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Abstract

In this paper, we investigate the impact of government’'s stabilization policy on
the dynamic behavior of the economic system in an andyticad framework of a
Keynes-Goodwin  model of the growth cycle In particular, we study the effects
of the policy lag on macroeconomic stability analytically and numericaly. It is
shown that the increase of the policy lag contributes to destabilize the system,
and cyclica behavior and chaotic motion emerge in some ranges of the
parameter values.
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1. Introduction

The discussion on dabilization policies has been one of the most important
topics in the macroeconomic literature, ever since Keynes(1936) established the
notion of effective demand in his classicd book, The General Theory. His main
argument is that our laissez-faire capitalist economy tends to settle down to a
position of underemployment without government intervention ; the government should
have active control over the level of aggregate demand to achieve full
employment. However, there ae severd opposite views to the effectiveness of
Keynesian demand management policy. For example, Friedman(1948) asserted that
the existence of policy lag coud be a desabilizing factor.  Although
Friedman(1948)’'s argument is not based on the full-fledged dynamic modd of
macroeconomic interdependency, Phillips(1954, 1957) studied the effects of policy
lag on macroeconomic stability by means of the numerical analysis, which is
explicitty based on a smple macrodynamic model of the multiplier-accelerator type.
After Phillips(1954, 1957), there exist only a few forma models of policy lag
which are based on the explicit consideration of macrodynamic system of
interdependency. Takamasu(1995) and Asada and Yoshida(2001) are two examples of
such works., Takamasu(1995) introduced the policy lag into Goodwin(1967)'s growth
cycdle model, and showed the possbility of the chaotic movement by means of
the numerica simulations. It can be considered that Takamasu(1995) is an
extension of Wolfstetter(1982)'s pioneering work which discussed the economic
implications of government’'s dabilization policy by introducing the fica policy
without policy lag into Goodwin's growth cycle model. However, Goodwin(1967)’s
originad  formulation, on  which  Takamasu(1995) heavily depends, has some
difficulties as a description of the dynamics of the modern capitalist economy.
Goodwin(1967)’'s model consists of two man dements. First element is dynamic
of income distribution which is based on the rea wage Phillips curve, and
second eement is dynamic of employment which is governed by the capitd
accumulation. But, in this model, there is no room for Keynesian effective
demand to play the active role, because Goodwin(1967) closed the model by
assuming a sort of ‘Say’s law’. In other words, in his modd, it is assumed
that firms investment expenditures are automaticaly adjusted to the levels of
capitalists savings to ensure the full capacity utilization of the existing capita
stock, and there is no room for the investment function which is independent of
capitalists saving function. On the other hand, Asada and Yoshida(2001) introduced
the policy lag into Kadorian business cycle model which is originated in



Kadsor(1940), and investigated the dynamics of the system andyticadly and
numerically. In the andyticd framework which was adopted by Asada and
Yoshida(2001), the investment function which is independent of the saving function
plays an active role, and the output fluctuates according to the Keynesian
principle of effective demand instead of the Say’s law. Contrary to Goodwin’s
approach, however, in this Kaldorian framework, the dynamics of wages and
prices are absent, and economic growth is aso abstracted from.

In this paper, we reconsider the macroeconomic implications of the policy lag
by utilizing the anayticd framework of the so cadled ‘Keynes-Goodwin mode’,
which was developed by Asada(1989), Skott(1989), Franke and Asada(1994) and
others. This model aso considers the dynamics of income distribution and capital
accumulation, but, contrary to the original Goodwin model which consists of only
real dynamics, in this model the nominal wage dynamics and price dynamics are
considered separately. Furthermore, in  our anaytica framework, the active role of
the independent investment function and the variable capacity utilization of the
capital sock which is determined by the Keynesan / Kaeckian principle of
effective demand are explicitly considered. ( In these respects, our ‘Keynes-Goodwin’
model of growth cycle is smilar to the ‘Keynes-Wicksdl’ model which is due
to Chiardla and Flaschel(1996) and ‘Keynes-Goodwin-Metzler’ modd ( KGM  mode )
which is due to Chiarella, Flasche, Groh and Semmler(2000), but structure of
our model is simpler than their models. )

