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Abstract

The paper studies credit risk and sustainable debt in the context of an intertem-

poral model. For a dynamic growth model with an additional equation for the

evolution of debt we demonstrate that sustainable debt may typically be state con-

strained. In order to control credit risk the lender needs to know the sustainable

debt of the borrower at each point in time. We compute sustainable debt by apply-

ing new methods. Using those new methods we can demonstrate the region in which

there is no credit risk and where the borrower remains creditworthy. Even for state

dependent credit cost we can study the debt capacity of a borrower and the role of

debt ceilings for borrowing and lending. We discuss continuous and discrete time

variants of optimal growth models with borrowing and lending and provide error

bounds for the discretized version. The analytics is provided for a general model

and some generic results are presented for a univariate problem. Our new methods

also permits us to study the problem of multiple steady states which arise from

nonlinear adjustment cost of capital. We can determine optimal and non-optimal

solutions and cut-o� points where domains of attraction separate to high and lowel

equilibria. The dynamic model is then estimated by employing aggregate data for

the core countries of Euroland. Moreover, the sustainability of external debt is also

estimated for those core countries of Euroland. Those estimations are undertaken

in order to spell out implications for the stability of the Euro.
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1 Introduction

Recently, asset markets have been studied in the context of stochastic growth models
in numerous papers. The particular focus was, however, mostly on the stock market
and whether characteristics of the stock market such as the excess volatility (Danthine,
Donaldson and Mehra 1992), the excess of stock returns over the risk-free rate or the
Sharpe-ratio can be replicated in the context of stochastic growth models (see Lettau
1999, Lettau and Uhlig 1999, Lettau, Gong and Semmler 1997 and Woehrmann, Semmler
and Lettau 1999). Credit market issues such as the returns from bonds, in particular
short and long bonds and the premium they carry over the risk-free rate have also been
studied in the context of those models (see Lettau 1999 and Lettau and Uhlig 1999).
This paper focuses less on returns and spreads arising in asset markets but rather wants
to study and evaluate credit risk in the context of a dynamic economic model. More
speci�cally we want to study borrowing capacity, creditworthiness and credit risk in the
context of an economic growth model. In order to simplify matters we do not employ a
stochastic version of a growth model but rather employ a deterministic framework.1 Yet,
our study might still be important for issues of credit risk and for risk management that
recently have been discussed in many empirical contributions.2 Although our study has
implications for credit risk analysis in empirical �nance literature our paper here is more
speci�cally related to the literature that link credit market and economic activity in the
context of intertemporal models. In recent times this link has been explored in numerous
papers.

In a �rst type of papers, mostly assuming perfect credit markets, it is assumed that,
roughly speaking, agents can borrow against future income as long as the discounted
future income, the wealth of the agents, is no smaller than the debt that agents have in-
curred. In this case there is no credit risk whenever the non-explosiveness condition holds.
Positing that the agents can borrow against future income the non-explosiveness condition
is equivalent to the requirement that the intertemporal budget constraint holds for the
agents. Formally, the necessary conditions for optimality, derived from the Hamiltonian
equation, are often employed to derive the dynamics of the state variables and the so
called transversality condition is used to provide a statement on the non-explosiveness of
the debt of the economic agents. Models of this type have been discussed in the literature
for households, �rms, governments and small open economies (with access to international
capital markets) where the transversality condition is employed to disregard the evolution
of debt.3

In a second type of papers, and also often in practice, assuming credit market imperfec-

1A stochastic version can be found in Sieveking and Semmler (1999).
2For empirical methods to evaluate credit risk and to compute default adjusted bond rates, see Ben-

ninga (1998, ch. 17). Those methods are very ueful in practice but have only little connection to a theory
of credit risk. Another approach in risk management is the value at risk approach working with expected
volatility of asset prices, for a survey see DuÆe and Pan (1997)

3For a brief survey of such models for households', �rms' and governments or countries, see Blanchard
and Fischer (1989, ch.2) and Turnovsky (1995).
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tions, economists presume that borrowing is constrained. Frequently, borrowing ceilings
are assumed which are supposed to prevent agents from borrowing an unlimited amount.
Presuming that agents' assets serve as collateral a convenient way to de�ne the debt ceil-
ing is then to assume the debt ceiling to be a fraction of the agents' wealth. The de�nition
of debt ceilings have become standard, for example, in a Ramsey model of the �rm, see
Brock and Dechert (1985) or in a Ramsey growth model for small open economies; see,
for example, Cohen and Sachs (1986) and Barro, Mankiw and Sala-i-Martin (1995). It
has also been pointed out that banks often de�ne debt ceilings for their borrowers, see
Bhandari, Haque and Turnovsky (1990).

A third type of literature also assumes credit market imperfections but employs
endogenous borrowing cost such as in the work by Bernanke and Gertler (1989, 1994) and
further extensions to heterogenous �rms, such as small and large �rms, in Gertler and
Gilchrist (1994). Often here one presupposes only a one period zero horizon model and
then it is shown that due to endogenous change of net worth of �rms, as collateral for
borrowing, credit cost is endogenous. For potential borrowers their credit cost is inversely
related to their net worth. In parallel other literature has posited that borrowers may face
a risk dependent interest rate which is assumed to be composed by a market interest rate
(for example, an international interest rate) and an idiosyncratic component determined
by the individual degree of risk of the borrower. Various forms of the agent speci�c risk
premium can be assumed. Here, often it is posited to be endogenous in the sense that it
is convex in the agents' debt.4

Recent extensions of the third type of work have been undertaken by embedding
credit market imperfections and endogenous borrowing cost more formally in intertem-
poral models such as the standard stochastic growth model, see Carlstrom and Fuerst
(1997), Bernanke, Gertler and Gilchrist (1998), Cooley and Quadrini (1998) and Krieger
(1999). Some of this literature has dealt also with borrowing constraints of heterogenous
agents (households, �rms) in a intertemporal general equilibrium framework. Although in
our paper we stress intertemporal behavior of economic agents in the context of a growth
model, we here will not deal with the case of heterogenous agents.

With respect to the �rst type of papers, this article demonstrates that the borrowing
capacity is state constrained and shows the regions where debt is feasible and the borrower
remains creditworthy. Below this ceiling there is no credit risk. We demonstrate that the
debt ceiling should not be arbitrarily de�ned. We can compute the debt capacity which
in our analysis will be de�ned by a curve of sustainable debt even if the interest rate
is a function of the state variables. Of course, in practice insolvency of the borrower
can arise without the borrower moving up to his/her borrowing capacity. Insolvency
may occur when a borrower faces a loss of his/her "reputational collateral" (Bulow and
Rogo� 1989) without having reached the debt capacity. A country, for example, losing its
creditworthiness may then face a sudden reversal of capital ows giving rise to a currency
and �nancial crises and large output loss.5 We want to stress, however, that in our paper

4The interest rate as function of the default risk of the borrower is posited by Bhandari, Haque and
Turnovsky (1990), Rauscher (1990) and Turnovsky (1995).

5Such reversal of capital ows have recently been studied empirically in a series of papers by Milesi-
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we are concerned with the "ability to pay" and less with the borrower's "willingness to
pay". 6

We also show that �xing debt ceilings, as in the second type of papers, may be arbitrary
and lead to welfare losses.7 As we will show it might often be useful �rst to expand debt
before it can be reduced. We want to argue against the usual use of 'ceilings' if they di�er
from what we de�ne as creditworthiness. Either the ceiling is too high and the debtor
might be tempted to move close to the ceiling and then goes bankrupt or the ceiling is
too low, then the agent may not be able to develop its full potentials, and thus face a
welfare loss, or it may be the case that the contract is not feasible whereas it would be
feasible if the debt ceiling is higher.

Lastly, as in the third type of papers, we compute endogenous borrowing constraints by
computing maximum debt capacity of an economic agent by making the credit cost state
dependent. There is then also at each point in time a constraint for the maximum amount
the agent can borrow.8 Our analysis therefore also stresses the role of balance sheets for
borrowing as in the third approach but the (maximum) liabilities are derived from the
present value of net income of agents. Yet, as we will show, the credit cost, instead
of being determined by net worth, is a�ected negatively by assets (collateralized capital
stock) and positively impact by existing debt which make the credit cost endogenous.
As we will show, however, in particular this problem makes the standard present value
approach diÆcult to apply.

Although our methods we use here to study credit market and economic activity are
very generic in the main we restrict our study to an example of an open economy that
borrows from international capital markets. Yet, our analysis shows implications for a
wider range of intertemporal models with borrowing and lending. In our paper (in its
general version) we posit that the country is endowed with a resource9 and extracts and/or
accumulates capital to generate income and to service the debt. The current account is
determined by intertemporal decisions to invest and to consume. In studying borrowing
and lending in the context of a growth model we show that multiple steady states may
arise. In our model this comes from the fact that there is a nonlinear adjustment cost
for the capital stock.

By undertaking our study we attempt to bypass utility theory. Economists have argued
that analytical results in intertemporal models often depend on the form of the utility
function employed.10 Moreover, so it is argued, economic theory should not necessarily be

Ferretti and Razin (1996, 1997). There latest paper studies the Asian �nancial crisis in the light of the
above approach to insolvency.

6Recent development on the latter type of literature, in particular on the problem of incentive com-
patible contracts is surveyed in Eaton and Fernandez (1995).

7A more elaborate analysis of how credit ceilings may lead to welfare losses is given in Semmler and
Sieveking (1996).

8We thus do not have introduce the restriction of a one period contract as in Bernanke, Gertler and
Gilchrist (1998).

9A more speci�c model referring the renewable resources instead capital stock as state equation can
be found in Semmler and Sieveking (1999).

