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Abstract

This paper studies the interrelation between anthropogenic global warming and

economic growth. It is assumed that deviations from the pre-industrial average

global surface temperature negatively affect aggregate output and utility. The gov-

ernment levies a tax on output and a tax on greenhouse gases. Assuming a basic

endogenous growth model the effects of varying the tax rates are analyzed as con-

cerns economic growth, economic welfare and as concerns the rise in average global

surface temperature. Using simulations, it is demonstrated that higher emission

taxes may both raise economic growth and welfare while reducing the extent of

global warming. In addition, situations exist where a rise in emission taxes reduces

economic growth but raises welfare. Further, in the social optimum economies with

cleaner technologies have fewer emissions than economies with less clean production

technologies.
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1 Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) the global average

surface temperature has increased by 0.6± 0.2 degree Celsius over the 20th century. It is

very likely1 that the 1990s was the warmest decade and 1998 the warmest year since 1861

([10], p. 26). In addition, it is likely that statistically significant increases in heavy and

extreme weather events have occurred in many mid- and high latitude areas, primarily

in the Northern Hemisphere.2 Changes in climate occur as a result of both internal

variability within the climate system and external factors where the latter can be natural

or anthropogenic. However, natural factors have made small contributions to the climate

change observed over the past century. Instead, there is strong evidence that most of

the warming observed over the last 50 years is the result of human activities. Especially,

the emission of greenhouse gases (GHGs), like carbon dioxide (CO2) or methane (CH4)

just to mention two, are considered as the cause for climate changes and these emissions

continue to alter the atmosphere in ways that are expected to affect the climate.

In the environmental economics literature there exist numerous contributions which

study the interrelation between economic growth and environmental degradation (for a

survey see e.g. [18], [8] or [19]). These studies are rather abstract because they intend to

derive general results in analytical models. It is assumed that economic activities lead to

environmental degradation and, as a consequence, reduce utility and/or production pos-

sibilities. The question then arises how government policies can improve the environment

and how such measures affect the growth rate and welfare of economies.

On the other hand, there exist studies which try to evaluate the costs of global warm-

ing (see e.g. [5], [15] or [20] and for a survey [11]). For example, in [15] different abatement

scenarios are analyzed where the growth rate of the economy is assumed to be an exoge-

nous variable and the results are compared the social optimum. In this study it is shown,

1Very likely (likely) means that the level of confidence is between 90 − 99 (66 − 90) percent.

2More climate changes are documented in [10], p. 34.



among others, that in all scenarios carbon taxes rise over time. Other studies dealing with

global warming are cost-benefit analysis which also take the growth rate of economies as

an exogenous variable. These studies then compute the discounted cost of reducing GHG

emissions and confront them with the discounted benefit of a lower increase in GHG

concentration. Examples of such studies are [5] and [20].

A great problem arising when one intends to study the economic consequences of

global warming is the uncertainty as concerns the damages caused by a change of the

earth climate. The IPCC estimates that a doubling of CO2, which goes along with an

increase of global average surface temperature between 1.5 and 4.5 degree Celsius, reduces

world GDP by 1.5 to 2 percent (see [11], p. 218). This damage is obtained for the economy

in steady state and comprises both market and nonmarket impacts. Nonmarket impacts

are direct reductions of people’s welfare resulting from a climate change. But, of course,

it must be repeated that there is great uncertainty in social cost estimates, especially as

concerns the direct impact of climate change on individuals’ utility.

As far as I know there do not exist studies which take climate models as starting points

and then analyze the effects of global warming within an endogenous growth model. This

is a bit surprising since it is probable that climate changes will also have impacts on

the growth rates of economies. Therefore, we intend to analyze the effects of GHGs

emissions and emission tax policies on economic growth and welfare by incorporating the

greenhouse effect in a simple endogenous growth model in this paper. Thus, we intend to

bring together endogenous growth models with models of global warming which has not

been done as far as I know.

The rest of the paper is organized as follows. In Section 2 we start with a description

of facts concerning GHG emissions and changes in average surface temperature using a

simple energy balance model (EBM). Section 3 introduces the competitive model economy.

In sections 3.1 and 3.2 we present the structure of the model and we derive results for our

model on the balanced growth path (BGP). Section 4 presents and analyzes the social



optimum and section 5, finally, concludes the paper.

2 Facts on GHG emissions and the change in average

global surface temperature

Before we present the economic framework we begin with a description of scientific knowl-

edge concerning GHG emissions and the change in global average surface temperature.

The simplest method of considering the climate system of the earth is in terms of its global

energy balance which is done by so-called energy balance models (EBM). According to

an EBM the change in the average surface temperature on earth is described by3

dT (t)

dt
ch ≡ Ṫ (t) ch = SE − H(t) − FN(t), T (0) = T0, (1)

with T (t) the average global surface temperature measured in Kelvin4 (K), ch the heat

capacity5 of the earth with dimension J m−2 K−1 (Joule per square metre per Kelvin)6

which is considered a constant parameter, SE is the solar input, H(t) is the nonradiative

energy flow, and FN(t) = F ↑ (t)−F ↓ (t) is the difference between the outgoing radiative

flux and the incoming radiative flux. SE, H(t) and FN(t) have the dimension Watt per

square metre (Wm−2). t is the time argument which will be omitted in the following as

long as no ambiguity can arise. F ↑ follows the Stefan-Boltzmann-Gesetz which is

F ↑= ε σT T 4, (2)

with ε the emissivity which gives the ratio of actual emission to blackbody emission.

Blackbodies are objects which emit the maximum amount of radiation and which have

3This subsection follows [16] chap. 10.2.1 and chap. 1. See also [7] and [4]. A more complex presentation

can be found in [6].

4273 Kelvin are 0 degree Celsius.

5The heat capacity is the amount of heat that needs to be added per square metre of horizontal area to

raise the surface temperature of the reservoir by 1K.

61 Watt is 1 Joule per second.



ε = 1. For the earth ε can be set to ε = 0.95. σT is the Stefan-Boltzmann constant

which is given by σT = 5.67 10−8 Wm−2K−4. Further, the ratio F ↑ /F ↓ is given by

F ↑ /F ↓= 109/88. The difference SE−H can be written as SE−H = Q(1−α1)α2/4, with

Q = 1367.5 Wm−2 the solar constant, α1 = 0.3 the planetary albedo, determining how

much of the incoming energy is reflected by the atmosphere and α2 (α2 = 0.3) captures

the fact that a part of the energy is absorbed by the surface of the Earth. Summarizing

this discussion the EBM can be rewritten as

Ṫ (t) ch =
1367.5

4
0.21 − 0.95

(

5.67 10−8
)

(21/109) T 4, T (0) = T0. (3)

In equilibrium, i.e. for Ṫ = 0, (3) gives a surface temperature of about 288.4 Kelvin which

is about 15 degree Celsius. ch is the heat capacity of the Earth. Since most of the Earth’s

surface is covered by seawater ch is largely determined by the oceans. Therefore, the

heat capacity of the oceans is used as a proxy for that of the earth. ch is then given by

ch = ρw cw d 0.7, with ρw the density of seawater (1027 m−3 kg), cw the specific heat of

water (4186 J kg−1 K−1) and d the depth of the mixed layer which is set to 70 meters. The

constant 0.7 results from the fact that 70 percent of the Earth are covered with seawater.

