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1 Introduction

Recently, economists have begun to build models with an endogenously determined growth

rate and pollution in order to understand the links between economic growth and pollu-

tion. Basically, two different ways of modelling can be distinguished. On the one hand,

there are models in which economic activity gives rise to pollution. That line of research

goes back to Forster (1973) and was extended by Gruver (1976).

On the other hand, there are models in which a stock of natural resources can be

exploited which are used for production. An analogous formulation, from the technical

point of view, is the assumption of economic activities which cause pollution which, for

its part, negatively affects the environmental quality. Examples of that type of research

within an endogenous growth model are the papers by Bovenberg and Smulders (1995)

or Gradus and Smulders (1993)1.

However, most of those models, when analyzing growth effects, assume that pollu-

tion or the use of resources influences prodution possibilities either through affecting the

accumulation of human capital or by directly entering the production function. In this

paper we intend to analyze a growth model where pollution only affects utility of a repre-

sentative household but does not directly affect production possibilities. But there is an

indirect effect of pollution by determining in a way the abatement activities which require

resources. As to pollution we assume that it is an inevitable by-product of prodution and

can be reduced by abatement activities but not completely. Concerning the growth rate

we suppose that it is determined endogenously and that public investment in a productive

public capital stock brings about sustained long-run per-capita growth. Thus, we adopt

that type of endogenous growth models which was initiated by Barro (1990) and Futagami

et.al. (1993).

The goal of our research then is to study how the balanced growth rate is affected by

a shift of preferences towards a less polluted environment or by the use of a less polluting

1For a good survey of how to model pollution in growth models see Smulders (1995).
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production technology. Further, we also intend to analyze growth effects of variations in

tax rates, like a capital income tax rate or pollution tax rate.

The rest of the paper is organized as follows. In section 2 we present the basic model.

In section 3 we solve the model and demonstrate that under a slight technical assumption

there exists a unique balanced growth path (BGP) which is a saddle path. Section 4

gives growth effects of fiscal policy for our model on the BGP and section 5 concludes the

paper.

2 The Model

We consider an economy which comprises three sectors: the household sector, a productive

sector, and the government.

2.1 The Household

Our economy consists of many identical households which can be represented by one repre-

sentative household or individual. The goal of this houshold is to maximize its discounted

stream of utility arising from consumption C(t) subject to its budget constraint:

J(·) ≡ max
C(t)

∫ ∞
0

e−ρtV (t)1−σ/(1− σ)dt, (1)

with V (t) the instantaneous subutility function which depends positively on the level of

consumption and negatively on effective pollution. V (t) takes the Cobb-Douglas form

V (t) = (C(t)PE(t)−ξ), where ξ > 0 gives the disutility arising from effective pollution2.

1/σ > 0 gives the intertemporal elasticity of substitution of private consumption between

two points in time for a given level of effective pollution and ρ in (1) is the subjective

discount rate.

2For a survey of how to incorporate pollution in the utility function see Smulders (1995), p. 328-29.
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The budget constraint is given by3

K̇ + C = w(1− τw) + rK(1− τK). (2)

The budget constraint (2) states that the individual has, as usual, to decide how much to

consume and how much to save, thus increasing consumption possibilities in the future.

The depreciation of physical capital is assumed to equal zero.

w in the budget constraint is the wage rate and τw ∈ (0, 1) is the tax on labour income.

The labour supply L is constant, supplied inelastically, and we normalize L ≡ 1. r is the

return to per-capita capital K and τK ∈ (0, 1) stands for the capital income tax rate.

Assuming that a solution to (1) subject to (2) exists4 we can use the current-value

Hamiltonian to describe that solution. The Hamiltonian function is written as H(·) =

(CP−ξ
E )1−σ/(1− σ) + λ(−C + w(1− τw) + rK(1− τK)), with λ the costate variable. The

necessary optimality conditions are given by

λ = C−σP
−ξ(1−σ)
E , (3)

λ̇/λ = ρ− r(1− τK), (4)

K̇ = −C + w(1− τw) + rK(1− τK). (5)

Since the Hamiltonian is concave in C and K jointly, the necessary conditions are also

sufficient if in addition the transversality condition at infinity limt→∞ e−ρtλ(t)(K(t) −

K?(t)) ≥ 0 is fulfilled with K?(t) denoting the optimal value. Moreover, strict concavity

in C also guarantees that the solution is unique (cf. Seierstad and Sydsaeter (1987), pp.