10A related model, however, working with a utility functional can be found in Semmler and Sieveking
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founded on the notion of utility since such a foundation is not well supported by empirical
analysis.11 We want to argue that some parts of the theory, such as creditworthiness, can
be formulated without the use of utility theory.12

We employ new analytical and numerical techniques to study the proposed model.
One of the major new techniques we use is vector �eld analysis which allows to study
intertemporal problems with state constraints. This technique permits to study the di-
rection of the vector �eld in the state space resulting from a certain control actions. This
helps to answer the question whether a control will be able to steer the debt bounded.
The method permits also to compute a critical curve below which the debt is sustainable
{ the debt can be steered bounded{ and above which the debt is explosive. We also
demonstrate the relation of vector �eld analysis to the Hamilton-Jacobi-Bellman (H.J.B.)
equation used in dynamic programming. We also show of how the Hamiltonian equation
derived from Pontryagin's maximum principle can be used to study the problem of credit
risk and creditworthiness.

A particular problem that arises in the context of models of multiple steady states
is to show which steady states are optimal and which not. Our new methods that we
propose admit to study multiple equilibria and it helps to distinguish between optimal
and non-optimal solutions. We compute the global dynamics numerically and can locate
cut-o� points in the sense of Skiba (1978) where domains of attraction separate to high
and low level equilibria.13 Our proposed methods can numerically determine those cut-o�
points the location of which will depend on borrowing cost.

Dynamic economic models are usually stated in either discrete time or continuous
time form. In case of a continuous time form the numerical treatment, and thus the
computation of the critical curve below the debt is sustainable, requires to transform
the model into a discrete time form. We thus need to show how we can discretized the
continuous time equations. We employ the Euler approximation and give estimates of the
error bound. The treatment of this problems as well as generalizations to the multivariate
case is discussed in appendices. As aforementioned the literature often suggests that for a
theory of debt contracts one should use a stochastic model since lending involves risk. A
stochastic analysis - which is a preferable approach to pursue - leads to Hamilton-Jacobi-
Bellman equations with additional state variables, namely with stochastic ones. In the
present article we �rst ignore stochasticity because our problem whether or not a contract
is feasible for an initial debt seems easier to treat without uncertainty and at the same
time this might serve a useful exercise for the analysis of the stochastic case. A stochastic
version is provided in Sieveking and Semmler (1999).14

Finally, we want to point out that the model we are proposing and analytically and

(1999). In fact, our methods also allows to compute welfare out of the steady state.
11In particular Hildenbrand and Kneip (1997) have recently argued that economic theory should refrain

from unobservables and employ observable variables as much as possible.
12An analytical treatment why and under what conditions the creditworthiness problem can be sepa-

rated from the consumption problem is given in Semmler and Sieveking (1996).
13For an extensive survey of the earlier work on Skiba-points, see Brock and Malliaris (1996), ch. 6.
14In the latter paper we question the view that in the stochastic case one can simply replace the present

value computation by the computation of the expected present value.
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numerically study can be empirically applied. We take our model to the data by trans-
forming our model into an estimable form. A natural candidate to apply our proposed
model would be the countries that triggered the �nancial crisis in Asia.15 Since the data
problems there are, however, quite severe we apply our model to Euroland and estimate
the parameters by employing aggregate time series data for the core countries of Euroland
for the period 1978 to 1998. This helps us to evaluate whether external debt of Euroland
is sustainable and to evaluate the external strength of the Euro.

2 A Brief Overview

Next, we want to give a more formal overview on our results. In a contract between a
creditor and debtor there are two measurement problems involved. The �rst pertains to
the computation of debt and the second to the computation of the debt ceiling. The �rst
problem is usually answered by employing an equation of the form

_B(t) = �B(t)� f(t); B(0) = B (1)

where B(t) is the level of debt16 at time t; � the credit cost and f(t) the debt service.
The second problem can be settled by de�ning a debt ceiling such as

B(t) � C; (t > 0)

or less restrictively by

sup
t�0

B(t) <1

or even less restrictively by the aforementioned transversality condition

lim
t!1

e��tB(t) = 0:

The ability of a debtor to service the debt, i.e. the feasibility of a contract, will depend
on the debtors source of income. Along the line of intertemporal models with borrowing
and lending17 we model this source of income as arising from a stock of capital k(t), at
time t, which changes with investment rate j(t) at time t through

_k(t) = j(t)� � (k(t)) ; k(0) = k: (2)

15For recent interpreation of the Asian �nancial crisis making the employing the argument of the balance
sheets central, see Mishkin (1998), Krugman (1999) and Burnside, Eichenbaum and Rebelo (1999).

16Note that all subsequent state variables are written in terms of eÆciency labor along the line of
Blanchard (1983), for details see section 4..

17Prototype models used as basis for our further presentation can be found in Blanchard (1983),
Blanchard and Fischer (1989) or Turnovsky (1995).
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In our general model both the capital stock and the investment are allowed to be mul-
tivariate. As debt service we take the net income rate from the investment rate j(t) at
capital stock level k(t) minus some minimal rate of consumption.18 Hence

_B(t) = H (k(t); B(t)))� f (k(t); j(t)) ; B(0) = B (3)

where H (k(t); B(t)) is the credit cost. Note that the credit cost is not necessarily a
constant factor (a constant interest rate). As debt ceiling we take

sup
t�0

B(t) <1 (4)

Let us call an initial indebtedness B subcritical for an initial capital stock k if there
is an investment function j(�) such that the corresponding solution t ! (B(t); k(t)) of
(2), (3) satis�es (4). Let B�(k) be the supremum of all initial levels of debt which are
subcritical for initial capital k. We call B�(k) the creditworthiness of the capital stock k.
The problem to be solved in this paper is how to compute B�.

If there is a constant credit cost factor (interest rate), � = H(B;k)
B

, then as is easy to
see B�(k) is the present value of k:

B�(k) =Max
j

Z 1

0

e��tf (k(t); j(t)) dt�B(0) (5)

s:t: _k(t) = G (k(t); j(t)) ; t � 0; k = k(0): (6)

The more general case is, however, that � is not a constant. As in the theory of credit
market inperfections we generically may let � depend on k and B: 19Then not only the
relation of the present value to creditworthiness but also the notion of present value itself
become diÆcult to treat.

Note that in the model (5)-(6) we have not used utility theory. As shown in Sieveking
and Semmler (1998) the model (5)-(6) exhibits, however, a strict relationship to a growth
model built on a utility functional, for example, such as20

Max 1
0 e

��tu (c(t); k(t)) dt (7)

s:t: _k(t) = G(k(t); j); k(0) = k: (8)

18In the subsequent analysis of creditworthiness we can set consumption equal to zero. Any positive
consumption will move down the creditworthiness curve. Note also that public debt for which the Ricar-
dian equivalence theorem holds , i.e. where debt is serviced by a non-distortionary tax, would cause the
creditworthiness curve to shift down. In computing the "present value" of the future net surpluses we
do not have to assume a particular interest rate. Yet, in the following study we neither elaborate on the
problem of the price level nor on the exchange rate and its e�ect on net debt and creditworthiness.

19Note again, that instead of relating the credit cost inversely to net worth, as in Bernanke, Gertler
and Gilchrist (1998), we use the two arguments, k and B, explicitely.

20For details, see Blanchard (1983).
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_B(t) = �B(t)� f (k(t); j) + c(t); B(0) = B (9)

with the transversality condition

lim
t!1

e��tB(t) = 0 (10)

which often turns up in the literature21 among the "necessary conditions" for a solution
of a welfare problem such as (7)-(9).

In Sieveking and Semmler (1998) it is shown that the problem (7)-(9) can be separated
into two problems. The �rst problem is to �nd optimal solutions that generate the present
value of net income ows and the second problem is to study the path of how the present
value of net come ows is consumed. There also conditions are discussed under which such
separation is feasible. The separation into those two problems appear to be feasible as
long as the evolution of debt does not appear in the objective function. If such separation
is feasible we then only need to be concerned with the model (5)-(6).

In the context of the model (5)-(6) as well as in a generalized version where generically
the credit cost, �; may depend on B and k we want to argue against the usual use of
'ceilings' if they di�er from creditworthiness B�(k): Suppose the 'ceiling' is of the form

B(t) � C for all t

Either C > B�(k), then the ceiling is too high because the debtor might be tempted to
move close to the ceiling and then goes bankrupt if B > B�(k): Or C < B�(k), then the
economy may not be able to develop its full potentials, and thus face a welfare loss22, or
it may be the case that the contract is not feasible whereas it would be feasible if

B(t) � C for all t

would be replaced by

lim
t!1

supB(t) � C:

On the other hand, the last condition obviously is of no practical use if we can not say
when B(t) � C.

We allow negative investment rates j < 0, i.e. reversible investment for simplicity.
B�(k) does not change by the requirement j � 0 for large kkk ; in the multivariate
version, and also whenever debt control requires to increase capital (j = j+ see Lemma
1, in appendix II). If, however, kkk is small and debt control requires to decrease capital,
then the most e�ective investment becomes more complicated.

21See, for example, Bhandari, Hague and Turnovsky (1990). In our framework the equivalent transver-
sality condition will be

sup
t�0

B(t) <1

22In Semmler and Sieveking (1996) the welfare gains from borrowing are computed.
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The demonstration of the existence of a solution of a model such as (5)-(6) is, however,
often neglected in economics. It frequently has been argued that existence is a non-
problem since non-existence only indicates that the problem is ill-posed. We would like
to remark, however, that we have to care about the problem, since non-existence for
an initial value problem (k(0); B(0)) means bankruptcy for the borrower with economic
consequences for the lender as well.