Inserting the numerical values, assuming a depth of 70 meters and dividing by the surface

of the earth gives ch = 0.1497 J m−2 K−1.

The effect of emitting GHGs is to raise the concentration of GHGs in the atmosphere

which increases the greenhouse effect of the Earth. This is done by calculating the so-

called radiative forcing which is a measure of the influence a GHG, like CO2 or CH4,

has on changing the balance of incoming and outgoing energy in the Earth-atmosphere

system. The dimension of the radiative forcing is Wm−2. For example, for CO2 the

radiative forcing, which we denote as F , is given by

F = 6.3 ln
M

Mo

, (4)

with M the actual CO2 concentration, Mo the pre-industrial CO2 concentration and ln



the natural logarithm (see [12], p. 52-53).7 For other GHGs other formulas can be given

describing their respective radiative forcing and these values can be converted in CO2

equivalents. Incorporating (4) in (3) gives

Ṫ (t)ch =
1367.5

4
0.21−0.95

(

5.67 10−8
)

(21/109)T 4 +β1 (1−ξ)6.3 ln
M

Mo

, T (0) = T0. (5)

β1 is a feedback factor which captures the fact that a higher GHG concentration affects

for example atmospheric water vapour which has effects for the surface temperature on

Earth. β1 is assumed to take values between 1.1 and 3.4. The parameter ξ, finally, captures

the fact that ξ = 0.3 of the warmth generated by the greenhouse effect is absorbed by the

oceans which transport the heat from upper layers to the deep sea. Setting β1 = 1.1 and

assuming a doubling of GHGs implies that in equilibrium the average surface temperature

rises from 15.4 to 18.7 degree Celsius, implying a rise of about 3.3 degree. This is in the

range of IPCC estimates8 which yield increases between 1.5 and 4.5 degree Celsius as a

consequence of a doubling GHG concentration ([10], p. 67).

The concentration of GHGs M evolves according to the following differential equation

Ṁ = β2E − µM,M(0) = M0. (6)

E denotes emissions and µ is the inverse of the atmospheric lifetime of GHGs. As to the

parameter µ we assume a value of µ = 0.1.9 β2 captures the fact that a certain part of

GHG emissions are taken up by oceans and do not enter the atmosphere. According to

IPCC β2 = 0.49 for the time period 1990 to 1999 for CO2 emissions ([10], p. 39).

3 The competitive model economy

In this section we present our economic framework. We start with the description of the

structure of our economy.

7The CO2 concentration is given in parts per million (ppm).

8IPCC results are obtained with more sophisticated Atmosphere-Ocean General Circulation Models.

9The range of µ for CO2 given by IPCC is µ ∈ (0.005, 0.2), see [10], p. 38.



3.1 The structure of the economy

We consider an economy where one homogeneous good is produced. Further, the economy

is represented by one individual with household production who maximizes a discounted

stream of utility arising from per capita consumption times the number of household

members subject to a budget constraint. A frequently used standard utility function U

in economics is

U =







(C D1(T − To))
1−σ/(1 − σ), for σ > 0, σ 6= 1

ln C + ln D1(T − To), for σ = 1.
(7)

C denotes per capita consumption and σ is the inverse of the intertemporal elasticity of

substitution of consumption between two points in time. D1(T − To) gives the disutility

resulting from deviations from the normal temperature10 To. As to the functional form of

D1(T − To) we assume that it is C2 and satisfies

D1(T − To)







= 1, for T = To

< 1, for T 6= To,
(8)

with derivative

∂ D1(·)
∂ T

≡ D′

1(·)







> 0, for T < To

< 0, for T > To.
(9)

The individual’s budget constraint in per capita terms is given by11

Y (1 − τ) = K̇ + C + A + τEEL−1 + (δ + n)K, K(0) = K0, (10)

with Y per capita production, K per capita capital, A per capita abatement activities and

E emissions. τ ∈ [0, 1) is the tax rate on production and τE > 0 is the tax on emission.

10The normal temperature is the pre-industrial temperature.

11The per capita budget constraint is derived from the budget constraint with aggregate variables, denoted

by the subscript g, according to K̇/K = K̇g/Kg − L̇/L.



δ is the depreciation rate of capital. L is labour which grows at rate n. In our model

formulation abatement is a private good.12 The production function is given by

Y = B KαK̄1−αD2(T − T0), (11)

with K per capita capital, α ∈ (0, 1) the capital share and B is a positive constant.

D2(T − T0) is the damage due to deviations from the normal temperature To and has the

same functional form as D1(·). In section 3 we will concretely specify both D1(·) and D2(·).

K̄ gives positive externalities from capital resulting from spillovers. This assumption

implies that in equilibrium the private gross marginal returns to capital13 are constant

and equal to αBD2(·), thus generating sustained per capita growth if B is sufficiently

large. This is the simplest endogenous growth model existing in the economics literature.

However, since we are not interested in explaining sustained per capita growth but in

the interrelation between global warming and economic growth this model is sufficiently

elaborate.

As concerns emissions of GHGs we assume that these are a byproduct of capital used

in production and expressed in CO2 equivalents. So emissions are a function of per capita

capital relative to per capita abatement activities. This implies that a higher capital stock

goes along with higher emissions for a given level of abatement spending. This assumption

is frequently encountered in environmental economics (see e.g. [18] or [8]). It should also

be mentioned that the emission of GHGs does not affect utility and production directly

but only indirectly by affecting the climate of the Earth which leads to a higher surface

temperature and to more extreme weather situations. Formally, emissions are described

by

E =

(

aK

A

)γ

, (12)

12There exist some contributions which model abatement as a public good. See e.g. [13] or [14].

13With gross return we mean the return to capital before tax and for the temperature equal to the

pre-industrial level.



with γ > 0 and a > 0 constants. The parameter a can be interpreted as a technology

index describing how polluting a given technology is. For large values of a a given stock

of capital (and abatement) goes along with high emissions implying a relatively polluting

technology and vice versa.