234-235).

3In what follows we will suppress the time argument if no ambiguity arises.
4A formal proof can be obtained by adopting the proof of proposition 1 in Greiner and Semmler

(1996).
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2.2 The Productive Sector

The productive sector in our economy can be represented by one firm which chooses inputs

in order to maximize profits and which behaves competitively. As to pollution, we suppose

that it is the result of aggregate production. In particular, we assume that pollution P (t)

is a by-product of per-capita output Y (t), i.e. P (t) = ϕY (t), with ϕ = const. > 0. Thus,

we follow the line invited by Forster (1973) and worked out in more details by Luptacik

and Schubert (1982).

Pollution is taxed at the rate τp ∈ (0, 1) and the firms take into account that one unit

of output causes ϕ units of pollution for which they have to pay τpϕ per unit of output.

The per-capita production function is given by,

Y = KαH1−α, (6)

with H denoting the stock of productive public capital and α ∈ (0, 1) gives the per-capita

capital share. Recall that K denotes per-capita capital and that L is normalized to one.

Assuming competitive markets and taking public capital as given the first-order con-

ditions for a profit maximum are obtained as

w = (1− τpϕ)(1− α)KαH1−α, (7)

r = (1− τpϕ)αKα−1H1−α. (8)

2.3 The Government

The government in our economy uses resources for abatement activities A(t) which reduce

total pollution. Abatement activities A ≥ 0 are financed by the tax revenue coming from

the tax on pollution, i.e. A(t) = ητpP (t), with η > 0. If η < 1 not all of the pollution

tax revenue is used for abatement activities and the remaining part is used for public

investment in the public capital stock Ip, Ip ≥ 0, in addition to the tax revenue resulting

from the taxation of labour and capital income. For η > 1 a certain part of the tax
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revenue resulting from the taxation of labour and capital income is used for abatement

activities in addition to the tax revenue which is gained by taxing pollution.

However, pollution cannot be eliminated completely. We call that part of pollution

which remains in spite of abatement activites the effective pollution PE(t). In particular,

we follow Gradus and Smulders (1993) and Lighthart and van der Ploeg (1994) and take

the following specification

PE =
P

Aβ
= P 1−βη−βτ−β

p , 0 < β ≤ 1. (9)

The limitation β ≤ 1 assures that a positive growth rate of aggregate production goes

along with an increase in effective pollution, β < 1, or leaves effective pollution unchanged,

β = 1. We make that assumption because we think that it is realistic to assume that

higher production also leads to an increase in pollution, although at a lower rate because

of abatement. Looking at the world economy that assumption is certainly justified.

Moreover, the government in our economy runs a balanced budget at any moment in

time. Thus, the budget constraint of the government is written as

Ip = τpP (1− η) + wτw + rKτK . (10)

The evolution of public capital is described by

Ḣ = Ip, (11)

where for simplicity we again assume that the depreciation of public capital is zero. As

to the governmental decision rules, we do not try to find out the second best optimal

level for the tax rates or the amount of abatement activities nor the socially optimal

decisions for consumption and the fiscal parameters. Instead, we only consider how the

growth rate reacts to changes in fiscal policy. This seems to be of more relevance for real

world economies with a democratic government because government behaviour may be

hampered by bureaucracy and by political or institutional constraints (as to this argu-

mentation see also van Ewijk and van de Klundert (1993)).
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3 Equilibrium Conditions

Combining the budget constraint of the government and the equation describing the

evolution of public capital over time, the accumulation of public capital can be written as

Ḣ = −ηϕτpK
αH1−α +τpϕKαH1−α +τww+rKτK = KαH1−α(ϕτp(1−η)+(1−ϕτp)τw(1−

α) + (1 − ϕτp)τKα), where we have used (7) and (8). To obtain the other differential

equations describing our economy we note that the growth rate of private consumption is

obtained from (3) and (4) as Ċ/C = −ρ/σ+α(1−τK)(1−ϕτp)(H/K)1−α/σ−ξ(Ẏ /Y )(1−

σ)(1− β)/σ, with r taken from (8) and where we have used ṖE/PE = (1− β)Ẏ /Y. Using

(7) and (8) K̇/K is obtained from (5) as K̇/K = −C/K + (H/K)1−α(1 − ϕτp)((1 −

τw)(1−α)+α(1− τK)). It should be noted that the accumulation of public capital which

is positive for Ip > 0 is the source of sustained economic growth in our model and makes

the growth rate an endogenous variable.