The existence problem of our model is more speci�cally studied in the appendices II
and III where also link between time continuous and time discrete models is explored.
The latter is very simple and lends itself to an iterative dynamic programming solution
which serves also as approximation for the continuous time case. In appendix II we study
a continuous time model for a multi-variable case with capital stocks k = (k1; :::kn). Some
components ki of which may be interpreted as natural resources and some components of
the investment vector j = (j1::::::jn) may be interpreted as extraction rates. We state the
Hamilton-Jacobi-Bellman (H.J.B.) equation for B�(k) and show that B�(k) is the limit of
the discrete time approximation of appendix III. In an extended version of the paper23 we
also discuss a discretization error bound which is linear in step size and which is derived
both for the discretization of a continuous solution of di�erential inclusion and for the
converse problem where one starts with a discrete time solution and looks for a continuous
one which is close to it.

The remainder of the paper, which is devoted solely to the univariate case of a growth
model with credit market, is organized as follows. Section 3 introduces three methods of
how to study the global dynamics in economies which may exhibit multiple candidates for
steady states. In section 4 the growth model with credit market is explicitly introduced.
The above methods are employed to study the global dynamics of the model. In section
5 for particular parameter values the algorithms are employed and the global dynamics
studied. Section 6 then estimates the parameter set involved in the growth model by
using aggregate data for capital stock and investment for the core countries of Euroland.
Section 7 undertakes the test of sustainability of external debt for Euroland. Sections
8 provides the conclusions. Appendix I provides some derivations of the Hamiltonian
used in the paper and the appendices II and III provides the aforementioned study of the
multivariate continuous as well as discrete time versions of the model.

3 Methods to Study the Global Dynamics

Let us write24 a standard form of an in�nite horizon optimal control problem P (a) with
a one dimensional state space as

23See Semmler and Sieveking (1998a).
24For details on the methodology proposed in the subsequent section, see Semmler and Sieveking

(1998b). Other recent papers that study the problem of multiple steady states and the thereby arising
Skiba-points are Wirl and Feichtinger (1999), Santos (1999), Brock and Starret (1999) and Semmler and
Greiner (1999), for a Ramsey pricing model with Skiba-points, see Brock and Deckert (1985).
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Max

Z 1

0

e�Ætf0(x(t); u(t))dt

s:t:
�
x = f(x(t); u(t)) (11)

u(t) 2 U

x(0) = a

where f0(x(t); u(t)) is a return function and f(x(t); u(t)) a function describing the dy-
namics in the state space.

If (x; u) is a solution, i.e. if x(�) is optimal then as t tends to in�nity x(t) will converge
toward an optimal steady state - except in case where there is a continuum of such optimal
steady state. Let us call an attractor an optimal stationary state a which is approached
from above and from below by solutions

a = lim
t!1

x(t) = lim
t!1

y(t) (12)

x(t) < a < y(t); (t > 0):

A constant solution a, i.e. an optimal stationary state a, is called repeller if there are
optimal x, y such that

a = lim
t!�1

x(t) = lim
t!�1

y(t) (13)

x(t) < a < y (t); (t > 0)

Our conjecture is that generically (that is except for a "small" set of degenerated
problems) there are no optimal repellers in one dimensional optimal control problems in
contrast to the situation for di�erential equations where repellers are admissible. Ex-
ception has also to be made for the origin in problems like the following growth model
with creed market laid out in section 4 where the state space is [0;+1): In fact if the
zero capital stock is an attractor there is no chance for a country with a small amount of
investment to take o�.

If our conjecture is true then if there are multiple (optimal) steady states, there are
attractors a1 < a2 with no optimal stationary state in between, a situation which is
impossible for di�erential equations.

Figure 1:

The state most to the left of all states a1 < s < a2 which are optimally steered to a2 is
called a Skiba-point. The problem P(s) will have two di�erent solutions (x; u) and (y; u)
respectively with
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lim
t!1

x(t) = a1; lim
t!1

y(t) = a2, x(0) = y(0) = b (14)

Note that such cut-o� points do not exist for ordinary di�erential equations
:
x = v(x)

on the real line, if v is continuous. We demonstrate the existence of cut-o� points below
for a problem of optimal investment where investment cost becomes prohibitive for small
capital stocks and where, beyond a certain threshold, the optimal investment increases
the stock approaching an optimal stationary state.

Note that the (canonical) Hamiltonian equations may very well provide a candidate
for a steady state b between a1 and a2 with admissible x; y such that

lim
t!1

x(t) = a1, lim
t!1

y(t) = a2, x(0) = y(0) = b (15)

We maintain, however, that in such a case generically b is not optimal. Indeed, the
stationary control u which keeps the state at b - if it exists - is not optimal. Intuitively, if
x; b; y were optimal then a small increase in the pay-o� f0 for states b would increase the
value of x and y but leave the value of b unchanged. Hence, b ceases to be optimal whereby
we assume that by the small increase in f0 no new repellers are created. The latter implies
that the system is structurally stable. In order to detect optimal and non-optimal steady
stages we can three di�erent types of methods.

In the �rst method to solve P (a) numerically we can use an algorithm as proposed
by Semmler and Sieveking (1998a):25

1. Solve the stationary Hamilton-Jacobi-Bellman (HJB)-equation

(HJB0) f0(e) = Max

�
f0(e; u) +

1

Æ
f 00(e)f(e; u) j u 2 U

�
(16)

f0(x) = Max ff0(x; u) j u 2 U; f(x; u) = 0g
f 00(x) = lim

h6=0
h!0

1

h
(f0(x+ h)� f(x))

for states e.
We want to remark that every optimal stationary state e solves (HJB0) according

to Sieveking (1988); the proof of this is elementary, it does not rely on the maximum
principle but allows for a state dependent control set U(x):
2. Solve the HJB-equation

(HJB) ÆW (x) = Max
u

ff0(x; u) +W 0(x)f(x; u)g
to obtain W 0(x) explicitly as a function of x and W (x) use

W 0(x) = G(W (x); x): (17)

25This algorithm is due to Brooks Ferebee.
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and then for every solution a of (HJB0) solve the initial value problem

W 0(x) = G(W (x); x)

W (a) =
1

s
0
e�Ætf0(a; u)dt =

1

Æ
f0(a; u)

0 = f(a; u)

3. For every x compute Wi and then use

V (x) =Max
i

Wi (18)

V is the desired value function of our problem.
We want to note that V permits to calculate the optimal control u(x) in feedback form

by (HJB). We also want to remark that at the cut-o� point, the Skiba- point, the policy
function will not be continuous, see also Wirl and Feichtinger (1999), Santos (1999), and
Semmler and Greiner (1999). The main achievement, however, is to �nd the location of
the solutions to (HJB0) which are optimal steady states.

Our second method employs the maximum principle and the associated Hamilto-
nian. Usually the globally optimal steady states cannot be detected by using the Hamil-
tonian { since it works with the necessary conditions only. Yet, one can employ the
HamiltonianH(�) associated with the problem P (a) and follow the following three steps.26

1. Compute the candidates for equilibria from control (or co-state) equations and state
equations.
2. Compute the local dynamics about the candidates for the steady state where usually
there is a unstable candidate for a steady steate in the middle and saddle points to the
right and to the left of it.
3. Compute the integrals along the stable manifold from the right and from the left.
Where the two integral curves intersect represents the cut-o� or Skiba point where the
domains of attraction separate.

This latter method has been suggested by Skiba(1978) and then further pursued by
Brock and Malliaris (1996) and Brock and Starret (1998), but has not been, as to our
knowledges, numerically implemented as we do below.

As third method dynamic programming can be employed. In our example of growth
and credit market the dynamic programming equation

H (k; B�(k)) =Max
j

�
f(k; j) + (

d

dk
B�(k))G(k; j)

�
(19)

di�ers slightly from the usual one since here iterating on the value function is equivalent
to iterating on the maximum amount of debt, B�; that is sustainable for the agent. The
use of dynamic programming on a grid for the state and control equations is, however,

26This method was developed by W. Beyn and T. Pampel from the University of Bielefeld whom we
want to thank to make it available to us.
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contaminated with numerical rounding errors that pile up in the iteration of the value
function. Only if one has reliable estimation on the error bound one can rely on numerical
solutions of dynamic programming problem. The discretization problems are discussed in
appendix II and an estimation of error bounds is given in Semmler and Sieveking (1998a).
Subsequently we also will employ the dynamic programming algorithm but we would like
to point out that results obtained from dynamic programming may not be as reliable as
the other two methods in �nding Skiba-points.

A more rigorous study of the dynamics of a control problem with multiple steady
state would require to locate the Skiba-points analytically if there are such. Unfortu-
nately, there do not seem to exist a "local" equation similar to the procedure (HJB0) to
�nd analytically such cut-o� points s. Thus, such cut-o� points have to be determined
numerically by either of the above three methods:

4 The Growth Model with Credit Market

Next we study a simple growth model which is, similarly to Blanchard (1983) written in
eÆciency labor, yet instead of maximizing a utility functional, following the transforma-
tion as mentioned in section 2, the present value of a net income function is maximized.
Computing the present value then is, strictly speaking, only be feasible if there is a con-
stant credit cost factor as in the debt equation (1). In our general case, however, credit
cost may be state dependent. Subsequently, we simplify and take H(k; B) = h(B) and
study creditworthiness for the univariate case where the capital stock is the only state
variable. Yet, multiple equilibria and Skiba points as discussed in section 3 may arise.
Employing a growth model es mentioned in section 2 in terms of eÆciency labor27 we can
write

_k = j � �k; k(0) = k (20)

_B = H(k; B)� f(k; j); B(0) = B (21)

f(k; j) = k� � j � j�k�

where � > 0; � > 0;  > 0 are constants.28 For the simpli�cation H(k; B) = h(B) we
assume that h is twice di�erentiable h(0) = 0; h0 � � for some constant � > 0 and

27The subsequent growth model can be viewed as a standard RBC model where the stochastic process
for technology shocks is shut down and technical change is exogenous occurring at a constant rate.
Moreover, a debt equation, as in (21) is added. In Bernanke, Gertler and Gilchrist (1998) net worth is
the second state equation. In fact, it can be shown that their use of the second state equation is equivalent
to our equ. (21) except for the use of adjustment cost in our model. In our case, however, investment is
the (intertemporal) control variable and H(k;B) a�ects the bifurcation to low and high level equilibria.