The government in our economy is modelled very simple. The government’s task is

to correct the market failure caused by the negative environmental externality.14 The

revenue of the government is used for non-productive public spending so that transfers

do not affect the consumption-investment decision.

The individual’s optimization problem can be written as

max
C,A

∫

∞

0

e−ρtL0e
ntU(C,D1(T − To))dt, (13)

subject to (7), (10), (11) and (12). ρ in (13) is the subjective discount rate, L0 is labour

supply at time t = 0 which we normalize to unity and which grows at constant rate

n. It should be noted that in the competitive economy the individual does neither take

into account the negative externality of capital, the emission of GHG, nor the positive

externalities, i.e. the spillover effects.

To find the optimal solution we form the current-value Hamiltonian15 which is

H(·) = (C D1(T − To))
1−σ / (1 − σ) + λ1((1 − τ) B KαK̄1−αD2(T − To) −

C − A − τEL−1aγKγA−γ − (δ + n)K), (14)

with λ1 the shadow price of K. Note that we used E = aγKγA−γ .

The necessary optimality conditions are given by

∂H(·)
∂C

= C−σD1−σ
1 − λ1 = 0, (15)

∂H(·)
∂A

= τEL−1aγKγγA−γ−1 − 1 = 0, (16)

λ̇1 = (ρ + δ)λ1 − λ1

(

(1 − τ) B α D2(·) − (τE/LK) γ aγ KγA−γ
)

. (17)

14How the government has to take into account the positive externality is studied in section 5.

15For an introduction to the optimality conditions of Pontryagin’s maximum principle see [3] or [17].



In (17) we used that in equilibrium K = K̄ holds. Further, the limiting transversality

condition limt→∞ e−(ρ+n)tλ1K = 0 must hold.

Using (15) and (17) we can derive a differential equation giving the growth rate of per

capita consumption. This equation is obtained as

Ċ

C
= −ρ + δ

σ
+

α

σ
(1 − τ) BD2(·) −

γ

σ

τE

LK
aγKγA−γ +

1 − σ

σ

D′

1(·)
D1(·)

Ṫ , (18)

where D′

1(·) stands for the derivative of D1(·) with respect to T. Combining (16) and (12)

yields

E =
( τE

LK

)

−γ/(1+γ)

aγ/(1+γ) γ−γ/(1+γ). (19)

Using (5) and (6) from section 2 with the numerical parameter values introduced and

the equations derived in this section the competitive economy is completely described by

the following differential equations

Ṫ ch = 71.7935 − 5.67 10−8(19.95/109) T 4 + 6.3 β1 (1 − ξ) ln
M

Mo

, T (0) = T0 (20)

Ṁ = β2

( τE

LK

)

−γ/(1+γ)

aγ/(1+γ) γ−γ/(1+γ) − µM, M(0) = M0 (21)

Ċ

C
= −ρ + δ

σ
+

α

σ
(1 − τ) BD2(·) −

γ

σ

( τE

LK

)1/(1+γ)

aγ/(1+γ)γ−γ/(1+γ) +

1 − σ

σ

D′

1(·)
D1(·)

Ṫ (22)

K̇

K
= B D2(T − T0) (1 − τ) −

( τE

LK

)1/(1+γ)

aγ/(1+γ) γ−γ/(1+γ)(1 + γ) −
C

K
− (δ + n), K(0) = K0, (23)

where C(0) can be chosen by society.

3.2 The balanced growth path

In this subsection we derive results for our model economy on a balanced growth path.16

First we define how a balanced growth path is characterized.

16In the following, steady state is used equivalently to balanced growth path.



Definition A balanced growth path (BGP) is a path such that Ṫ = 0, Ṁ = 0 and

Ċ/C = K̇/K hold, with M ≥ Mo.

This definition contains several aspects. First, we require that the temperature and

the GHG concentration must be constant along a BGP. This is a sustainability aspect.

Second, the growth rate of per capita consumption equals that of per capita capital and

is constant. Third, we only consider balanced growth paths with a GHG concentration

which is larger than or equal to the pre-industrial level. This requirement is made for

reasons of realism. Since GHG concentration has been rising monotonically over the last

decades it is not necessary to consider a situation with declining GHG concentration. We

first give some results which can be derived for our analytical model.

3.2.1 Analytical Results

Before we study comparative static properties of our model on the BGP we analyze its

dynamics. Proposition 1 shows that there exists a unique BGP for this economy under a

slight additional assumption.

Proposition 1 For the competitive model economy there exists a unique BGP for a con-

stant value of τE/LK which is a saddle point with one positive and two negative real

eigenvalues.

Proof: See appendix.

This proposition shows that there exists a two-dimensional stable manifold. Solutions

starting on that manifold converge to the BGP in the long run while all other solutions

diverge. Since T (0), M(0) and K(0) are given the value for C(0) must be chosen such

that c(0) ≡ C(0)/K(0) lies on the stable manifold. Further, it cannot be excluded that

the BGP goes along with a negative growth rate because the sign of the balanced growth

rate depends on the concrete numerical values of the parameters. The question of whether

there exists a BGP with a positive growth rate, i.e. a non-degenerate BGP, for a certain



parameter constellation is addressed in the next section. In this section we make the

assumption that a non-degenerate BGP exists.

An important aspect is that on a BGP M is constant implying that emissions of GHGs

are constant, too. In a growing economy, however, this is only possible if abatement

activities rise with the same rate as the capital stock. Since abatement activities are set

by private agents to satisfy (16) the government has to levy the emission tax in a way such

that the ratio τE/LK is constant. This implies that the tax on emission must rise with

the same rate as the aggregate capital stock LK. However, it must be also noted that

this only holds for a given relation between the ratio K/A and emissions. So, technical

progress, generating a less polluting technology which implies that a given capital stock K

causes less emissions, will change this outcome. In our framework this would be modelled

by a decrease in a. This would affect the value of τE. In the following we will not go

into the details of this aspect but analyze our model for constant parameter values and

assume that the government keeps the ratio τE/LK constant.

In a next step we analyze how the balanced growth rate which we denote by g? and

which is given by (22) with Ṫ = 0, reacts to changes in the production tax rate τ and to

different values of the ratio τE/LK. To do so we differentiate g? with respect to τ. This

gives
∂g?

∂τ
= B

(α

σ

)

(

(1 − τ)D′

2(·)
∂T ?

∂τ
− D2(·)

)

,

with T ? denoting the surface temperature on the BGP. From (20) and (21) it is immedi-

ately seen that ∂T ?/∂τ = 0 so that a higher tax rate on production unequivocally lowers

the balanced growth rate.

This does not hold for variations of the emission tax. Differentiating g? with respect

to (τE/LK) yields

∂g?

∂(τE/LK)
= B

(α

σ

)

(1 − τ)D′

2(·)
∂T ?