Thus, the dynamics of our model are completely described by the following differential

equation system:

Ċ

C
= −ρ

σ
+ σ−1(1− τK)(1− ϕτp)α

(
H

K

)1−α

− ξ(1− β)
1− σ

σ

(
Ẏ

Y

)
, (12)

K̇

K
= −C

K
+
(

H

K

)1−α

(1− ϕτp) ((1− τw)(1− α) + α(1− τK)) , (13)

Ḣ

H
=

(
H

K

)−α

(ϕτp(1− η) + (1− ϕτp)(τw(1− α) + τKα)) . (14)

The initial conditions K(0) and H(0) are given and fixed and C(0) can be chosen freely

by the economy. Further, the transversality condition limt→∞ e−ρtλ(t)(K(t)−K?(t)) ≥ 0

must be fulfilled, with K?(t) denoting the optimal value and λ determined by (3).

In the following we will first examine our model as to the existence and stability of a

balanced growth growth (BGP) on which all variables grow at the same constant rate.

In case of sustained growth the growth rates of C, K, and H are always positive and

we first have to perform a change of the variables. Defining c = C/K and h = H/K

and differentiating these variables with respect to time we get ċ/c = Ċ/C − K̇/K and
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ḣ/h = Ḣ/H − K̇/K. A rest point of this new system then corresponds to a BGP of

our original economy where all variables grow at the same constant rate. Using Ẏ /Y =

α(K̇/K) + (1− α)(Ḣ/H) the system describing the dynamics around a BGP is given by

ċ

c
= −ρ

σ
+

α(1− τK)h1−α(1− ϕτp)

σ
− (1− α)ξ(1− β)

1− σ

σ
h−α ·

(ϕτp(1− η) + (1− ϕτp)(τw(1− α) + τKα)) +
(
1 + αξ(1− β)

1− σ

σ

)
·

(c− h1−α(1− τpϕ)((1− τw)(1− α) + α(1− τK))) (15)

ḣ

h
= c− h1−α(1− ϕτp)((1− τw)(1− α) + α(1− τK)) +

h−α(ϕτp(1− η) + (1− ϕτp)(τw(1− α) + τKα)). (16)

Concerning a rest point of system (15) and (16) it should be noted that we only consider

interior solution. That means that we exclude the economically meaningless stationary

point c = h = 0 such that we can consider our system in the rates of growth. As to the

existence and stability of a BGP we can state proposition 1.

Proposition 1 If 1+ ξ(1−β)(1−σ)/σ ≥ 0 there exists a unique BGP which is a saddle

path.

Proof: To prove that proposition we first calculate c∞ on a BGP which is obtained from

ḣ/h = 0 as c∞ = h1−α(1−ϕτp)((1−τw)(1−α)+α(1−τK))−h−α(ϕτp(1−η)+(1−ϕτp)(τw(1−

α) + τKα)). Inserting c∞ in (15) gives after some modifications f(·) ≡ ċ/c = −ρ/σ + (1−

τK)(1−ϕτp)αh1−α/σ−h−α(ϕτp(1−η)+(1−ϕτp)(τw(1−α)+τKα))(1+ξ(1−β)(1−σ)/σ),

with limh→0 f(·) = −∞ (for Ip > 0) and limh→∞ f(·) = ∞. A rest point for f(·), i.e. a

value for h such that f(·) = 0 holds, then gives a BGP for our economy. Further, we have

∂f(·)/∂h = (1− τK)(1−ϕτp)(1−α)αh−α/σ + αh−α−1(ϕτp(1− η) + (1−ϕτp)(τw(1−α) +

τKα))(1 + ξ(1 − β)(1 − σ)/σ) > 0, for Ip > 0 and 1 + ξ(1 − β)(1 − σ)/σ ≥ 0. Note that

on a BGP Ḣ/H > 0 must hold implying Ip > 0 and, thus, ϕτp(1− η) + (1− ϕτp)(τw(1−

α) + τKα) > 0. ∂f/∂h > 0 for h such that f(·) = 0 means that f(·) cannot intersect the

horizontal axis from above. Consequently, there exists a unique h∞ such that f(·) = 0

and, therefore, a unique BGP.
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The saddle path property is shown as follows. Denoting with J the Jacobian of (15) and