28Note that the production function may k� may have to be multiplied by a scaling factor. For the
analytics we leave it aside.
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h00 � 0:29 In the above model � > 0 captures both a constant growth rate of productivity
as well as a capital depreciation rate and population growth.30 Blanchard (1983) used
h(B) = �B; � = 2;  = 1 to analyze optimal indebtedness of a country (see also Blanchard
and Fischer 1989, ch. 2).

It is worth noting that the present model has not quite the same mathematical
properties as considered in the general case discussed in appendices II and III because
�rst, the range of the control variable j is unbounded, second, the range of the state
variables (k; B) are unbounded, and third the net income function f(k; j) has a singularity
at k = 0: Yet, the present value for the above model can be approximated by one which
belongs to the class of models considered in appendices II and III (to do so we can reduce
the ranges and smooth f out at k = 0).

There are, due to the fact that k is univariate here, simple methods to determine the
present value B�(k) which are much more eÆcient and explicit than dynamic program-
ming. One algorithm is derived from our �rst method discussed in section 3 which is based
on the observation that the solution k ! (k; B�(k)) of our problem consists of solutions
to a di�erential equation which (i) use either steepest descent or the least steep ascent in
the (k; B)�space and (ii) run into a stationary state.

This simple case where there is a unique common stationary capital k� for the in-
vestment j�(k; B) with steepest descent as well as for the investment j+(k; B) with least
steep ascent is shown in �gure 5. Here we need to decrease the capital k most rapidly
while k > k� using j�(k; B) and increase capital least possible while k < k�. This we
call extremal investment. Of course, in order to ensure that our simulated curve contains
(k�; B�(k)), we invert the time and solve the initial value problem with (k�; B�(k)) as
initial value (using j� for k > k� and j+ for k < k�).

A more complicated situation is shown in �gure 6. In addition to the attractor equilib-
rium k� there is a non-equilibrium cut o� point k�� where the solution path k ! (k; B�(k))
changes direction. As shown in section 3 such cut-o� points will turn up in general if sev-
eral attractor equilibria exist. In the current context the cut-o� point, the Skiba point,
k�� is economically signi�cant as a poverty trap: below k�� the country has to reduce its
capital to zero in order to keep debt bounded - at least if debt is close to the critical
value B�(k):31 Note, however, that such a cut-o� point does not have to coincide with a
candidate for an equilibrium. This will be demonstrated below. Recall that at a critical
debt level B�(k) the investment (either j� or j+) is the optimal investment (the one which
realizes the present value of k).

For a constant discount rate we might apply our second method derived from Pontrya-
gin's maximum principle to determine the optimal investment. In the situation of �gure
6, we obtain two candidates for an optimal stationary capital, k�; k��; but would get no

29Note that if
:

k = 0 in (21) we have the case of a �nance constrained economy (imperfect capital
market) as in Brock and Deckert (1985). In our model, however, the adjustment cost is written in a way
that we do not need increasing returns as in their paper.

30For details, see Blanchard (1983).
31Thus, there exists a development trap as, for example, discussed in Azariadis and Drazen (1990) and

Majumdar and Mitra (1995).
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information that one of those (and which) is non-optimal.
The general case given by

_k = j � �(k)
_B = H(k; B)� f(k; j)

is covered by our �rst algorithm of section 3. This algorithm simply computes B�(k)
as the maximum of all k ! (k; B(k)) ; considered as functions of k; which satisfy our
de�nition of extremal investment as more precisely de�ned below.

Let us refer to the simpli�ed version H(k; B) = h(B): Here, since the critical curve
k ! B�(k) is tangent to B�(k), we can consider the set S of states in the (k; B)�space
where investments j = �k decrease debt.

Investment keeps capital constant precisely if

h(B) � f(k; �k) or

B � h�1 (f(k; �k)) =: '(k):

Let

S = f(k; B) j 0 � B � '(k); k � 0g
S is bounded by the graph of the function '; which we de�ne only for k � 0 with
f(k; �k) � 0:

The following �gure shows di�erent possible shapes of S depending on the value of
parameter :
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Figure 2: possible shapes of the region S of (k; B) whereh(B) � f(k; �k) � 0:

For the general case we have the following
De�nition of Extremal Investment Let H; f : [0;+1)� R ! R and � : [0;+1)

be continuous functions, f(k; 0) = 0 for all k � 0; f(k; s) continuously di�erentiable with
respect to j and @

@j
f(k; j) < 0: Suppose H(k; B) > f (k; �(k)). There exists j+ = j+(k; B)

and j� = j�(k; B) such that

W�(k; B) :=
H(k; B)� f(k; j�)

j� � �(k)
=Max

�
H(k; B)� f(k; j)

j � �(k)
j j � �(k) < 0

�

W+(k; B) :=
H(k; B)� f(k; j+)

j+ � �(k)
=Min

�
H(k; B)� f(k; j)

j � �(k)
j j � �(k) > 0

�
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j� and j+ are called extremal investments. The corresponding extremal vector �elds
are de�ned by v�(k; B) = (j�(k; B)� �(k); H(k; B)� f(k; j�(k; B))) : For H(k; B) =
f (k; �(k)) put j�(k; B) = �(k): Let j� and j+ respectively be the investment which
produces the steepest descent or the least steep ascent in the (k; B)� space, j = j�; and
satis�es

H(k; B)� f(k; j)

j � �(k)
= � @

@j
f(k; j):

Note that the cut-o� point where domains of attraction separate will depend on the
shapes of the credit cost function H(k; B) and the net income function f(k; j). The
solution to the last equation for our simpli�ed functions H(k; B) = h(B); f(k; j) =
k� � j � j2k� ; �(k) = �k is that of a quadratic equation:

j+(k; B) := �k +
p
�2k2 + �k1+ + h(B)k � k�+ (22)

with

v+(k; B) :=

�
1;
h(B)� f(k; j+)

j+ � �k

�
= (1; 1 + 2j+k

�):

The investment rate giving the least slope to

�
�
1;
h(B)� f(k; j)

j � �k

�

while decreasing capital is (similarly)

j�(k; B) := �k �
p
�2k2 + �k1+ + h(B)k � k�+ (23)

with

v�(k; B) :=

�
1;
h(B)� f(k; j)

j� � �k

�
= (1; 1 + 2j�k

�):

Note that if h(B) = f(k; �k) that is at the boundary of S :

v+(k; B) = v�(k; B) = (1; 1 + 2�k1�)

Note also that v+(k; B) and v�(k; B) are tangent to S:
Proposition 1 Equilibria satisfy 1 + 2�k1� = '`(k):

For h(B) = rB� this is equivalent to

1 + 2�k1� =
�k��1 � � � �2(2� )k1�

r1=��(k� � �k � �2k2�)(��1)=�
(24)

For a constant credit cost factor one can, using our second method, obtain the equi-
libria also through the maximum principle and the Hamiltonian.
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It is useful to look at the B � isocline of v� that is the set of k > 0; B > 0 where
1 + 2j�(k; B)k

� = 0: Simple calculation shows that the latter equality is equivalent to

B = h�1(k� +
1

4
k)

The following �gure shows a sketch of the phase portrait of v� based on this equation.

Figure 3: sketch of the phase portrait of v� near the origin based on the set where _B = 0:

The B�isocline of v� lies completely above S: Through every point of it there is a
unique trajectory for v�: These trajectories may not be de�ned for all k � 0; this happens
if they run into S:

Consider, however,
Case 1 All v� trajectories crossing the B isocline are de�ned for all k � 0:

In this case these trajectories admit on in�mum k ! (k; B1(k)) which satis�es

lim
k!1

B1(k) = B1(0) = 0

B1; in Case 1, is de�ned for all k � 0 and solves our debt control problem:

Proposition 2 Suppose all trajectories through the B -isocline of v� are de�ned for all
k � 0 (i.e. they lie above S). Then their in�mum k ! (k; B1(k)) solves the debt
control problem.
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Figure 4: Creditworthiness in Case 1.

Proof of Proposition 2 It is obvious that B may be held bounded if it is initially below
B1(k). Therefore B1(k) � B�(k): Now Suppose B(0) < B�(k); the argument of Lemma 2
of appendix II shows that there is an investment function j(t) which steers B(t) < 0 for
some �nite t > 0: This, however, is impossible for B(0) > B1(k) since no solution of our
di�erential equations may cross k ! (k; B1(k)) from above. Therefore, B(0) < B1(k):
Since B(0) < B�(k) was arbitrary B�(k) � B1(k) q.e.d.
Case 2a One of the v� trajectories which cross the B isocline of v� runs into S: Consider
the in�mum k ! (k; B2(k)) of all v� trajectories de�ned for all k � 0; i.e. above S. It is
tangent at S in at most on point. Let (k�; B�) be the one with largest �rst component
among all points in which (k; B2(k)) is tangent at S:

There is a v+ trajectory k ! (k1B3(k)) through (k�; B�) which is also tangent at S
in (k�; B�): v+ trajectories may cross v� trajectories only from below (by construction).
Therefore

B3(k) � B2(k) for 0 � k � k�:

Set

B4(k) =

�
B3(k) for 0 � k � k�

B2(k) for k� � k

Assume that B3(0) = lim
k!0

B3(k) � 0:

Proposition 3 B�(k) = B4(k) in case 2a where B3(k) � 0:
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Proof Obvious from the following �gure, like the proof of Proposition 2.