∂(τE/LK)
− γ

σ(1 + γ)
E, (24)

with E given by (19). To get an idea about the sign of this expression we need to know

the sign of ∂T ?/∂(τE/LK). ∂T ?/∂(τE/LK) is obtained by solving (20) with respect to



T ?, inserting M ? obtained from (21)=0 and then differentiating with respect to (τE/LK).

It is immediately seen that this derivative is negative. Since for T ≥ To, which holds on

a BGP due to M ≥ Mo, the derivative of D2(·) is negative so that the first part of the

above expression is positive.

With these considerations we can state that this derivative shows that an increase

in the emission tax may raise or lower the balanced growth rate. This holds because

there are two counteracting forces: On the one hand, a higher emission tax reduces the

net marginal product of private capital, thus, reducing the balanced growth rate. On

the other hand, a higher emission tax reduces the average surface temperature and, as

a consequence, the damage resulting from deviations of the actual temperature from its

pre-industrial level. This tends to raise the net marginal product of private capital and

the incentive to invest. So we can state that a higher tax on GHG emissions may yield

a or a win-win situation, or a double dividend, by both raising the balanced growth rate

and reducing GHG emissions. It should also be mentioned that the direct negative effect

of global warming as to utility does not affect this outcome. This is easily seen from (19)

and (20) with M ? determined by (21)=0.

These considerations suggest that there exists a growth maximizing value for the

emission tax ratio. However, the question of whether there does exist a (interior) growth

maximizing value for (τE/LK) cannot be answered without resorting to numerical exam-

ples. This holds because the specification of the damage function is most decisive as to

the answer of that question. Further, it is also feasible that an increase in the emission tax

ratio lowers economic growth but, nevertheless, yields a higher welfare because a decrease

in GHG emissions positively affects utility.

In order to study these questions it is necessary to concretely specify the damage

functions D1(T − To) and D2(T − To) and to resort to numerical examples. This is done

in the next subsection.



3.2.2 Numerical examples

Next, we analyze how the growth rate and welfare react to variations in the emission tax

ratio. We do this for the economy on the BGP using numerical examples and we start

this subsection with a description of the parameter values we employ in our numerical

analysis.

We consider one time period to comprise one year. The discount rate is set to ρ = 0.03,

the population growth rate is assumed to be n = 0.02 and the depreciation rate of capital

is δ = 0.075. The pre-industrial level of GHGs is normalized to one, i.e. Mo = 1. We do

this because M denotes all types of greenhouse gases (e.g. such as CO2 and CH4) so that

we cannot insert the specific concentration of a certain type of greenhouse gas, say CO2

or CH4. Further, we are interested in the change of GHG concentration relative to the

pre-industrial level. γ, β1 and ξ are set to γ = 1, β1 = 1.1 and ξ = 0.3 (for the latter two

see section 2). The tax rate on output is τ = 0.1 and the capital share is α = 0.45. This

value seems to be high. However, if capital is considered in a broad sense meaning that

it also comprises human capital this value is reasonable.17 B is set to B = 0.35 implying

that the social gross marginal return to capital is 35 percent for T = To.

As to τE/LK we consider the values τE/LK = 0.005, 0.01, 0.015. For example, in

Germany the ratio of tax on mineral oil to private gross capital (excluding residential

capital) was 0.0037 (0.0068) in 1999 (see [21], p. 510, 639). a is set to a = 1.65 10−3

so that a doubling of GHGs implies a rise in the average surface temperature of about

3.3 degree Celsius for τE/LK = 0.01. We also consider the lower values τE/LK =

0.0005, 0.001, 0.0015.18 As to the inverse of the intertemporal elasticity of substitution of

consumption we consider the values σ = 1.1 and σ = 2.

17The choice of α does not affect the qualitative results but only the magnitude of endogenous variables

like the balanced growth rate for example.

18To get temperature increases for a doubling of GHGs in line with IPCC calculations we set a = 1.65 10−4

in this case.



An important role is played by the damage functions D1(·) and D2(·). These will be

introduced now. As to D1(·) we assume the function

D1(·) =
(

a1 (T − To)
2 + 1

)

−ϕ
, (25)

with a1 > 0, ϕ > 0. D2(·) is given by

D2(·) =
(

a2 (T − To)
2 + 1

)

−φ
, (26)

with a2 > 0, φ > 0. As to the numerical values of the parameters in (25) we assume

a1 = 0.035 and ϕ = 0.035 which are left unchanged in our examples except for table 4.

These values imply that a rise of the surface temperature by 1 (2, 3) degree(s) implies

a decrease of utility by 0.012 (0.046 0.096) percent for σ = 1.1. For σ = 2 the decrease

is 0.12 (0.46, 0.96) percent for a temperature increase of 1 (2, 3) degree(s). Setting

a1 = 0.07 and ϕ = 0.07 gives a decrease in utility of 0.047, 0.17, 0.34 (0.47, 1.74, 3.48)

percent for a temperature increase of 1, 2, 3 degrees with σ = 1.1 (σ = 2). In [11],

p. 196/197, an example is given how a monetary value can be attached to a change in

the risk of death as a result of a climate change. The IPCC cites the study by [2] who

estimates this number to be on average 0.26 percent of world GDP for a doubling of

CO2 concentration19 which corresponds in our model to a temperature increase of about

3.3 degree. But note that there are other effects which have an impact on individuals’

utility, like an increase in extreme weather events for example, so that different values

may be plausible, too. Further, it should also be kept in mind that empirical estimates

for damages are necessarily uncertain, as already mentioned in the Introduction. This

holds in particular for the direct effect of global warming as concerns people’s utility.

As concerns the numerical values of a2 and φ we consider the cases (a2 = 0.025, φ =

0.025), (a2 = 0.035, φ = 0.035) and (a2 = 0.05, φ = 0.05). The combination (a2 =

0.025, φ = 0.025) implies that an increase of the surface temperature by 1 (2, 3) degree(s)

leads to a decrease of aggregate production by 0.06 (0.2, 0.5) percent. With (a2 = 0.05, φ =

19This holds for the economy in steady state.



0.05) an increase of the surface temperature by 1 (2, 3) degree(s) leads to a decrease of

aggregate production by 0.2 (0.9, 1.8) percent. Comparing these values with the estimates

published in [11], mentioned in the Introduction, we see that most of the values we choose

tend to be within the range of that study.