(16) evaluated at the rest point we first note that det J < 0 is a necessary and sufficient

condition for saddle path stability, i.e. for one negative and one positive eigenvalue. The

Jacobian in our model can be written as

J =

 1 + αξ(1− β)(1− σ)/σ φ

1 υ

 ,

with φ given by φ = (1−ϕτp)(1−α)h−α(−(1−α)(1− τw)−α(1− τK) + α(1− τK)/σ)−

(ξ(1−β)(1−σ)/σ)(1−α)αh−α−1[h(1−ϕτp)((1−α)(1− τw)+α(1− τK))− (ϕτp(1− η)+

(1−ϕτp)(τw(1−α)+ τKα))] and υ = −αh−α−1(ϕτp(1−η)+(1−ϕτp)(τw(1−α)+ τKα))−

(1− α)h−α(1− ϕτp)((1− α)(1− τw) + α(1− τK)). The determinant can be calculated as

det J = −(1− τK)α(1−α)h−α/σ−αh−α−1(ϕτp(1− η) + (1−ϕτp)(τw(1−α) + τKα))(1 +

ξ(1− β)(1− σ)/σ) < 0, for (1 + ξ(1− β)(1− σ)/σ) ≥ 0. 2

That proposition states that our model is both locally and globally determinate, i.e.

there exists a unique value for c(0) such that the economy converges to the BGP in the

long run5. A prerequisite for that outcome is 1+ ξ(1−β)(1−σ)/σ ≥ 0. If that inequality

is not fulfilled we probably can observe multiple steady states. An explicit study of that

phenomenon, however, is beyond the scope of this paper and in the following we will

confine our investigations to the case 1 + ξ(1 − β)(1 − σ)/σ ≥ 0 throughout the paper

which seems to be more likely. For β = 1, for example, that inequality is always fulfilled.

For β < 1 it is also fulfilled provided σ < 1 holds. For σ > 1, however, the expression

depends on the values of ξ, β and σ. In order to show that our assumption 1 + ξ(1 −

β)(1 − σ)/σ ≥ 0 is only slight we consider the range of ξ which is compatible with this

inequality. For that inequality to be fulfilled we see that ξ ≤ σ/(σ − 1)(1− β) must hold

implying that the higher σ the smaller ξ has to be. As to the values for σ we know that

most empirical estimates for σ reach the conclusion that σ takes on values at or above

5For a definition of local and global determinacy see e.g. Benhabib and Perli (1994) or Benhabib,

Perli, and Xie (1994).
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unity (cf. Blanchard and Fischer (1989), p. 44). Lucas (1990) in his paper takes σ = 2.0

but asserts that even σ = 2.0 seems high. So taking σ = 2.0 as a plausible upper bound

seems to be reasonable. Then, we see that ξ can be out of the range [0, 2(1 − β)−1].

That means that in case of very ineffective abatement activities (β only slightly larger

zero) one additional unit of pollution raises disutility more than proportional in relation

to one additional unit of the consumer good. Even if pollution is relatively high such a

value for ξ will reflect consumers’ preferences sufficiently well. Therefore, our assumption

1 + ξ(1 − β)(1 − σ)/σ ≥ 0 does not impose too strong a limitation from the economic

point of view.

It should also be mentioned that proposition 1 implies that σ must be larger one for

multiple BGPs to be possible. In other papers a small value for σ is a necessary condition

for multiple steady states (see for example Greiner and Semmler (1996)). As to that

point it must be stated that the result in our paper changes if we allow for β > 1 which

would be feasible from the technical point of view but which seems to be less realistic.

Then, multiple BGPs are the more likely the smaller σ. It is our assumption β ≤ 1 which

determines the conditions necessary for multiple BGPs.

That also makes sense from an economic point of view: Global indeterminacy means

that the economy may either converge to the BGP with the high balanced growth rate or

to the BGP with the low balanced growth rate in the long run. So it may either choose a

path with a higher initial consumption level (but lower initial investment) or a path with

a lower level of initial consumption (but higher initial investment). In the latter case, the

household must be willing to forgo current consumption and shift it into the future. If

production and, thus, consumption do not have negative effects in form of pollution then

the household will do that only if he has a high intertemporal elasticity of substitution

of consumption (cf. Benhabib and Perli (1994, p. 114)). However, if production and,

thus, consumption do have negative repercussions because they lead to a rise in effective

pollution (if β is small) then the household is willing to forgo current consumption even
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with a low intertemporal elasticity of substitution because renouncing to consumption

also has a positive effect since effective pollution is then lower, too, which raises current

utility.