Figure 5: The dotted line is creditworthiness; above k� debt is decreased with j�; below
k� debt is increased with j+:

Case 2b Assume B3(k) = 0 for some positive k; 0 � k < k�: In this case there is a
v� trajectory k! (k; B5(k)) such that B5(0) = 0 and B5(k

��) = B3(k
��) for uniquely

determined k�� between zero and k�; k�� is a cut-o� point, but not an equilibrium for
debt control: below k�� capital and debt are decreased, above k�� capital and debt are
increased up to k�: Set

B6(k) =

8<
:

B5(k) for 0 � k � k��

B3(k) for 0 � k�� � k�

B2(k) for k� � k

Proposition 3 B�(k) = B6(k) in case 2a.

The proof of Proposition 3, following that of Proposition 1 is obvious from the following
�gure:
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Figure 6: The dotted line is the creditworthiness curve. Investment strategies along this
curve change according to j�; j+; j�:

Note that in order to reduce debt in Case 2 it may be necessary to �rst increase it.
This happens if the capital stock level k < k� is too small, i.e. the economy not developed
suÆciently. Moreover, there is a threshold, k��; below which the country cannot take o�
even if the country can freely borrow.

5 The Numerical Study of the Model

Next we apply the �rst type of algorithm to compute the critical debt. Its inputs are three
functions H; f; � as in the de�nition of the extremal investments. Its output is the critical
debt B�(k); i.e. the negative of the present value of k: The algorithm works if we assume
that the vector �elds v�(k; B) admit but a �nite number of singularities v�(k; B) = 0
and that for any initial capital k the optimal investment (i.e. the one which realizes its
present value) steers the capital stock towards an equilibrium. Our �rst algorithm which
admits nonlinear credit cost computes the critical curve below which the debt can be
steered bounded.

We compute the critical curve for the above example of a univariate capital stock with
nonlinear adjustment cost for investment and state dependent credit cost. Due to the
nonlinear adjustment cost the model may exhibit multiple candidates for equilibria as
discussed above and as depicted in Figure 6. A case like this will be numerically studied
below.

We will compare our results with the results obtained from the Hamiltonian equation
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and our second method and the dynamic programming algorithm proposed in section 3.
A more general form of the �rst algorithm can be stated for our non-standard case

where the credit cost is state dependent. The critical value problem can be computed as
follows.
1. Compute all solutions (k+i ; B

+
i ) i = 1; 2; ::: and (k�j ; B

�
j ) j = 1; 2; ::: to v+(k; B) = 0

and v�(k; B) = 0 respectively.
2. Compute all solutions B+

i (�) and B�
i (�) to the critical value problems

d

dk
B(k) = �w+(k; B); k � k+i ; B(k+i ) = B+

i i = 1; 2; :::

respectively to

d

dk
B(k) = �w�(k; B); k � k�i ; B(k�i ) = B�

i i = 1; 2; :::

3. Compute B�(k) as the maximum of all B(k+i ) and B(k�i ) respectively.
In our numerical example we employ the function

f(k; j) = k� � j � j2k� � c

and

h(B) = rB�

We compute the candidates for equilibria for our debt control problem (20) - (21) both,
�rst, by employing the Hamiltonian for � = 1 and, second, by using the tangency condition
(24) from our vector �eld analysis with � � 1.

Following our second method, we denote x as the co-state variable in the Hamiltonian
equations in appendix I: The function f(k; :) is strictly concave by assumption therefore
there is a function j(k; x) which satis�es the �rst order condition of the Hamiltonian

fj(k; j) + x = 0

and j(:; :) is uniquely determined thereby. It follows that (k; x) satisfy

�

k = j(k; x)� �k (25)

�
x = (� + �)x� fk(k; j(k; x)) (26)

The isoclines can be obtained by the points in the (k; x) space where
�

k =0 satis�es

x = 1 + 2�k1� (27)

and where
�
x = 0 satis�es

x� = 1 + #k1� �
p
#2k2�2 + 2#k1� � 4��1k�� (28)
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where # = 2�1(� + �): Note that the latter isocline has two branches.
In our numerical example we compute the equilibrium candidates through the Hamil-

tonian equations (25) - (26) and through the tangency condition (24). We scale the
production function by a32 and take c = 0: We employ the following parameters: � = 1:1;
 = 0:3; � = 0:15; � = 0:1; r = 0:1: Moreover, we take � = 1 for the Hamiltonian and
� = 1:05 for equation (24).

For those parameters, using the Hamiltonian approach, Figure 7 depicts the isoclines
(27) - (28) showing two positive candidates for equilibria.

Figure 7: Isoclines and equilibria from the Hamiltonian equation

Figure 7:
The two equilibrium candidates are: (HE1): k� = 1:057; x� = 1:3 and (HE2):

k�� = 0:21; x�� = 1:1. The two candidates are numerically obtained by using a non-
linear equation solver.33 Since the second branch of (28) does not intersect with (27) we
have left it aside. We also want to note that the equilibrium candidate (k�; x�) is a saddle
whereas (k��; x��) represents a repeller. We want to stress again, as in our �rst method,
that from the Hamiltonian equation one only obtains candidates for equilibria.

The candidates for equilibria can also be computed for � � 1 using the tangency
condition (24) from the �rst method. Figures 8a and 8b show the two candidates, for
� = 1:05 in Figure 8a, and for � = 1:25 in Figure 8b.

For � = 1:05 two equilibria are obtained through (24) by using the nonlinear equation
solver. The candidates are (VE1): k� = 0:69; B� = 0:79; and (VE2): k�� = 0:13;
B�� = 0:14: Employing, however, � = 1:25 only one candidate remains. The left one has
disappeared and the candidate to the right remains.34

32We have multiplied the production function by a = 0:29 in order to obtain suÆciently separated
equilibria.

33The nonlinear equation solver from the software package GAUSS is employed.
34We also want to note that for � = 1 both methods to compute the equilibria give the same numerical

results.
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Figure 8: Equilibria computed through (24) for � = 1:05 (above) and � = 1:25 (below).

Next we use the above stated �rst type of algorithm and compute the solutions to
the critical value problem. The curve h(B) = f(k; j) and the critical curve for the case
� = 1:05, starting at the candidate k� = 0:69; B� = 0:79; are depicted in Figure 9.
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Figure 9: The h(B) = f(k; j) curve and the creditworthiness-curve (the j� trajectory
running into equilibrium k� = 0:69; B� = 0:79).

Applying again the above suggested algorithm starting from k� = 0:69; B� = 0:79,
pursuing the j+ trajectory, and starting from the origin k = 0; B = 0; pursuing the j�
trajectory we obtain the graphs as depicted in Figure 10.

Figure 10: The creditworthiness-curve as the maximum of the j+ trajectory (starting from
k� = 0:69; B� = 0:79) and the j� trajectory (starting from k = 0; B = 0).

Note that there is a cut-o� point where the two trajectories intersect. There the
optimal investment either leads to k� = 0:69; B� = 0:79 or to k = 0; B = 0: Note

24



also that the equilibrium candidate k�� = 0:13; B�� = 0:14 is non-optimal, since there
are investment strategies that improve the countries wealth. On the other hand the
equilibrium candidate k� = 0:69; B� = 0:79 is optimal.

We have also computed the critical curve through the use of our third method, the
dynamic programming algorithm as proposed by Sieveking and Semmler (1997). This is
depicted in Figure 11.

Figure 11: The creditworthiness - curve computed through a dynamic programming al-
gorithm.

Although the dynamic programming algorithm is capable of computing the creditwor-
thiness - curve the above suggested �rst two algorithms are substantially more eÆcient
to do so. For the two algorithm no iteration on the value function through the choice
of a grid size, as required by the dynamic programming algorithm, is necessary. Errors
from the discretization, arising from grid size, rounding errors and keeping a piecewise
constant control { which may a�ect the dynamic programming solution { do not occur in
our above �rst two methods. It will be diÆcult to detect a cut-o� point such as shown
in Figure 10 by the use of a dynamic programming algorithm since the cut-o� point for
a change of control may be a�ected by the numerical errors.

Finally, we have computed the critical curve for � = 1 by using the Hamiltonian
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equations. Here, we use an algorithm that is able to compute the stable manifold of the
saddle point k� = 1:057; x� = 1:3 and the integral along the stable manifold.35 The
dynamics about the two candidates of the equilibria are depicted in Figure 12

Figure 12: Stable manifold passing through the saddle point k� = 1:057; x� = 1:3:

with the dotted line, starting at k�� = 0:21; x�� = 1:1 and moving into the equilibrium
candidate k� = 1:057; x� = 1:3; representing the stable manifold.

35This procedure that follows the literature since Skiba (1978) was developed by Wolf-J�urgen Beyn
and Thorston Pampel from the Dept.of Mathematics, University of Bielefeld. We want to thank them
for making it available to us.
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Figure 13: The creditworthiness - curve computed through the integral along the stable
manifold.

Figure 13 shows the value of the integral starting with the initial condition k0 = 0:21
going up to k0 = 1:0: The value of the integral represents points on the creditworthiness
- curve for each initial condition, k0; to the right of the equilibrium candidate k��:

Figure 14: The creditworthiness - curve and the cut-o� point for the two solutions.

Figure 14 represents the two integral lines and the cut-o� point. The two integral lines
are obtained by starting with k0 and running either into equilibrium candidate k� = 1:057;
VI (stable manifold) or running from the unstable candidate k�� into k = 0: The latter is
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VII: For � = 1; and thus for particular �xed interest rate, the Hamiltonian equations can
also be employed to compute the critical curve. For more general debt pay o� functions,
however, our �rst method appears to be suited better. Yet, both methods are able to
demonstrate that cut-o� points do not necessarily coincide with candidates for equilibria.