In the following tables we report the results of our numerical studies. These studies

compare different scenarios where it is assumed that the exogenous variables, i.e. τE/LK

and σ, take their respective values for all t ∈ [0,∞) and that the economy immediately

jumps to its BGP. Table 1 shows the effects of different ratios τE/LK where the ? denotes

values on the BGP.20 g? is the balanced growth rate given by (22) with Ṫ = 0 and W ?

denotes welfare. W ? is given by

W ? =

∫

∞

0

e−(ρ−n)tU(C(t), D1(T
? − To))dt,

with U(·) given by (7) and C(t) = C? eg?t. C? is determined endogenously by (23) such

that K̇/K = g? holds for all t ∈ [0,∞). As to K0 = K? we set K0 = 5500 which is about

the capital stock in Germany (in billion Euro) in 2000 (see [9]).21 We also report the

steady state ratio of abatement activities to capital, A?/K?.

Table 1. Varying the emission tax between 0.005 and 0.015 with a2 = 0.025, φ = 0.025.

τE/LK σ T ? M? g? W ? A?/K?

0.005 1.1 293.3 2.8 0.0293 -388.612 2.87 10−3

0.005 2 293.3 2.8 0.0161 −3.659 10−2 2.87 10−3

0.01 1.1 291.7 1.99 0.0289 -389.291 4.06 10−3

0.01 2 291.7 1.99 0.0159 −3.656 10−2 4.06 10−3

0.015 1.1 290.7 1.6 0.0285 -390.615 4.97 10−3

0.015 2 290.7 1.6 0.0157 −3.686 10−2 4.97 10−3

20All numerical calculations were done using Mathematica, see [22].

21The numerical value of K0 does not affect the qualitative outcome but only the absolute value of W ?.



This table shows that an increase in the emission tax reduces the balanced growth rate

independent of the value of σ. However, the value of σ affects welfare. For σ = 1.1 welfare

decreases as a consequence of the lower balanced growth rate. For σ = 2, welfare first

rises with an increase in the emission tax rate although the balanced growth rate declines.

In this case, the negative effect of a lower balanced growth rate on welfare is dominated

by the positive direct welfare effect resulting from a lower increase in the average surface

temperature. If the emission tax rate is further increased welfare declines again. The

effect that an increase in the emission tax rate lowers the balanced growth rate but raises

welfare is the more likely the larger the direct effect of a temperature increase on utility.

This is demonstrated below in table 4 where we set a1 = 0.07 and ϕ = 0.07.

In case of σ = 1.1 maximum welfare is obtained for about τE/LK = 0.001. However,

this implies that the temperature increase is approximately 8 degrees. Here, it must be

mentioned that the assumption of a continuous damage function is only justified provided

the rise in temperature does not exceed a certain threshold. This holds because for higher

increases of the temperature catastrophic events may occur, going along with extremely

high economic costs which cannot be even evaluated. Just one example is the break down

of the Gulf Stream which would dramatically change the climate in Europe. Therefore,

the analysis assuming a damage function only makes sense for temperature increases

within certain bounds. In the next table we consider our model on the BGP for the case

(a2 = 0.05, φ = 0.05).



Table 2. Varying the emission tax between 0.005 and 0.015 with a2 = 0.05, φ = 0.05.

τE/LK σ T ? M? g? W ? A?/K?

0.005 1.1 293.3 2.8 0.0258 -399.396 2.87 10−3

0.005 2 293.3 2.8 0.0142 −3.95 10−2 2.87 10−3

0.01 1.1 291.7 1.99 0.0269 -395.408 4.06 10−3

0.01 2 291.7 1.99 0.0148 −3.817 10−2 4.06 10−3

0.015 1.1 290.7 1.6 0.0273 -394.099 4.97 10−3

0.015 2 290.7 1.6 0.015 −3.778 10−2 4.97 10−3

Table 2 shows that an increase in the damage caused by a higher average surface

temperature yields a double dividend.22 In this case, a rise in the emission tax yields both

a higher balanced growth rate and a lower rise in the average global surface temperature

independent of the intertemporal elasticity of substitution of consumption. Of course,

this implies that welfare along the BGP unequivocally rises. The maximum growth rate

and maximum welfare are obtained for about τE/LK = 0.02 implying M ? = 1.4 and

T ? = 290.1.

We do not show a table for the case (a2 = 0.035, φ = 0.035). The results for this case

are in between the results we obtained in table 1 and table 2. This means that rising

τE/LK from 0.005 to 0.01 first raises the balanced growth rate. Increasing τE/LK further

from 0.01 to 0.015 then reduces the balanced growth rate which, however, remains larger

than for τE/LK = 0.005. This holds for both σ = 1.1 and σ = 2. The same holds as

concerns welfare, i.e. welfare first rises with an increase in τE/LK and then declines but

remains higher than for the initial level of τE/LK.

Next we consider the case of smaller values for the emission tax ratio. The results for

(a2 = 0.025, φ = 0.025) are shown in table 3.

22It should be recalled that this effect is independent of the function D1(·), which determines the direct

utility effect of global warming.



Table 3. Varying the emission tax between 0.0005 and 0.0015 with a2 = 0.025, φ = 0.025.

τE/LK σ T ? M? g? W ? A?/K?

0.0005 1.1 293.3 2.8 0.0316 -381.226 2.87 10−4

0.0005 2 293.3 2.8 0.0174 −3.435 10−2 2.87 10−4

0.001 1.1 291.7 1.99 0.0323 -378.88 4.06 10−4

0.001 2 291.7 1.99 0.0177 −3.343 10−2 4.06 10−4

0.0015 1.1 290.7 1.6 0.0325 -377.85 4.97 10−4

0.0015 2 290.7 1.6 0.0179 −3.303 10−2 4.97 10−4

Table 3 shows that with smaller values for the emission tax ratio a double dividend

is obtained even in the case where the damage caused by a climate change is relatively

small. Thus, the smaller the emission tax ratio the more likely it is that raising this

policy variable both raises the long run growth rate and reduces the increase in the

average surface temperature. The reason for the outcome in table 3 is that the negative

growth effect of an increase in the emission tax is smaller if the technology in use is

less polluting. This is seen from (24) together with (19). From an economic point of

view the interpretation is as follows. If the emission tax rate is increased the individual

shifts resources from investment to abatement. The rise in abatement relative to the

capital stock in order to get a certain decrease in emissions, however, is smaller when the

technology in use is relatively clean.23 Consequently, the negative growth effect is smaller

compared to a situation with a more polluting technology. The balanced growth rate is

maximized for about τE/LK = 0.003. Of course, the double dividend is also obtained for

(a2 = 0.035, φ = 0.035) and (a2 = 0.05, φ = 0.05). In the latter cases, the effects are larger

in magnitude compared to those in table 3.