Proposition 1 shows us that our economy generates long-run per capita growth. As

concerns sustainable growth we adopt the definition by Byrne (1997). According to that

concept sustainable growth is given if the growth rate of instantaneous utility is positive,

that is if V̇ /V = Ċ/C − ξṖE/PE = Ċ/C − ξ(1− β)Ẏ /Y > 0 holds

4 Growth Effects of Fiscal Policy

In the last section we have demonstrated that under a slight additional assumption our

model has one unique BGP which is a saddle path so that our model, including the

transitional dynamics, is completely characterized. In this section we will analyze how

the long-run balanced growth rate of our economy reacts to fiscal policy. But before doing

that we analyze the impact of varying ξ, the parameter determining the disutility arising

form pollution, and the impact of introducing a less polluting production technology, i.e.

the impact of a decline in ϕ.

The balanced growth rate which we denote with g is given by (14) as g = Ḣ/H =

(H/K)−α (ϕτp(1− η) + (1− ϕτp)(τw(1− α) + τKα)) . Differentiating g with respect to ξ

leads to ∂g/∂ξ = −αh−α−1 (ϕτp(1− η) + (1− ϕτp)(τw(1− α) + τKα)) ∂h/∂ξ. The sign of

∂h/∂ξ can be obtained by implicitly differentiating h with respect to ξ from f(·) = 0.

This gives ∂h/∂ξ = g(1− β)(1− σ)/(σ∂f/∂h). From the proof of proposition 1 we know

that ∂f/∂h > 0 such that we can state the following result.

Proposition 2 (i) For β < 1 a shift of preferences towards less pollution, i.e. an increase

in ξ, lowers (raises) the balanced growth rate if σ < (>)1.

(ii) If β = 1 a shift of preferences towards less pollution does not affect the balanced

growth rate.
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That proposition states that a shift towards greener preferences may either raise or lower

the long-run balanced growth rate, depending on the intertemporal elasticity of substi-

tution as long as a higher growth rate of output raises effective pollution (if β < 1). To

interpret this outcome we have to look at equation (3), i.e. the maximum principle stating

that marginal utility of consumption (r.h.s.) equals the shadow price of the savings of

the household (l.h.s.). If σ > 1 a shift towards greener preferences, i.e. an increase in ξ,

reduces the marginal product of consumption. That is the r.h.s. in (3) becomes smaller.

Since the shadow price of capital is not changed by an increase in ξ the l.h.s. remains

the same. Consequently, consumption has to rise such that the l.h.s. declines in order for

(3) to hold. This implies that the household raises the level of consumption and reduces

savings leading to a lower balanced growth rate. It should be noted that this is just

opposite to the result derived by Smulders and Gradus (1996). The reason for this result

is to be seen in the fact that in Smulders and Gradus (1996) pollution has a direct effect

on production possibilities, in contrast to our model, thus affecting the shadow price of

savings.

If abatement activities are very effective (β = 1) implying that a higher growth rate of

production does not affect the rate of growth of effective pollution, a shift of preferences

towards less pollution does not affect the balanced growth rate in the economy. That is

obvious because pollution does not affect production possibilities directly. Further, the

growth rate of effective pollution does not affect the rate of growth of instantaneous utility.

Therefore, a shift of preferences towards less pollution will not affect the household’s

saving-consumption decision and leave the balanced growth rate unchanged.

Let us, in a next step, investigate the effects of using a less polluting production

technology, which is modelled by a lower value for ϕ.

To analyze increases in ϕ we differentiate g with respect to that parameter giving

∂g

∂ϕ
= h−ατp(1− η − τw(1− α)− ατK)− zαh−α−1 ∂h

∂ϕ
,

with z = (ϕτp(1 − η) + (1 − ϕτp)(τw(1 − α) + τKα)). ∂h/∂ϕ is obtained by implicit
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differentiation from f(·) = 0 (from the proof of proposition 1) as

∂h

∂ϕ
=

τp(1 + ξ(1− β)1−σ
σ

)(1− η − τw(1− α)− ατK) + τp(1− τK)αh/σ

α(1− τK)(1− ϕτp)((1− α)/σ) + αh−1z(1 + ξ(1− β)(1− σ)/σ)
.