By the way, we add a rather technical matter. This paper considers time lags
of fisca policies by employing a continuously distributed lag, dthough we dso
consider the case of the fixed time lag as a limiting case. There exist ®verd
works which use the distributed lag within Goodwin’'s framework of the growth
cycle. They share the same standpoint ; they modify the usual Phillips curve to
dlow for the time delay in the labor market. Chiarella(1990, Chap. 5) and Farkas
and Kotsis(1992), for instance, emphasize that the wage rate adjusts duggishly to
the labor market disequilibrium. Another example is Fanti and Manfredi(1998).
They pay adtentions to a profit-shaing rule and the exisence of asymmetric
information in the wage determination. In contrast, our concern is to examine the
effects of policy lag on governments stabilization policy.

This paper is organized as follows. Bassd on the basc modd which is
formulated in  section 2, section 3 dudies the effects of the governments
stabilization policy by means of fiscad policy without policy lag —Section 4
extends the basic model to consider te policy lag and investigate the natures of



the  solutions  analyticaly. Our  mode is formulated a a sysem of
integro-differential  equations, but, fortunately, it is shown that we can reduce it
to a set of ordinary differential equations by wusing the so caled ‘linear chain
trick. It is aso shown that a limiting case of this system becomes a set of
differentia-difference  equations ( delay-differential equations ). In section 4, we
investigate the loca dability / instability properties of the system analyticaly and
prove the existence of the Ilimit cycle by wusing Hopf bifurcation theorem in a
particular case of more genera model. Section 5 is devoted to the numerica
simulations of the limiting case of the fixed time lag, which is described by a
set of differentia-difference equations, and we show the possibility of the chaotic
movement which is due to the policy lag numerically. Concluding remarks are
given in section 6. In the appendix, some purely mathematical results, which are
not only wuseful for our purposes but aso have potentia applicability to wider

classes of macrodynamic analyses, are stated and proved.

2. Formulation of the basic model

The symbols used throughout this paper are defined as follows.!
Y = gross rea output ( gross rea national income ), K =rea capital stock, N =
labor employment, C,, = workers rea consumption expenditure, C, = capitalists red
consumption expenditure, | = gross red private investment expenditure, G = red
government expenditure, T = rea income tax, B = nomina sock of government
bond, p = price levd, W = nomind wage rate, pP° = expected rate of price
inflation, | = nominal rate of interest of government bond, pPg = market price of
government bond, d= rate of depreciaion of capitad stock which is assumed to
be constant (O£d£1).

Furthermore, we define the following three important ratios.?
y =Y /N = average labor productivity which is assumed to grow at

the constant rate a (i.e, Wy=a> 0).?
v =(WN)/(pY)=w/(py) = workers share in nationa income.

u=Y/K = capita-output ratio, which is aso cdled ‘ rate of capita
utilization’ .

Next, let us consider the eguations which constitute the basic mode in order.



2-1. Workers’ consumption

A fraction d (0<d <1) of workers income is collected in the form of
taxes. Thus their disposable income is (1- d)vpY, and we assume that they
consume al their disposable income. In this case, we have the following

equation.
pC, = (1- d)vpY (1)

2-2. Capitalists consumption

According to Wolfstetter(1982), we assume that only capitaists purchase
government bond. For simplicity, we assume that government bond is the ‘consol
type'. In other words, we assume that a holder of a unit of government bond
is pad a wunit of money every period by the government. In this case, the
nominal  interest payment per period becomes B and the maket price of
government bond becomes the reciproca of the nomina rate of interest, i. e,
ps=1/i. * Furthermore, we assume that the tax base on the capitdists income
is the income net of the purchase of the government bond, and the average tax
rate on capitalists income is the same as that on wage ncome. In this casg,
capitalists  disposable income becomes (1- d){(1- v)pY +B- pB@
= (- d{(@- v)pY +B- B/i}. We assume tha capitdists  consumption s
proportional to their disposable income. Namely,

pCy =c (- d){(1- v)pY +B- B} 2

where C, is capitalists average propensity to consume (0 < C, <1).

2-3. Firms investment and pricing behavior

Next, let us consider firms behavior with respect to investment and pricing.
Contrary to Goodwin(1967)'s original model, we introduce firms investment function
which is independent of the saving function of the capitalists household according

to Keynesian tradition. The following investment function is assumed.
| =H@- v,r)Y°H@- v,i-p°)Y ; H °TH/T2-v)>0, H,° fH/Mr <0 (3)

where r =i-p° is the expected real rate of interest of the government bond.