In table 4 we show that with a higher direct damage of a rise in temperature as concerns

utility, an increase in the emission tax reduces the balanced growth rate but leads to higher

23This is seen by differentiating A/K, obtained from (16), with respect to τE/LK.



welfare. This holds for σ = 2 but for σ = 1.1 only when τE/LK is increased from 0.005

to 0.01. In the latter case, raising τE/LK further reduces welfare. Together with table

1, this shows that a rise in welfare going along with a smaller growth rate is the more

likely the smaller the intertemporal elasticity of substitution of consumption 1/σ. The

reason for that outcome is that with a smaller intertemporal elasticity of substitution the

individual is less willing to shift utility benefits into the future. Therefore, he prefers a

higher utility today, resulting from a smaller temperature increase, to a higher growth

rate of consumption which would yield utility only in the future.

Table 4. Varying the emission tax between 0.005 and 0.015 with

a2 = 0.025, φ = 0.025 and a1 = 0.07, ϕ = 0.07.

τE/LK σ T ? M? g? W ? A?/K?

0.005 1.1 293.3 2.8 0.0322 -390.476 2.87 10−3

0.005 2 293.3 2.8 0.0161 −3.839 10−2 2.87 10−3

0.01 1.1 293.3 1.99 0.0318 -390.395 4.06 10−3

0.01 2 291.7 1.99 0.0159 −3.761 10−2 4.06 10−3

0.015 1.1 290.7 1.6 0.0313 -391.262 4.97 10−3

0.015 2 290.7 1.6 0.0157 −3.748 10−2 4.97 10−3

In next section we present and analyze the social optimum and compare the outcome

with the competitive model economy.

4 The social optimum

In formulating the optimization problem, a social planner takes into account both the

positive and negative externalities of capital. Consequently, for the social planner the

resource constraint is given by

K̇ = B K D2(T − To) − C − A − (δ + n)K,K(0) = K0. (27)



The optimization problem is24

max
C,A

∫

∞

0

e−ρtL0e
nt (ln C + ln D1(T − To)) dt, (28)

subject to (27), (5), (6) and (12), where D1(·) and D2(·) are again given by (25) and (26).

To find necessary optimality conditions we formulate the current-value Hamiltonian

which is

H(·) = (ln C + ln D1(T − To)) + λ2(B KD2(T − To) − C − A − (δ + n)K) +

λ3

(

β2 aγKγA−γ − µM
)

+ λ4 (ch)
−1 ·

(

1367.5

4
0.21 −

(

5.67 10−8
)

(19.95/109)T 4 + β1 (1 − ξ) 6.3 ln
M

Mo

)

, (29)

with λi, i = 2, 3, 4, the shadow prices of K, M and T respectively and E = aγKγA−γ .

Note that λ2 is positive while λ3 and λ4 are negative.

The necessary optimality conditions are obtained as

∂H(·)
∂C

= C−1 − λ2 = 0, (30)

∂H(·)
∂A

= −λ3 β2 aγ Kγ γA−γ−1 − λ2 = 0, (31)

λ̇2 = (ρ + δ) λ2 − λ2 B D2(·) − λ3 β2 γ aγ Kγ−1 A−γ , (32)

λ̇3 = (ρ − n) λ3 + λ3 µ − λ4 (1 − ξ) β1 6.3 c−1
h M−1, (33)

λ̇4 = (ρ − n) λ4 −
D′

1(·)
D1

− λ2 B K D′

2(·) +
λ4 (5.67 10−8(19.95/109) 4 T 3)

ch

. (34)

Further, the limiting transversality condition limt→∞ e−(ρ+n)t(λ2K+λ3T +λ4M) = 0 must

hold.

Comparing the optimality conditions of the competitive economy with that of the

social planner demonstrates how the government has to set taxes in order to replicate the

social optimum. Proposition 2 gives the result.

24For the social optimum we only study the case σ = 1.



Proposition 2 The competitive model economy replicates the social optimum if τE/LK

and τ are set according to

τE

LK
= β2

−λ3

λ2K
, τ = 1 − α−1.

Proof: The first condition is obtained by setting (16)=(31). The second is obtained by

setting the growth rate of per capita consumption in the competitive economy equal to

that of the social optimum. �

This proposition shows that the emission tax per aggregate capital has to be set such

that it equals the effective price of emissions, −λ3β2, divided by the shadow price of capital

times per capita capital, λ2K, for all t ∈ [0,∞). This makes the representative household

internalize the negative externality associated with capital. Further, it can be seen that,

as usual, the government has to pay an investment subsidy (or negative production tax)

of τ = 1 − α−1. The latter is to make the representative individual take into account the

positive spillover effects of capital. The subsidy is financed by the revenue of the emission

tax and/or by a non-distortionary tax, like a consumption tax, or a lump-sum tax.

From (30) and (31) we get

A

K
= (c (−λ3) β2 γ aγ)1/(1+γ) , (35)

with c ≡ C/K. Using (35), (30) and (32) the social optimum is completely described by

the following system of autonomous differential equations

Ċ = C
(

B D2(·) − (ρ + δ) − ((C/K) (−λ3) β2 γ aγ)1/(1+γ)
)

, (36)

K̇ = K

(

B D2(·) −
C

K
− ((C/K) (−λ3) β2 γ aγ)1/(1+γ) − (δ + n)

)

, K(0) = K0,(37)

Ṁ = (C/K)−γ/(1+γ) (−λ3)
−γ/(1+γ) β

1/(1+γ)
2 γ−γ/(1+γ) aγ/(1+γ) − µM,M(0)=M0, (38)

Ṫ = c−1
h

(

71.7935 − 5.67 10−8(19.95/109)T 4+ 6.3β1 (1 − ξ) ln
M

Mo

)

, T (0) = T0,(39)

λ̇3 = (ρ − n) λ3 + λ3 µ − λ4 (1 − ξ) β1 6.3 c−1
h M−1, (40)

λ̇4 = (ρ − n) λ4 −
D′

1(·)
D1

− B
K

C
D′

2(·) + λ4

(

5.67 10−8(19.95/109) c−1
h 4 T 3

)

. (41)



As for the competitive economy a BGP is given for variables T ?, M?, λ?
3, λ?

4 and c? such

that Ṫ = Ṁ = 0 and Ċ/C = K̇/K holds, with M ≥ Mo. It should be noted that

Ṫ = Ṁ = 0 implies λ̇3 = λ̇4 = 0. Proposition 3 gives sufficient conditions for a unique

BGP to exist in the social optimum.

Proposition 3 Assume that D′′

i (·) < 0, i = 1, 2, and γ < (4/3) κ(1) T 4
o , with κ(1) =

5.67 10−8(19.95/109)/(6.3β1 (1 − ξ)). Then there exists a unique BGP for the social opti-

mum.

Proof: See appendix.