For (1− η − τw(1− α)− ατK) = 0 we get ∂g/∂ϕ < 0. To get results for (1− η − τw(1−

α)− ατK) 6= 0 we insert ∂h/∂ϕ in ∂g/∂ϕ. That gives

∂g

∂ϕ
= h−ατp(1− η − τw(1− α)− ατK) ·(

1− z[(1− η − τw(1− α)− ατK)(1 + ξ(1− β)(1− σ)/σ) + hα(1− τK)/σ]

(1− η − τw(1− α)− ατK)[z(1 + ξ(1− β)1−σ
σ

) + h(1− τK)(1− τpϕ)1−α
σ

]

)
.

From that expression it can be seen that the expression in brackets is always positive for

(1− η − τw(1− α)− ατK) < 0 such that ∂g/∂ϕ < 0. For (1− η − τw(1− α)− ατK) > 0

it is immediately seen that

∂g

∂ϕ
> = < 0 ⇔ (1− ϕτp)(1− α)(1− η − τw(1− α)− ατK) > = < α z,

which simplifies to

∂g

∂ϕ
> = < 0 ⇔ (1− η)(1− α) > = < ϕτp(1− η) + (1− ϕτp)(τw(1− α) + ατK).

The r.h.s. of that expression is equivalent to IP /Y. Thus we have proved the following

proposition.

Proposition 3 If (1 − η − τw(1 − α) − ατK) ≤ 0 the use of a less polluting technology

raises the balanced growth rate. For (1 − η − τw(1 − α) − ατK) > 0 the use of a less

polluting technology raises (leaves unchanged, lowers) the balanced growth rate if

Ip

Y
> (=, <)(1− α)(1− η).

To interpret that result we first note that a cleaner production technology (i.e. a lower

ϕ) shows two different effects: on the one hand it implies that less resources are needed

for abatement activities leaving more resources for public investment. That effect leads

to a higher ratio H/K, thus raising the marginal product of private capital r in (8), that
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is the return on investment rises. Further, a less polluting technology implies that the

firm has to pay less pollution taxes (the term (1− τpϕ) rises) which has also a stimulating

effect on r, which can be seen from (8) and which also raises the incentive to invest. On

the other hand, however, less pollution implies that the tax revenue resulting from the

taxation of pollution declines and, thus, productive public spending. That effect tends to

lower the ratio H/K and, therefore, the marginal product of private capital which tends

to lower the balanced growth rate.

If η ≥ 1 − τw(1 − α) − ατK , i.e. if much of the pollution tax is used for abatement

activities a cleaner technology always raises the balanced growth rate. In that case, the

negative growth effect of a decline in the pollution tax revenue is not too strong since

most of that revenue is used for abatement activities which are non-productive anyway.

If, however, η < 1 − τw(1 − α) − ατK , i.e. a good deal of the pollution tax is used for

productive government spending, a cleaner technology may either raise or lower economic

growth. It increases the balanced growth rate if the share of public investment per GDP

is larger than a constant which positively depends on the elasticity of aggregate output

with respect to public capital and negatively on η, and vice versa.

Let us next study growth effects of increasing the tax rates. First, we will analyze

the impact of variations in the capital income tax rate. Proposition 4 demonstrates that

a rise in that tax may have positive or negative growth effects and that there exists a

growth maximizing capital income tax rate.

Proposition 4 The capital income tax rate maximizing the balanced growth rate is given

by

τK = (1− α)(1− τw)− ϕτp(1− η)/(1− ϕτp).

Proof: To calculate growth effects of varying τK we take the balanced growth rate g from

(14) and differentiate it with respect to that parameter. Doing so gives

∂g

∂τK

= h−αα(1− τpϕ)

(
1− z

1− τpϕ

∂h

∂τK

1

h

)
,

13



with z = (ϕτp(1 − η) + (1 − ϕτp)(τw(1 − α) + τKα)). ∂h/∂τK is obtained by implicit

differentiation from f(·) = 0 leading to

∂h

∂τK

1

h
=

(1− ϕτp)(1 + ξ(1− β)1−σ
σ

+ h/σ)

h(1− τK)(1− ϕτp)((1− α)/σ) + z(1 + ξ(1− β)(1− σ)/σ)
.