Such an investment function is judified by Kaldor(1961). He emphasizes six
‘stylized facts as a dsarting point for modeling the process of economic change,
and the fifth stylized fact indicates the positive correlation between the share of
profits in nationa income and the share of investment in output. In addition,
Eg. () says that rea investment expenditure is a decreasing function of the

expected real rate of interest, which is a standard Keynesian postulate.® We aso
suppose that

K= - dK (4)

; which smply means that the net investment contributes to the changes of the
capital stock.

Now, we shal turn to the formulation of firms pricing behavior. We suppose
that firms set a desired price pD as a constant markup, mM, on the unit

labor cacst ( cf. Kalecki(1971)). Namely,
p® =mwN/Y =mw/y. (5)

However, the desired price is not aways redized. The actual dynamics are
governed by

& p=g(& /p°) ; 0<g <1, (6)

where 0< g <1 means a sort of price rigidity. For a full account of this

point, see, for example, Sportelli ( 1995, pp. 41-42).
2-4. Government’s fiscal policy

The tax revenue of government consists of the income taxes on workers and
capitalists, namely,

pT =d{vpY +(1- V)pY +B- B¥i} =d (pY + B- Bi). @

Furthermore, we specify government's spending policy as follows.

pG =dpY +n(u* - u)pY 8



The fir¢ teem of EqQ. (8) indicates a regular expenditure which is proportiond
to nationa income. The second term represents a discretionary expenditure. We
assume that the government accurately recognizes the macroeconomic structure and
thus knows the equilibrium rate of capacity utilization U* which is determined
by u*=F'(@), where the function F(u) is the wagePhillips curve which will
be introduced later. Government's fiscal policy is counter-cyclica when m > O,
while it is procyclica when m < 0. The former is cadled the ‘Keynesan policy
rue’ and the latter is termed the ‘classica rule’ by Wolfstetter(1982).

Following Wolstetter(1982), we assume that the government deficit is financed
ony by sdling bond to the capitadists class. Thus the government budget

constraint is expressed as follows.®
Bi=B+p(G-T) ©)

As for the monetary policy rule of the central bank, we adopt the Post
Keynesian ‘Horizontdist view’ in the sense of Moore(1988). In other words, we
assume that the central bank accommodates money supply to the money demand
endogenously to keep the nomina rate of interest (i) a some constant level.
This means that the nomina money supply is proportiond to the nomina
national income if we assume the dandard Keynesan money demand function
L® =f (i) pY. This hypothesis contrasts with that of Asada(1991) and Franke and
Asada(1994) which adopt the ‘Verticaist view' with constant growth rate of the

nominal money supply and endogenous nomina rate of interest.

2-5. Adjustment process in the goods market

We formaize the adjustment process in the goods market as follows.
&=e{(C, +C  +1+G)/K-u} ; e >0 (10)

We assume that the output-capital ratio a the full utilization of capital stock
is fixed, but even in this case, the actua output-capital ratio becomes a variable
when the capital stock is not fully utilized. In fact, the actual output-capita
ratio is proportiona to the rate of capital utilization. Eg. (10) says that the
capital utilization fluctuates according as the excess demand in the goods market
per capital stock is positive or negative. This is a formdization of the

Keynesian / Kaeckian quantity adjustment process in the modern capitalist economy,



in which the goods market is not always cleared by flexible price adjustment.’
This feature of our model contrasts with the origind Goodwin(1967)’'s modd in
which a sort of ‘Say's law’ is assumed. In fact, in Goodwin(1967), there is no
investment  function which is independent of the saving function, and it is
assumed that the investment is automaticaly adjusted to keep the full utilization
of capital stock in every period.

It is worth to note that the adjustment process which is expressed by Eg. (10)
implicitly assumes that the discrepancy between demand and production is absorbed
through the changes of the inventory, and it is supposed that the demand side
is aways redized.® As Chiarella and Flaschel(1996) pointed out correctly, in this
type of the formulation, “income concept is based on production plans and not
on actual sdes’( Chiarella and Faschel(1996) p. 330 ).