6 Estimating the Parameters of the Model

Next, we want to take our growth model with adjustment cost of investment to the
data. We will use quarterly data from Euroland encompassing its core countries. For the
purpose of the parameter estimation we have to transform our dynamic equations into
estimable equations. By presuming the univariate version where in the debt equation
only a constant credit cost factor enters we can employ the Hamiltonian equation. This is
in the case of Euroland justi�ed, since there are likely to be not severe idiosyncratic risk
components in the interest rate. We can transform the system (A3)-(A4) of appendix I
into estimable equations and employ time series data on capital stock and investment {
all expressed in eÆciency units { to estimate the involved parameter set.36

Substituting from the appendix I (A2) into (A3) we get the following two dynamic
equations

:

k = (
x� 1

k� � � )
1

1�� � �k (29)

:
x = (� + �)x� �k��1 � j�k(��1) (30)

Next, we transform the above system (29)-(30) into observable variables so that we
obtain estimable dynamic equations.

From (29) we obtain
^

k = j=k � � (31)

with
^

k =
:

k=k
Note that from (A1) in appendix I we can get

x = 1 + �j��1k� (32)

Taking the time derivative of (32) we obtain

:
x =

�
� (� � 1) j��2k�

� � :j (33)

and using (30) we have

36Estimable equations for a version with a state dependent debt service as in equ. (21) would predict
a slightly di�erent paths for optimal investment and capital stock namely such as given by (22) and
(23) where also the nonlinear credit cost H(k;B) enters. Those equations, however, appear to be more
cumbersome to estimate.
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�
� (� � 1) j��2k�

� � :j = (� + �) x� �k��1 � j�k(��1)

Thus

:

j =
(� + �) x� �k��1 � j�k(��1)

� (� � 1) j��2k�
(34)

or

^

j =

:

j

j
=

�
(� + �) x� �k��1 � j�k(��1)

� (� � 1) j��2k�

�
=j (35)

Substituting (32) into (35) we get as estimable equations in observable variables (31)
and (35) which depend on the following parameter set to be estimated.

' = (�; �; �; ; �; a)

The estimation of the above parameter set is undertaken by aggregating capital stock
and investment for the core countries of Euroland. The data are quarterly data from
1978.1 - 1996.2. Although aggregate capital stock data starting from 1970.1 are available,
we apply our estimation to the period 1978.1 - 1996.2, since the European Monetary
System has been introduced in 1978 whereby the exchange rates between the countries
where �xed within a band. This makes the across country aggregation of capital stock
and investment feasible. The aggregate capital stock series is for gross private capital
stock and the investment series is total �xed investment. Both are taken from OECD
data base (1999). The series for gross capital stock and investment represent aggregate
real data for German, France, Italy, Spain, Austria, Netherland and Belgium. Since we
are employing a model in eÆciency labor each countries time series for capital stock
and investment is scaled down by labor in eÆciency units measured by the time series
Lt = L0e

(n+gy=l)t where n is average population growth and gy=l average productivity
growth. As to our estimation strategy we employ NLLS estimation and use a constrained
optimization procedure.37 The results are shown in Table 1.

Table 1: Parameter estimates for Euroland (1978.1-1996.2)
� � �  � a
0.035 0.092 0.312 0.116 0.385 3.32

The parameters obtained from historical data are quite reasonable.38 Overall one can
observe that the adjustment cost of investment are not very large since the exponents �
and  are small.

37The estimations were undertaken in GAUSS for which the constrained optimization procedure re-
cently provided by GAUSS was used.

38We want to note that standard errors could not be recovered since the Hessian in the estimation was
not non-negative de�nite.
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Using the estimated parameters one can again compute through (25) - (26) the steady
states for the capital stock. Doing so numerically it turns out that for our parameter
estimates of Table 1 the steady state is unique and we obtain a k� = 37:12 which coincides
roughly with the mean of the historical series of the capital stock for Euroland. This gives
a steady state of net income of f(k; j) = 8:799, computed from (A2) of appendix 1 at
the steady state of k� = 37:12. Moreover, for the present value of the net income at the
steady state we obtain V (k�) = 244:4193.

Using the estimated parameters �gure 15 shows the computed output, investment
(including adjustment cost of investment) and the net income.

Figure 15: Net income, investment (incl. adjustment cost) and output.

As the �gure 15 shows, since we are using the aggregate variables in eÆciency units,
the output in eÆciency unit tends to be stationary and the net income moves inversely
to investment (the latter including adjustment cost).

Finally, note that with those parameter estimates given in Table 1 we also can now
easily compute the present value outside the steady state and thus the critical debt curve
by using either of our above three methods{ the HJB equation, the Hamiltonian equation
or dynamic programming (whereas, as noted above, the �rst two methods appear to easier
to use). Since, however, there is no external debt of Euroland but rather external assets, as
shown in the next section, the result of such an exercise will not be very instructive. The
balance sheets of banks and �rms, as discussed in Krugman (1999) and Mishkin (1998),
will presumably show no sign of deterioration, since Euroland has net claims vis-a-vis the
rest of the world. Our methods to compute present value of net income could, however, be
fruitfully undertaken for other countries with external debt and balance sheets of banks
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and �rms deteriorating.39 Note, however, that the above method gives us only asymptotic
results, i.e. if t)1: Next, for Euroland we pursue another method { for �nite number
of observations { to compute the sustainability of external assets.

7 Testing Sustainability of Debt

Next, following Flood and Garber (1980), Hansen and Sargent (1981) and Hamilton and
Flaven (1986) a NLLS estimate for the sustainability of external debt can be designed
for a �nite number of observations. Similarly to the computation of the capital stock
and investment for our core countries of Euroland we have computed the trade account,
the current account and the net foreign assets of those core countries for the time period
1978.1 1998.1. Since we want to undertake sustainability tests for certain growth regimes,
we have computed monthly observations. In our computation we had to eliminate the
trade among the Euroland-countries.40 We consider the time series for the entire period
1978.1 1998.12 and in addition subdivide the period into two periods 1978.1-1993.12. and
1994.1 1998.12. The break in 1994 makes sense since the exchange rate crisis of September
1992 lead to a reestablishment of new exchange rates with a wider band in 1993. Thus,
the sustainability tests will be undertaken for those two subperiods.

In a discrete version the foreign debt can be computed as follows. Starting with initial
debt B0 one can compute in a discrete time way the stock of debt as follows. By assuming
a constant interest rate we have

Bt = (1 + rt�1)Bt�1 � TAt (36)

where TAt is the trade account and Bt�1 the stock of foreign debt at period t � 1 and
rt�1 the interest rate. As interest rate we took the Libor rate. The initial stock of foreign
debt B0 for 1978.1 has been estimated. This way, the entire time series of external debt
and trade account could be generated.

From equ. (36) we can develop a discrete time sustainability test. For reason of
simplicity let us assume a constant interest rate. Equ. (36) is then a simple �rst order
di�erence equation that can be solved by recursive substitution forward leading to

Bt =
NX

i=t+1

TAi

(1 + r)i�t
+

(1 + r)tBN

(1 + r)N
(37)

39Of course, one would have to consider also the exchange rate regime under which the country borrows
and in particular the fact whether the country (banks, �rms ) borrows in foreign currency. In this case
a exchange rate shock will exacerbate the deterioration of the balance sheets, see Mishkin (1998) and
Krugman (1999).

40A similar attempt to compute external debt of countries and regions, following a similar methdology
as suggested above, has been recently undertaken by Lane and Melesi-Ferreti (1999). Their resuls for the
Euroland core countries show similar trends as our computation. There results are, however, less precise
since they do not eliminate intra-Euroland trade.
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In the equ. (37) the second term must go to zero if the intertemporal budget constraint
is supposed hold. Then equ. (37) means that the current value of debt is equal to the
expected discounted future trade account surplus

Bt = Et

1X
i=t+1

TAi

(1 + r)i�t
(38)

Equivalent to requiring that equ. (38) must be ful�lled is that the following condition
holds

Et lim
N!1

BN

(1 + r)N
= 0 (39)

The equation is the usual transversality condition or no-ponzi game condition as discussed
in section 2..

If the foreign debt is constrained not to exceed a constant, A0, on the right hand side
of (37), we then have

Bt = Et

1X
i=t+1

TAi

(1 + r)i�t
+ A0(1 + r)t (40)

The NLLS test proposed by Flood and Garber (1980) and Hamilton and Flaven (1986)
and Greiner and Semmler (1998) can be modi�ed for our case. It reads:

TAt = b1 + b2TAt�1 + b3TAt�2 + b4TAt�3 + "2t (41)

Bt = b5(1 + r)t + b6 +
(b2b+b3b2+b4b3)TAt

(1�b2b�b3b2�b4b3)

+ (b3b+b4b2)TAt�1

(1�b2b�b3b2�b4b3)
+ (b4b)TAt�2

(1�b2b�b3b2�b4b3)
+ "1t

(42)

We want to note, however, that following Wilcox (1989) it might be reasonable to
compute trade account surplus and debt series as discounted time series. We have also
undertaken the computation of the those discounted time series by discounting both the
trade account and the external debt with an average interest rate and performed the
above (41-(42) sustainability test.

Figure 16 shows the undiscounted and discounted time series for external asset of
Euroland.
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Figure 16: Undiscounted and discounted net foreign assets.

Table 2 reports test results for both types of time series for the entire time period
1978.1-1998.12.

Table 2: Sustainability Test of Euro Debt, 19781.-1998.12

undiscounted
Param Estim t-stat
b1 0.00 0.00
b2 0.76 0.05
b3 0.45 -0.02
b4 -0.51 -0.05
b5 -0.07 -1.20
b6 0.0051 0.06

discounted
Estim t-stat
0.00 0.0
0.53 0.04
0.37 0.02
-0.06 -0.07
-0.002 -0.04
-0.064 -0.88

Table 3 reports our estimation results for subperiods again for both undiscounted and
discounted trade account and debt service. The results of estimation of the coeÆcients
as to the relevance of non-sustainability of foreign assets for Euroland are not very
conclusive. The coeÆcient b5; which is the relevant coeÆcient in our context, has the
correct sign but is always insigni�cant.