Inserting h−1∂h/∂τK in ∂g/∂τK we get

∂g

∂τK

= h−αα(1− τpϕ)

(
1− z(h/σ) + z(1 + ξ(1− β)(1− σ)/σ)

h(1− τK)(1− ϕτp)((1− α)/σ) + z(1 + ξ(1− β)(1− σ)/σ)

)
,

showing that

∂g

∂τK

> = < 0 ⇔ (1− τK)(1−ϕτp)(1−α) > = < ϕτp(1− η) + (1−ϕτp)(τw(1−α) + τKα).

Solving for τK gives

∂g

∂τK

> = < 0 ⇔ τK < = > (1− α)(1− τw)− ϕτp(1− η)/(1− ϕτp)

That shows that the balanced growth rate rises with increases in τK as long as τK is

smaller than the expression on the r.h.s. which is constant. 2

That proposition shows that the growth maximizing capital income tax rate does

not necessarily equal zero in our model which was to be expected since the government

finances productive public spending with the tax revenue. There are two effects of the

capital income tax rate: on the one hand, the capital income tax lowers the marginal

product of private capital and, therefore, is a disincentive for investment. On the other

hand, the government finances productive public spending with its tax revenue leading

to a rise in the ratio H/K, which raises the marginal product of private capital r and

which has, as a consequence, a positive effect on economic growth. However, boundary

solutions, i.e. τK = 0 or τK = 1, cannot be excluded, too. Whether there exists an interior

or a boundary solution for the growth maximizing capital income tax rate depends on

the numerical specification of the parameters ϕ, τp, and η. Only for ϕτp = 0 or η = 1 the

growth maximizing tax rate is always in the interior of (0, 1).

14



Concerning the impact of the wage tax rate on the growth maximizing capital income

tax rate, it can easily be seen that the latter negatively varies with the tax on labour.

As to the tax on pollution the growth maximizing capital income tax rate negatively

varies with that tax if η < 1. For η > 1 the growth maximizing capital income tax rate

is the higher the higher the tax on pollution τp. The interpretation of that result is as

follows: if η < 1 the government uses a part of the pollution tax revenue for the creation

of public capital which has positive growth effects. Increasing the tax on pollution implies

in that case that a part of the additional tax revenue is used for productive investment in

the creation of public capital. Consequently, the capital income tax rate can be reduced

without having negative growth effects. It should be noticed that a decrease in the capital

income tax rate shows an indirect positive growth effect because it implies a reallocation

of private resources from consumption to investment. In contrast to that, if η > 1 the

whole pollution tax revenue is used for abatement activities. Raising the pollution tax

rate in that situation implies that the additional tax revenue is used only for abatement

activities but not for productive public spending. Consequently, the negative indirect

growth effect of a higher pollution tax (through decreasing the return on capital r) must

be compensated by an increase in the capital income tax rate. It should be noted that

the latter also has a negative indirect growth effect but that one is dominated in this case

by the positive direct growth effect of higher productive public spending.

Let us next analyze growth effects of a rise in the wage tax rate and the pollution tax

rate. Proposition 5 gives the result.

Proposition 5 Raising the wage tax rate always increases the balanced growth rate. For

(1− η − τw(1− α)− ατK) ≤ 0 a rise in the pollution tax rate always lowers the balanced

growth rate. If (1−η−τw(1−α)−ατK) > 0 the pollution tax rate maximizing the balanced

growth rate is determined by

τp =

(
1

ϕ

)(
1− η − τw(1− α)− ατK − α(1− η)

1− η − τw(1− α)− ατK

)
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which is equivalent to
Ip

Y
= (1− α)(1− η).

Proof: To calculate growth effects of varying τw we take the balanced growth rate g again

from (14) and differentiate it with respect to that parameter. Doing so gives

∂g

∂τw

= h−α(1− α)(1− τpϕ)

(
1− α z

(1− τpϕ)(1− α)

∂h

∂τw

1

h

)
,

with z = (ϕτp(1 − η) + (1 − ϕτp)(τw(1 − α) + τKα)). ∂h/∂τw is obtained by implicit

differentiation from f(·) = 0 leading to

∂h

∂τw

1

h
=

(1− ϕτp)(1− α)(1 + ξ(1− β)(1− σ/σ))

h(1− τK)(1− ϕτp)α((1− α)/σ) + αz(1 + ξ(1− β)(1− σ)/σ)
.

Inserting h−1∂h/∂τw in ∂g/∂τw we get

∂g

∂τw

= h−α(1−α)(1−τpϕ)

(
1− z(1 + ξ(1− β)(1− σ)/σ)

z(1 + ξ(1− β)(1− σ)/σ) + h(1− τK)(1− τpϕ)(1− α)/σ

)

which demonstrates that ∂g/∂τw > 0.