2-6. Wage adjustment process
We model the wage adjustment process by rather standard expectations-augmented

wage Phillips curve :
ww=F@u)+p® ; Fqu) >o. (11

This formulation follows the procedure by Franke and Asada(1994). Namely,
capital utilization(u) is adopted as a proxy for employment rate or the tightness

of labor market. As Franke and Asada(1994) notes, this procedure can save one
state variable ( employment rate ), and “this simplification is justified by the high
corrdlation on the two variables over the cycle” ( Franke and Asada(1994) p. 277).

Furthermore, we assume the following inequaities as a rather technical requirement.
F(0) < a < F(O) (12)

; where U is the outputcapital ratio under the full utilization of the capitd
stock.

2-7. Two missing equations
Eg. (1) through Eg. (11) constitute eleven independent equations with thirteen

endogenous  variables (C,,,C,,I,K,p°, p,T,G,B,u,w,p°®,v). Therefore, we need

two more equations to close the system.



The first missing equation concerns the expectations formation process of the
price inflation. We adopt the following adaptive expectations hypothesis ( cf.
Asada(1991), Franke and Asada(1994), Chiarella and Flaschel(1996) et. d ).

& =b(g/p-p°) ; b >0 (13)

We can obtain the second missing equation by the logarithmic differentiation of
the equation v =w/(py), which is nothing but the definition of Vv, i.e,

Rv=wWw- g p-a (14)

These two equations can close our basic model.

3. Analysis of the basic model without policy lag
In this section, we shall anayze mathematically the performance of the basic

model  without policy lag which was formulated in the previous section.

3-1. Reduced form of equations
We can transform the system in the previous section into the following reduced

form, which is a three-dimensional nonlinear dynamica system.

(i) @=e{H- vi-p°)- (- 6)(L- d)(I- v)+ (L~ ¢, )(u*- u)}u

° f(uv,p® ;m
(i) &=(@-g){F)+p°-a}ve f,(u,v,p®)

(iii ) p& =b[g{F(u)+p°-a}-p°]° f,(u,p°®) (S)

We can obtan Egq. (S)) (i) as follows. Substituting equations (7) and (8) into
Eqg. (9), we have

B- Bi=pT- pG=d(B- Bi)- nmu*-u)pY. (15)

Solving this equation with respect to B- I§‘/i, we obtain



B- BYi =-mu*-u)pY/(1- d). (16)

Subgtituting equations (1), (2), (3), (80 and (16) into Eg. (10), we obtain Eq.
(S) (i)

On the other hand, we can obtan Eq. (S))(ii) as follows Differentiating Eg.
(5) and subdtituting it into Eq. (6), we have

B/ p=g(&w- ¢ y)=g(&w-a). (17

Substituting equations (17) and (11) into Eq. (14), we obtan Eq. (S)) (ii ).
Findly, Eq. (S;)(iii ) is obtaned from equations (11), (13) and (17).
It is worth to note that n our model the dynamics of the government bond

do not feed back into the movement of U, Vv, or pe

so that the system
becomes decomposable unless we introduce the wedth effect on the capitaists

consumption. ®

3-2. The properties of the equilibrium solution
The non-zero  equilibrium  solution of the system (S;) is given by
(u*,v*,p°*) such that B=&=& =0, where

H@- v,i)- (1- ¢ )@- d)@- v*) =0, (18)
F(u*)-a =0, (19
p*=0. (20)

It is obvious from Eq. (11) and the inequality (12) that there exists a unique
u*1 (0,U). We asume the existence of the unique solution v (0.J).

Furthermore, the following assumption is added.
Assumption 1. H,*° [H/1(@- v)]* > (1- ¢, )@-d).

This means that the margind propensty to invest of firms exceeds the
marginal  propensity to save at the equilibrium point, which is a standard
assumption in  Kaldorian business cycle theory (cf. Kador(1940), Asada(1987),
Asada(1991), and Asada and Yoshida(2001) ).