Next we compute the estimate (41)-(42) for the two subperiods. Table 3 reports the
results for undiscounted and discounted variables respectively.
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Table 3: Sustainability Test of Foreign Debt for Euroland, 1978.1-1993.12 and
1994.1-1998.12

undiscounted discounted
1978.1-1993.12 1994.1-1998.12 1978.1-1993.12 1994.1-1998.12

b1 0.00 0.00 0.001 0.53 0.00 0.00 0.001 0.39
b2 0.423 0.04 0.308 0.16 0.498 0.04 0.365 0.14
b3 0.338 0.02 -0.200 -0.10 0.401 0.03 -0.266 -0.09
b4 0.048 0.01 -0.318 -0.19 -0.062 -0.01 -0.548 -0.22
b5 -0.042 -0.72 -0.203 -25.86 0.018 0.30 -0.061 -13.08
b6 -0.025 -0.32 0.277 17.61 -0.086 -1.07 0.056 5.91

As can clearly be seen from the coeÆcients b5 both the undiscounted as well as dis-
counted trade time series show that there has been a rapid built-up of net foreign assets
of Euroland that do not seem to be sustainable. Our tests imply there is a build-up of
foreign assets that particularly occurred after the currency crisis 1992/1993.

8 Conclusions

In the paper we show that the sustainable debt in models with borrowing and lending
may typically be state constrained. In order to control credit risk the lender needs to
know the debt capacity of the borrower at each point in time. This knowledge seems
to be necessary if one wants to move beyond an one period debt contract. We explore
the problem of critical debt and creditworthiness by applying three methods. Using those
method we analytically and numerically can demonstrate the region in which the borrower
remains creditworthy. Imposing a ceiling of borrowing may lead to a loss of welfare if the
ceiling is set to low. Moreover, in some instances it may be necessary for the borrower
to �rst increase debt in order to decrease it. On the other hand, if the ceiling is set
to high the non-explosiveness condition may not hold and creditworthiness may be lost.
Moreover, we show the relation of our �rst method, the vector �eld analysis, to the
Hamilton-Jacobi-Bellman (H.J.B.) equation and dynamic programming.

We discuss continuous and discrete time variants of optimal growth models with bor-
rowing and lending and provide error bounds for the discretized version. By using our new
methods we study the debt capacity of a borrower, the role of debt ceilings for lending
and borrowing behavior and the e�ect of state dependent credit cost on the path of sus-
tainable debt. The analytics is provided for the n capital goods model and an illustrative
example is presented for the univariate case. For the latter case we also study the prob-
lem of multiple steady states which arise from nonlinear adjustment cost of investment.
Our methods permits us to detect optimal and non-optimal candidates for equilibria and
cut-o� points for di�erent domains of attraction. The shapes of the credit cost function -
as well as the net income function - are relevant for the location of the cut-o� points and
thus for the result whether the economy moves to high or low level steady states.
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Although the creditworthiness - curve can be computed by iterative dynamic program-
ming it is more eÆcient to use the other two methods. If the credit cost is a constant
factor the Hamiltonian equation can be applied. As above shown, the cut-o� point and
the two di�erent domains of attraction can also be computed by using the Hamiltonian.
Although the latter method is useful in computing the creditworthiness curve and sustain-
able debt our proposed �rst method appears to be more generally applicable. In any case,
the computation of such creditworthiness curve serves to determine sustainable debt for
any initial capital stock k0 and thus to control credit risk for any point in time. We want
to note that there are, of course, nowadays numerous empirical approaches to control for
credit risk by approximating sustainable debt by empirical indicators.41 Our attempt was,
however, to show how one can compute sustainable debt based on a dynamic economic
model.

Finally, we would like to point out that our model can be taken to the data. For actual
economies one can compute the borrowing capacity and debt ceilings by estimating the
involved parameter set. We have also shown that one can compute the sustainability of
debt for actual economies by using time series methods.

41In a series of papers Milesi-Ferretti and Razin (1996, 1997) have addressed the empirical issue of how
to obtain proxies for measuring sustainable debt.
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9 Appendices

9.1 Appendix I: The Maximum Principle and the Hamiltonian

Equation

Max
j

Z 1

0

e��tf(k(t); j(t))dt

s:t:
:

k = j � �k

with:
f(k; (t); j(t) = ak� � j � j�k�

H(k; x; j; �) = max
j
H(k; x; j; �)

H(k; x; j; �) = �f(k; j) + x(j � �k)

:
x =

�@H
@k

+ �x = (� + �) x� �fk(k; j)

We denote x as the co-state variable in the Hamiltonian equations and � is equal to
1:42 The function f(k; :) is strictly concave by assumption therefore there is a function
j(k; x) which satis�es the �rst order condition of the Hamiltonian

fj(k; j) + x = 0 (A1)

) j = j(k; x) = (
x� 1

k� � � )
1

1�� (A2)

and j(:; :) is uniquely determined thereby. It follows that (k; x) satisfy

�

k = j(k; x)� �k (A3)

�
x = (� + �)x� fk(k; j(k; x)) (A4)

The isoclines can be obtained by the points in the (k; x) space for � = 2 where
�

k =0
satis�es

x = 1 + 2�k1� (A5)

and where
�
x = 0 satis�es

x� = 1 + #k1� �
p
#2k2�2 + 2#k1� � 4��1k�� (A6)

42For details of the computation of the equilibria in the case when one can apply the Hamiltonian, see
Semmler and Sieveking (1996), appendix.
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where # = 2�1(� + �): Note that the latter isocline has two branches. In section 5 the
steady states for certain parameter speci�cations are computed and the local and global
dynamics studied.

9.2 Appendix II: The Discrete Time Model

Here we study more general versions of the growth model employed in section 4. We
discuss a multivariate version of the model of section 4 as well as the relationship of
discrete and continuous time models. This is necessary in order to obtain error bounds
for discretized versions of the continuous time growth models (Semmler and Sieveking
1998a).
Suppose capital k(t+ 1) at time t+ 1 and debt B(t+ 1) at time t+ 1 are determined by
k(t) and B(t) and investment rate j(t) through

k(t+ 1) = g (k(t); j(t)) ; k(0) = k (A7)

B(t + 1) = H (k(t); B(t))� f (k(t); j(t)) ; B(0) = B (A8)

::H(k; B)B is the interest factor which we allow to depend also on capital k; g(k; j) the
growth rate of capital due to investment j and f(k; j) the net income rate from capital
stock k and investment rate j:

More precise assumptions on g;H; f and there domains of de�nition will be given
below. We ask, if for a given pair (k; B) is it possible to choose a sequence of investments
j(0); j(i); in such a way that the corresponding solution t! (k(t); B(t)) of (A7) and (A8)
satis�es

sup
t�0

B(t) <1

If so we call B subcritical for k: The supremum of all those B which are subcritical for
k is denoted by B�(k): We propose to call B�(k) creditworthiness of k: The function
k ! v(k) = B�(k) will be shown to satisfy the following H.J.B. equation or optimality
equation.

H (k; v(k)) = sup
j
[f(k; j) + v (g(k; j))] ; k 2 K (A9)

Our assumptions below imply that the equation

H(k; C) = sup
j
[f(k; j) + v (g(k); j)]

has a unique solution C = C(v; k) for every capital stock k and every continuous real
valued function v on capital stock k: De�ne the operator T by

Tv(k) := C(v; k)

The assumptions stated below permit to demonstrate:
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Theorem 1

(i) The H.J.B. equation (A9) admits a unique bounded continuous solution B�; called
creditworthiness.

(ii) If v0 = 0 and vn is de�ned recursively by vn+1 = Tvn then for all n; vn � vn+1 and
lim
n
vn = B�:

(iii) Suppose inf
k2K

H(k;B)
B

> c for some c > 1:Then for every solution (k(t); B(t); j(t)) (t =

0; 1; 2; :::) if initially B(0) > B�(k) then for large t; B(t) > ct; if, however, B(0) < B�(k)
then B(t) < �ct for large t:
Assumptions on g;H; f

A1: K and J are compact spaces and g : K � J ! K is continuous;
A2: f : K � J ! R is continuous, sup

j
f(k; j) � 0 for all k 2 K;

A3: H : R � K ! R is continuous, B ! H(k; B) is di�erentiable and
@B

undersetkinf

aH(k;B)>1;
H(0; k) = 0 for all k 2 K:

Remark The state space K of possible capital (resource) stocks, k; as well as the space J
of admissible investment rates is not bounded (or compact) in many models - such
as the one treated in section 6. It makes sense however to assume that for a given
initial state (k; B) and with respect to a speci�c problem like debt control (H.J.B.
equation) there is no loss in generality to restrict k and j respectively to some
compact subspace. It is plausible that with a bounded investment rate:kjk � c only
a bounded set of stocks k is reachable from some initial stock. In our continuous
model (in section 4) Lemma 2 permits restriction to kjk � c = const.