Doing the same procedure for the pollution tax rate we get

∂g

∂τp

= h−αϕ(1− η − τw(1− α)− ατK) ·(
1− z[(1− η − τw(1− α)− ατK)(1 + ξ(1− β)(1− σ)/σ) + hα(1− τK)/σ]

(1− η − τw(1− α)− ατK)[z(1 + ξ(1− β)1−σ
σ

) + h(1− τK)(1− τpϕ)1−α
σ

]

)
.

From that expression it is immediately seen that the expression in brackets is always

positive for (1 − η − τw(1 − α) − ατK) < 0 such that ∂g/∂τp < 0. For (1 − η − τw(1 −

α) − ατK) = 0 the result can directly be seen by multiplying out the expression above.

For (1− η − τw(1− α)− ατK) > 0 it is seen that

∂g

∂τp

> = < 0 ⇔ (1− ϕτp)(1− α)(1− η − τw(1− α)− ατK) > = < α z,

which simplifies to

∂g

∂τp

> = < 0 ⇔ τp < = >

(
1

ϕ

)(
1− η − τw(1− α)− ατK − α(1− η)

1− η − τw(1− α)− ατK

)
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and is equivalent to

∂g

∂τp

> = < 0 ⇔ Ip

Y
< = > (1− η)(1− α).

Thus, the proposition is proved. 2

The interpretation of that result is straightforward. Since the wage tax rate is a non-

distortionary tax an increase in that tax does not affect the household’s decision how

much to save and how much to consume, i.e. it does not affect the allocation of private

resources. As a consequence, there is only the positive indirect growth effect of an increase

in the tax revenue which leads to more public investment in public capital which raises the

ratio H/K and, thus, the marginal product of private capital. That effect spurs private

investment and, therefore, economic growth, too.

An increase in the pollution tax rate always lowers the balanced growth rate if (1 −

η − τw(1 − α) − ατK) ≤ 0. In that case, too much of the additional tax revenue (gained

through the increase in τp) goes in abatement activities such that the positive growth effect

of a higher pollution tax revenue (i.e. the increase in the creation of the stock of public

capital) is dominated by the negative indirect one of a reduction of the rate of return to

physical capital r. The latter effect namely implies a reallocation of private resources from

investment to consumption which reduces economic growth. For (1−η−τw(1−α)−ατK) >

0, however, there exists a growth maximizing pollution tax rate. In that case, the pollution

tax has to be set such that public investment per GDP equals the elasticity of aggregate

output with respect to public capital multiplied with that share of the pollution tax

revenue which is not used for abatement activities but for productive public spending. It

should be noticed that the growth maximizing value of τp
6 is the higher the less of the

pollution tax revenue is used for abatement activities. In the limit (η = 0) we get the

same result as in Barro (1990) and Futagami et.al. (1993) that the growth maximizing

share of public investment per GDP equals the elasticity of aggregate output with respect

to public capital.

6Note that Ip/Y positively varies with τp for (1− η − τw(1− α)− ατK) > 0.
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It should also be noted that the conditions for a positive growth effect of an increase

in the pollution tax rate are just reverse to the conditions which must be fulfilled such

that the introduction of a less polluting technology raises economic growth.

5 Conclusion

In this paper we have analyzed an endogenous growth model with productive public

spending and pollution and seen how fiscal policy may influence the balanced growth rate

of the decentralized economy. The main novelty is the analysis of growth effects of various

tax rates as well as the assumption that pollution only affects the utility of the household

but not production possibilities directly. We showed which conditions must be fulfilled

such that variations in the tax rates considered lead to a higher balanced growth rate.

We should also like to point out that all of our results derived in the paper remain valid

if we assume that public investment as a flow variable enters the aggregate production

function, instead of public capital as a stock. A prerequisite, however, is that the condition

mentioned in proposition 1 is fulfilled. In this case, no transitional dynamics occur and

our economy immediately jumps on the balanced growth path.

As to future research it would be interesting to study welfare effects of fiscal policy.

Given the fact that pollution is an inevitable by-product of production and negatively

affects utility it is intuitively clear that maximum economic growth does not necessarily

maximize welfare. Further, it would be interesting to study the effects of fiscal policy

on the transition path. However, that task seems to be extremely difficult and it is

questionable whether useful results could be obtained from that analysis.
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