Let us discuss the equilibrium solution from the economic point of view. From

Eg. (20), the expected rate of inflation is zero, so that the same is true of

10



actua rate of inflation. What is more, it follows from Eq. (19) that the nomind
wage rate grows a growth rate of labor productivity, which means tha the red
wage rate adso grows a the same rae because of no price inflaion. The

equilibrium rate of economic growth is determined endogenoudy by the formula
YWY =K/ K=H(@- v*,i)jux-d° g*. (21)
Substituting U=U* into Eg. (16), we aso have
B/ B=i. (22)

It follows from equations (21) and (22) that the bond-income ratio (B/Y)

eventually tends to zero a the long run equilibrium if and only if the

inequality
i< g* (23)

is satisfied. We assume that in fact this inequality is satisfied. In this case, the
structure of the government bond is sustainable in the long run.

How can the equilibrium vaues of the sysem change when there is change
in any of the policy parameters? A change in m has no effect upon the long
run equilibrium position, because the target rate of capacity utilization is fixed at
the equilibrium rate. A rise in d increases the wage share under Assumption 1,

i.e,
fv*/9d =(21- ¢ )A-d)fH,*- (- c)@-d)} >0 (29)

3-3. Local dtability analysis and Hopf bifurcation

To inquire into the local sability of the equilibrium point, we use the
coefficients of the linearized system near the equilibrium point. The Jacobian
matrix of the system (S;), which is evauated at the equilibrium point, is given

by



éfn(r@ f12 f131\;|
=g fu 0 fug (25)
é f3l O f33§
where f,(m=-e@- c)u*m , f,=-e¢{H, *-(Q-c)1-d)}u* < 0

fz=-eH,*u* >0, f=@Q-g)F*v* >0, fy=@Q-9g)v* >0 f; =bdF* >0
and f,; =-b(l-g) <0

Then, we can write the characteristic equation of the basic model as follows.
D.()°fI1-3]=1°+al®+al +a,=0 (26)

where

(i) @a=-tracel; =- fll(g)rn)- Is)a °a(m),

(i) a, =‘0 fr + f(m  fy + f,(m 1,
0 fyu fa fas fa 0
= fu(m) fu- fiy £y i, fy © a,(M),
(?) -) + ) ) &
(iii) a;=-detJd, =- f, f fu,+f,f, f >0 27)

) ) () () ) ()

From these relationships, we obtain the following result.

Y (m° aa,- a, =Anf + Bm+D, (29)

where  A=-e2(l- ¢, )2u*? 1:3)3 >0 B=-e(l- ck)u*(z‘lf {3)1- :‘1)2 Iz)l- f2), and

D=ffy fut f, T fyy <O
) ) ) -) %)

It follows from Egq. (28) that

12



Y(0)=D <0, (29)

which implies that the equilibrium point of the system (S;) becomes localy
unstable because one of the Routh-Hurwitz conditions for stable roots ( @, >0, a,
>0, aa,-a, >0) is violaed when the government’s fiscal policy is ‘neutral’
(m=0).

Next, let us investigste how the government can stabilize the potentiadly
unstable economy by means of the locad doability anayss. As a prdiminary of
such an andyss, let us note that the quadratic equation Y (M) =0 has two real
roots ( m,Mm,) such tha m <0< m, ad we hae Y(m) <0 for Al
mi (m,m,), ad we hae Y () >0 for dl ml (-¥,m)E (m,,+¥).

Proposition 1.
The equilibrium point of the sysem (S;) is localy sable for all
mi (m,,+¥), and it is localy unstable for al mi (-¥,m,).

Proof.
(i) It is easy to check that al of the Routh-Hurwitz conditions for

stable roots are satisfied when m > m,.
(i) Fom Eg (27)( i) we can see tha we have & =0 when
m=m°-b(- g)fel@-c)u*} <0, and @ <0( & >0) is obtaned whenever
m<m(m>m). This means that the equilibrium point is localy unstable
when M < m  because one of the Routh-Hurwitz conditions is violated.
Furthermore, from Eg. (28) we have Y (m)=-a, <0, which means that m <
m, and thus we have Y () <0 for al ml [m,m,). This implies that the
equilibrium point becomes locally unstable aso in the case of MEm< m,.

This proposition implies that the government cannot stabilize the potentialy
unstable economy if the ‘classical’ fiscal policy rule ( m < 0) is adopted, but the

government can stabilize the economy a least locally by adopting sufficiently
active ‘Keynesan’™ policy rule ( m > m), ). The paticular parameter vaue m,
defines the ‘bifurcation point’ which divides the parameter values of I into
unstable and stable regions. We can easily confirm that a mM=m, the following
relationships are satisfied.

