveking (2000). It leads to the following equation for candidates of equilibrium

steady states for H(k,B) = h(B) = rBκ for κ ≥ 1.

1 + 2jk−γ =
αkα−1 − σ − σ2(2− γ)k1−γ

rκ(kα − σk − σ2k2−γ)(κ−1)/κ
(A34)

Note that the steady state candidates are the same as in (A32) if in (A34) κ = 1.

For details of the solution and the use of the HJB-equation to solve for thresholds,

see Semmler and Sieveking (2000).
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