Proof of theorem 1 (i) Investment j 2 J applied in state (k; B) produces a subse-
quent state

fg(k; j); H(k; B)� f(k; j)g :
The debt level B is subcritical for k i� for some j 2 J

B� (g(k; j)) + f(k; j) � H(k; B))

which implies

sup
j
[B�(g(k; j)) + f(k; j)] � H (k; B�(k))

If on the other hand in the above equation ">" would hold, then for some B > B�(k) and
some j 2 J

B� (g(k; j)) + f(k; j) � H(k; B)
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This, however, implies B < B�(k); a contradiction. Therefore, B� satis�es the H.J.B.
equation. B� also is bounded. Let F = sup ff(k; j) jk; j 2 K � J g : Since K � J is
compact and f is continuous, F is �nite. By assumption A3

H(k; B)� f(k; j) � H(k; B)� F � cB

for suÆciently large B and some constant c > 1. Hence if B(0) is large enough any
solution t! (k(t); B(t)) of (10), (11) satis�es

B(t) � ctB(0)

which shows that B� is bounded. We now check that T is a Lipschitz operator on the
space of bounded functions v : K ! R with

kvk = sup fjv(k)j j k 2 Kg
To do so let v1; v2 : K ! R be bounded and

sup
j
[f(k; j) + v1 (g(k; j))] � f (k; j(k)) + v1 (g (k; j(k))) + "

for some " > 0. Then

H (Tv1(k); k)�H (Tv2(k); k) � v1 (g(k; j(k)))� v2 (g(k; j(k))) + " � kv1�v2k+ "

Due to A3 jH(k; B1)�H(k; B2)j � 1
l
jB1 �B2j for some constant l 2 (0; 1) indepen-

dently of k and therefore

Tv1(k)� Tv2(k) � l kv1�v2k+ l"

Since " > 0 and k was arbitrary kTv1 � Tv2k � l kv1 � v2k : This shows that T is a
Lipschitz transformation of the space of bounded functions K ! R . Now if v0 = 0; then
since sup

j
f(k; j) � 0

v0 = Tv0 � v0 and therefore

vn+1 = Tvn � vn for all n

Also, if v is continuous, then so is Tv since K � J is compact. Therefore B� = lim
n
vn is

continuous, this proves (ii).
Proof of (iii) Suppose B > B1 > B�(k) and let t! (k(t); B(t); j(t)) solve (10) and

(11) with B = B(0); k = k(0): Compare this to the solution t ! (k1(t); B1(t); j(t)) of
(10) and (11) with k1(0) = k; B1(0) = B1 and the same investment.

B(t)� B1(t) � c (B(t� 1)� B1(t� 1)) � ::: � ct (B(0)� B1(0))
B(t) � ct (B(0)�B1(0)) +B1(t) � ct (B(0)� B1(0))
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Similarly, if B�(k) > B1 > B we �nd

B1(t)� B(t) � ct (B1(0)�B(0))

and

�ct (B1(0)� B(0)) +B1(t) � B(t)

As B1(�) is bounded this proves (iii), that is

B(t) � ct1 for large t; c1 < c

in the �rst case and

B(t) � �ct1 for large t; c1 < c

in the second case.

9.3 Appendix III: The Continuous Time Model

Here we consider a continuous (deterministic) model of the investment process with bor-
rowing and the corresponding function of creditworthiness. It is, however, only the ap-
proximation by a discrete model of the type of the proceeding section that will be treated
here.

We �rst derive heuristically a H.J.B. equation which implicitly determines the credit-
worthiness of a capital stock. This equation in general does not admit a classical solution,
i.e. is not di�erentiable. We propose an Euler approximation both as interpretation and
as a numerical procedure. This might be useful also if the type of H.J.B. equation con-
sidered here turns up in a di�erent context. A more detailed analysis of an example with
univariate capital stock will be given in the subsequent sections.

As in the proceeding section k(t) will denote the capital stock at time t :

k(t) 2 [0;+1)m

B(t) is the level of debt accumulated at time t . There are two state equations

_k(t) = G (k(t); j(t)) ; k(0) = k (A10)

_B(t) = H (k(t); B(t))� fk(t); j(t)); B(0) = B0; (A11)

j(t) is the investment rate at time t; a control variable:

j(t) 2 R:n

We assume reversible investment. Precise assumptions on G, the capital growth function,
H=B, the rate of interest and f , the net income rate function or production function,
will be given below. What might be new for the reader is that the interest rate may also
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depend on k: As before there will be a function k ! B�(k) called creditworthiness which
is the supremum of all debt levels B which are subcritical for k :

B�(k) = sup fB jB subcritical for kg
Here B is called subcritical for k if there is a function t ! (k(t); B(t); j(t)) which solves
(A10) (A11) and

sup
t�0

B(t) <1:

De�nition: k is called an equilibrium if there is an investment j such that the corre-
sponding solution to (A10)-(A11) with B(0) = B�(k) is constant. In other words if it is
possible to simultaneously preserve the capital stock and its creditworthiness.
As is demonstrated in section 4 equilibria will be shown to satisfy equations of the form
F (k) = 0:

The H.J.B. equation for B� is given by

H (k; B�(k)) =Max
j

�
f(k; j) + (

d

dk
B�(k))G(k; j)

�
(A12)

Since, in general B� will not be (continuously) di�erentiable in all points B� there is a
need to explain in which sense B� solves (A12). One way is to write

(
d

dk
B�(k))G(k; j)

as a directional derivative: �x j =const. and let x(t) = (k(t); B(t)) solve (A10), (A11).
Let

DjB
�(k) =

d

dt
jt=0 B

� (k(t))

be the directional derivative of B� at k in the direction of _x(0): Then (A12) may be
written as

H (k; B�(k)) = Max
j

[f(k; j) +DjB
�(k)] (A13)

This form of the H.J.B. equation only requires that directional derivatives of B� exist. We
do not pursue this approach further. For a derivation of (A12) and (A13) respectively we
assume that B� is continuously di�erentiable and has directional derivatives respectively.

Let (k(t); B(t); j(t)) solve (A10), (A11) with B = B(0) < B�(k) : then

1

t
B(t) <

1

t
B�(k(t))

for small t > 0 and

1
t

t

0
H(k(s); B(s)) � 1

t

t

0
(DjB

�k(s) + f (k(s); j(s))) ds

= 1
t

t

0
d
ds
B�(k(s)) + f(k(s); j(s))ds
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Passing to the limit as t tends to zero we obtain

H(k; B) � sup
j
[f(k; j) +DjB

�(k)] = sup
j

�
f(k; j) + (

d

dk
B�(k))G(k; j)

�

and therefore

H (k; B�(k)) � sup
j
[f(k; j) +DjB

�(k)] = sup
j

�
f(k; j) + (

d

dk
B�(k))G(k; j)

�

and similarly "�".
We now de�ne the Euler approximation, i.e. a time discrete approximation of (A10),

(A11). Consider a solution

t! (k(t); B(t); j(t))

of (A10), (A11). The function t! (k(t); B(t)) may be approximated by a piecewise linear
function with step size s :

t! (ks(t); Bs(t)) ; t = 0; s; 2s; 3s; :::

de�ned recursively by

(ks(t+ s); Bs(t + s)) = (ks(t); Bs(t)) + s (G (ks(t); j(t)) ; H (ks(t); Bs(t))� f (ks(t); j(t)))

Put

hs(k; B) := B + s(H(k; B))

gs(k; j) := k + s(G(k; j))

Then t! (ks(t); Bs(t)) solves

k(t+ s) = gs (k(t); j(t)) ; k(0) = k (A14)

B(t + s) = hs (k(t); B(t))� sf (k(t); j(t)) ; B(0) = B (A15)

which is of the form (A7), (A8) of the previous section. Call the debt B (c; s) - subcritical
for k if there is a solution t! (k(t); B(t); j(t)) to (A14), (A15) which satis�es

sup
t�0

kj(t)k � c (A16)

and

sup
t�0

B(t) < +1

42



Let

B�
c;s(k) = sup fB j B(c; s) - subcritical for kg

B�
c;s(k) de�ning creditworthiness of k for the time discrete version of (A10), (A11) with

step size s, when investment rate j is restricted to kjk � c:
The purpose of this section is to prove

Theorem 2 B�(k) = sup
c>0

lim
s!0

B�
c;s(k):

Remark In order to obtain an algorithm to simulate B�(k), the k - space has to be dis-
cretized somehow. It is possible to derive discretization error bounds (see Falcone
(1978) or lemma 4, 5 in Sieveking and Semmler 1998a). These bounds however are
weak and not suÆcient in practice. In general dynamic programming, i.e. itera-
tive solution of the discrete H.J.B. equation is stable but converges very slowly.43

Unfortunately s! B�
c;s(k) is not monotone (i.e. increasing in s) as it stands.

Assumptions on G;H; f :

A4: the state equation for the capital stock is k = G(k; j) = j � �(k) where
�(k) = (�1(k); :::�n(k)) and each �i(k) is a function of k = (k1; :::kn) 2
[0;+1)n which is Lipschitz continuous: k�(k)� �(k�)k � L kk � k�k for some
constant L and all k 2 [0;+1)n : In addition we assume that for every con-
stant c there is r > c such that �i(k) � c whenever ki > r for all i = 1; 2; :::n:
A5: the state equation for the debt is _B = H(k; B) � f(k; j) where H is a
continuous function H : [0;1]n � R ! R such that h(0; B) = 0; �0(B �
B�) � H(k; B) � H(k; B�) � �1(B � B�) for some positive �0 < �1 and all
k 2 (0;+1)n; B�; B 2 R:
f : [0;1)n � R

n ! R
n is a continuous function such that for f(k; j) =

f(k; j1;:::jn) is a decreasing function of every ji(i = 1; 2; :::n) and every con-
stant r > 0 there exist L(r); c0(r); c1(r) > 0 and a number p � 1 such that

jf(k; j)� f(k; j�j � L(r) kj � j�k ; (kkk � r; j; j� 2 R
n)

jf(k; j)j � c0(r) + c1(r) jjjpp ; (kkk � r; j 2 R
n)

Furthermore f(k; j) is concave in j:
The proof of the Theorem 2 is based on the following two Lemma

Lemma 1 Suppose B < B�(k): Then there is an investment function j(t) such that the
corresponding solution t! (k(t); B(t); j(t)) to (A10), (A11) satis�es

43This results from the curse of dimension. For further treatment of the dynamic programming algo-
rithm suggested here, see Sieveking and Semmler (1997).
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B(T ) < 0

for some T > 0:

Lemma 2 B�(k) = sup
c�0

B�
c (k) (k 2 (0;+1)n)

For the proofs of Lemmas 1 and 2 and Theorem 2, see Semmler and Sieveking (1998a).
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