It should be noted, that this proposition gives conditions which are sufficient but not

necessary for a unique BGP so that a unique BGP may exist even if they are not fulfilled.

The first condition states that the damage functions are strictly concave.25 The second

gives a condition as to the structural parameter γ which determines the level of emissions

in the economy. Inserting β1 = 1.1, ξ = 0.3 (see section 2) and To = 288.4 gives γ < 19.73

which does not impose a severe limitation. For our numerical examples the existence of

a unique BGP is always assured in the social optimum.

As to the local dynamics it is difficult to derive concrete results for the analytical

model. This is due, among other things, to the determinant of the Jacobian matrix at

the steady state which may be positive or negative. Nevertheless, something can also be

said with respect to the analytical model. This is the contents of proposition 4.

Proposition 4 Assume there exists a unique BGP for the social optimum. Then there

exists at most a two-dimensional stable manifold. Further, a Hopf bifurcation can be

excluded.

Proof: See appendix.

This proposition shows that the BGP in the social optimum is a saddle point and a

Hopf bifurcation generating persistent limit cycles is not possible. However, we cannot

25This implies that the damage caused by a higher temperature is a convex function of the temperature.



answer whether the eigenvalues are real or complex conjugate. Therefore, in order to gain

further insight in the structure of the social optimum, we compute steady state values26

and the eigenvalues of the Jacobi matrix at the steady state for the numerical examples

in section 3.2. The results for the case a = 1.65 10−3 and a1 = 0.035 and ϕ = 0.035 are

shown in table 5.

Table 5. Steady state values and eigenvalues in the social optimum

for a = 1.65 10−3, a1 = 0.035 and ϕ = 0.035.

a2 φ T ? M? A?/aK? Eigenvalues

0.025 0.025 291.1 1.77 2.76 0.005 ± 6.84828, 0.005 ± 0.107673

0.05 0.05 289.3 1.2 4.07 0.005 ± 6.71707, 0.005 ± 0.179849

It can be seen that the higher the damage caused by a temperature increase with

respect to aggregate output the smaller the optimal increase in GHG emissions and in

the average global surface temperature. It should be noted that the smaller increase in

GHGs is due to higher abatement spending, A?, relative to gross emissions, aK?. The

same outcome is obtained when the direct damage as concerns utility, caused by a higher

surface temperature increase, is set higher. This is seen in table 6, where we set a1 = 0.07

and ϕ = 0.07.

Table 6. Steady state values and eigenvalues in the social optimum

for a = 1.65 10−3, a1 = 0.07 and ϕ = 0.07.

a2 φ T ? M? A?/aK? Eigenvalues

0.025 0.025 290.9 1.68 2.91 0.005 ± 6.83093, 0.005 ± 0.110683

0.05 0.05 289.3 1.2 4.1 0.005 ± 6.71475, 0.005 ± 0.182964

In the last table, finally, we look at the optimal steady state values of GHG emissions

and of the temperature in an economy with a less polluting technology, i.e. with a lower

26The steady state values were computed using Newton’s method.



value of a. It is seen that the ratio of abatement to gross emissions (A?/aK?) is higher

compared to the situation with a more polluting technology shown in table 5 and, conse-

quently, the optimal values of GHG emissions and of the temperature increase in steady

state are lower.

Table 7. Steady state values and eigenvalues in the social optimum

for a = 1.65 10−4, a1 = 0.035 and ϕ = 0.035.

a2 φ T ? M? A?/aK? Eigenvalues

0.025 0.025 288.8 1.08 4.54 0.005 ± 6.67681, 0.005 ± 0.277638

0.05 0.05 288.5 1.02 4.8 0.005 ± 6.64358, 0.005 ± 0.52092

The analysis of the social optimum has demonstrated that the increase in temperature

is the smaller the higher the damage caused by the temperature increase. This holds

because abatement spending are the larger relative to gross emissions for high damages.

This result is not too surprising.

Further, our analysis shows that the less polluting the technology is the higher are

abatement expenditures relative to gross emissions and, consequently, the smaller is the

temperature increase. This implies that economies with clean technologies invest rela-

tively more in abatement activities compared to economies with less clean technologies.

The intuition for this result is as follows: The economy receives utility from consumption

and disutility from the temperature increase. The latter acts both directly by affect-

ing utility and indirectly by reducing aggregate production. If the technology in use is

relatively clean it is cheaper for the economy to avoid the increase in temperature com-

pared to economies with relatively polluting technologies. Therefore, economies with a

less polluting technology invest relatively more in abatement and, therefore, have smaller

temperature increases.



5 Conclusions

In this paper we have studied the interrelation between anthropogenic global warming and

economic growth. We analyzed both the competitive economy and the social optimum

and derived tax rates which make the competitive economy replicate the social optimum.

Further, using simulations we could derive the following results:

1. A situation may be observed where an increase in the emission tax reduces the tem-

perature increase and raises both economic growth and welfare. Such a double dividend is

the more likely the higher the damage caused by the increase in temperature concerning

aggregate output and the smaller the initial level of the emission tax rate. It should be

noted that the emission tax ratio will be the smaller the less polluting the technology em-

ployed. Consequently, economies with a cleaner technology are more likely to experience

a double dividend when the emission tax is raised in order to reduce atmospheric GHG

concentrations.

2. A situation can be observed where an increase in the emission tax rate reduces the

balanced growth rate but leads to higher welfare. This outcome is the more likely the

higher the direct negative effect of a temperature increase on utility. Further, for a given

damage function this effect is the more likely, the smaller the intertemporal elasticity of

substitution of consumption.

3. In the social optimum the increase in temperature is the smaller the higher the dam-

age caused by the temperature increase concerning aggregate output and utility. Further,

optimal spending for abatement relative to gross emissions is the higher and, consequently,

emissions and the increase in temperature are the smaller the less polluting the technol-

ogy in use is. The reason for this result is that it is cheaper for economies with cleaner

production technologies to avoid the damage caused by the temperature increase.

The most striking result of our analysis is the last one. This implies that economies

with less polluting technologies should spend more for abatement relative to their emis-

sions before abatement. Thus, countries with cleaner technologies should emit less than



countries with more polluting technologies. This means that it is optimal for developing

countries, which have relatively polluting technologies, to emit more than industrialized

countries with relatively clean technologies.

Appendix

Proof of Proposition 1

To show uniqueness of the steady state we solve (20)=0, (21)=0 and (22)=(23) with

respect to T , M and c ≡ C/K. Setting (20)=0 gives

T1,2 = ±99.0775 (71.7935 + 6.3 β1 (1 − ξ) ln(M/Mo))
1/4

T3,4 = ±99.0775
√
−1 (71.7935 + 6.3 β1 (1 − ξ) ln(M/Mo))

1/4.

Clearly T3,4 are not feasible. Further, since M ≥ Mo only the positive solution of T1,2

is feasible. Uniqueness of M and c on the BGP is immediately seen.27 To study the

local dynamics we note that the economy around the BGP is described by (20), (21) and

ċ = c (Ċ/C − K̇/K). The Jacobian matrix J corresponding to this dynamic system is

obtained as

J =











−4 (5.67 10−8) (19.95/109) (T ?)3 c−1
h 6.3 β1 (1 − ξ) (M ?)−1 c−1

h 0

0 −µ 0

a31
1−σ

σ

D′

1
(·)

D1
c? 6.3 β1 (1 − ξ) (M ?)−1 c−1

h c?











,

with ? denoting steady state values and

a31 = c?

(

(1 − τ) B D′

2(·)
(α

σ
− 1
)

+
1 − σ

σ

(

D′′

1(·) D1(·) − D′

1(·)2

D1(·)2
Ṫ +

∂ Ṫ

∂ T

D′

1(·)
D1(·)

))

.

The eigenvalues of J are given by

e1 = −4(5.67 10−8)(19.95/109) (T ?)3 c−1
h , e2 = −µ and e3 = c?.

Thus proposition 1 is proved. �

27We neglect the economically meaningless steady state c? = 0.



Proof of proposition 3

To prove proposition 3 we compute M ? from (38)=0 as

M? = (−λ3)
−γ/(1+γ) (c?)−γ/(1+γ) β

1/(1+γ)
2 γ−γ/(1+γ) aγ/(1+γ)/µ ,

with c? = ρ − n from Ċ/C = K̇/K. Inserting M ? in λ̇3 and solving λ̇3 = 0 with respect

to λ4 yields

λ?
4 = −κ(2)(−λ3)

1/(1+γ),

with

κ(2) =
ρ − n + µ

(1 − ξ) β1 6.3 c−1
h (c?)γ/(1+γ) β

−1/(1+γ)
2 γγ/(1+γ) a−γ/(1+γ) µ

> 0 .

Inserting λ?
4 and M? in λ̇4 and Ṫ respectively and setting the latter two equations equal

to zero leads to

(−λ3)
1/(1+γ) =

−D′

1/D1 − D′

2 B/c

κ(3) + κ(4) T 3
, (42)

(−λ3)
1/(1+γ) =

(

κ(5)

e(−71.7935+5.67 10−8(19.95/109)T 4)/(6.3 β1 (1−ξ))

)1/γ

, (43)

with

κ(3) = (ρ − n) κ(2) > 0 ,

κ(4) = 5.67 10−8(19.95/109) c−1
h 4 κ(2) > 0 ,

κ(5) = c−γ/(1+γ) β
1/(1+γ)
2 γ−γ/(1+γ) aγ/(1+γ)/(µM0) > 0 .

Setting the r.h.s. in (42) equal to the r.h.s. in (43) gives

−D′

1/D1 − D′

2 B/c

κ(5)1/γ
=

κ(3) + κ(4) T 3

e(κ(6)+κ(1)T 4)/γ
, (44)

with

κ(6) = −71.7935/(6.3 β1 (1 − ξ)) ,

κ(1) = 5.67 10−8(19.95/109)/(6.3 β1 (1 − ξ)) .



For T = To the r.h.s. of (44) is zero and the l.h.s. is strictly positive. Further, the derivative

of the l.h.s. of (44) is strictly positive for D′′

i (·) < 0, i = 1, 2. The derivative of the r.h.s.

is given by

e(−κ(6)−κ(1)T 4)/γ 3 T 2 κ(4)

(

1 − 4 κ(3) κ(1) T

3 γ κ(4)
− 4

3 γ
κ(1) T 4

)

.

Using κ(1) = 5.67 10−8(19.95/109)/(6.3 β1 (1 − ξ)) shows that γ < (4/3) κ(1) T 4
o is a

sufficient condition for the derivative to be negative for T ≥ To. Thus, proposition 3 is

proved. �

Proof of proposition 4

To prove proposition 4 we first recall that the dynamics around the BGP are described

by the dynamic system consisting of the equations ċ/c = Ċ/C − K̇/K = n − ρ + c, (38),

(39), (40) and (41). Since c? = 0 can be excluded because c is raised to a negative power

in (38), we consider the differential equation for c in the rate of growth. Equation ċ/c

shows that C(0) must be chosen such that c takes its steady state value at t = 0 meaning

that c is a constant. The dynamics of the other variables then are described by (38), (39),

(40) and (41). The Jacobian matrix J is given by

J =































−µ 0 a
γ

1+γ β2

1
1+γ γ

1−
γ

1+γ (−λ3
?)

−
γ

1+γ

(−λ3
?) (c?)

γ
1+γ (1+γ)

0

6.3 β1 (1−ξ)
ch M?

5.67 10−8
·19.95·4 (T ?)3

(−1) 109 ch
0 0

6.3 β1 (1−ξ) λ?
4

ch (M?)2
0 µ − n + ρ −6.3 β1 (1−ξ)

ch M?

0 a42 0 −n + ρ+

5.67 10−8
·19.95·4 (T ?)3

109 ch































,



with

a42 =
12 · 5.67 10−8 · 19.95 λ?

4 (T ?)2

109 ch

+
2 a1 ϕ

1 + a1 (T ? − To)
2 +

2 a2 ϕB
(

1 + a2 (T ? − To)
2)−1−φ

c?
− 4 a2

1 ϕ (T ? − To)
2

(

1 + a1 (T ? − To)
2)2

+

4 a2
2 (−1 − φ) φB

(

1 + a2 (T ? − To)
2)−2−φ

(T ? − To)
2

c?
.

The eigenvalues of J are calculated according to

e1,2,3,4 =
ρ − n

2
±

√

√

√

√

(

ρ − n

2

)2

− K1

2
±

√

(

K1

2

)2

− det J,

with K1 defined as

K1 =

∣

∣

∣

∣

∣

∣

a11 a13

a31 a33

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a22 a24

a42 a44

∣

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

∣

a12 a14

a32 a34

∣

∣

∣

∣

∣

∣

with aij the element of the i-th column and j-th row of the matrix J (see [1]). It is

immediately seen that K1 < 0 holds in our model. In [1] it is shown that K1 > 0 is

a necessary condition for a Hopf bifurcation which leads to limit cycles. Consequently,

a Hopf bifurcation can be excluded in the social optimum. Further, the eigenvalues are

symmetrical around (ρ − n)/2 so that there are at most two negative eigenvalues or two

eigenvalues with negative real parts. This depends on the signs of det J and of K1.

However, we cannot derive more concrete results for our analytical model. �
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