(i) aa,-a =0,

13



(i) a,=azla >0,
(ii) T(aa,- a;)/Im >o0. (30)

These relaionships ae enough to apply the Hopf bifurcation theorem to
establish the existence of the cyclicd movement.

Proposition 2.
There exist some norrcongtant periodic solutions of the system (S;) a some

parameter values m  which are sufficiently close to mn,.

Proof.

We can apply the Hopf bifurcation theorem, which asserts the existence of the
closed orbit, if we show that (i) the characteristic equation (26) has a par of
pure imaginary roots and a non-zero rea root, and (ii) the red pat of the
imaginary roots is not dationary with respect to the changes of the parameter
n.llo
coefficients of the characteristic  equation : aa,- a; =0, a >0 ad

These conditions are equivaent to the following conditions in terms of the

(@@, - a,)/Im* 0 a the bifurcation point’* Eq. (30) implies that al of these

conditions are in fact satisfied & mM=m,.

4. Time lag in fiscal policy

The argument in the previous section makes it clear that Keynesian fiscal
policy has stabilizing effects in our anaytica framework of a Keynes-Goodwin
growth cycle model. However, we could obtain this result by assuming that the
government can respond to the changes of the economic environment without time
lag. In actua, the effect of dabilization policy depends on the length of policy
lag, as Friedman(1948) pointed out in a classicd paper. This theme has been
repeatedly taken up in many elementary textbooks on Macroeconomics. Obvioudy,
it is doubtful that demand management policies ae conducted thoroughly and
timely by the policy makers in the red world. The government actually faces
limitations on forecasting ability and difficulties in political processes, so that the
timing of policy would be subject to delay. Therefore, it will be of great
significance that we study the effects of policy lag on the macroeconomic
stability.

14



4-1. A general model of policy lag

Phillips(1954, 1957) argues the above-mentioned subject employing a smple
multiplier-accelerator model, while the argument of Friedman(1948) is intuitive and
descriptive.  Phillips presents three types of fiscal policy : proportional, integral, and
derivative tabilization policies.® In this subsection, we adopt a sort of integral

stabilization policy to examine the effects of time lag explicitly.™® The government
spending function is assumed to have the following form.

G@t)/Y(t)=d + m(‘l{u* - u(s)lw(s)ds (31)

;  where
( )nl (n/t)(t-s) t > 0. 32
W =" , (32

t
Note that Nn is a postive integer. If we note that QW(S)dSZl, the

function w(s) can be thought of as a weighting function, which is identica
with a density function with the mean, t, and the varance, t?/n. ' Thus
the economic meaning of Eqg. (31) is tha the length of policy lag is t on
average. When n=1, it is the exponentid distribution. For n3 2, w(s) has a
onehump form with a maximum vaue a <s=t- (n-Dt/n, for fixed t. We
depict the graphs of w(s) with t =15 ad n=2, 16, and 74 in Fig. 1 It
shows that a shap peak appears aound <S=t-t a N increases. Henceforth,
we shal cal the parameter t ‘policy lag for simplicity.

Insert Fig. 1 here.

We have an analyticd advantage over Phillips(1954, 1957), since our expression
(31) enables us to consder the policy lag explicitly, as mentioned above. Our
expression is dsmilar to Phillips’ in that government expenditures are dependent

not on the degree of the capacity utilization a the particular time but on the

15



whole past data on U. However, there is a dight difference between two
expressions. That is, we connect the level of government spending with the
weighted average of the past sequence of U*-U by employing the weighting
function which is expressed by Eg. (32), whereas, in Phillips’ formula, government
purchases ae made in proportion to the time integra ( or, summation ) of the
past sequence of U*-U with w(S)°1 on the time interva (- ¥,t).%

t
Using the fact that QW(S)dS:l, we can convert Eqg. (31) to the form

Gt)/Y({t)=d +mu*- (‘i u(s)w(s)ds). (33)

Replacing Eg. (8) in section 2 with the new equation (33), we obtan the
following reduced form of a Keynes-Goodwin model with policy lag, which is a
system of nonlinear integro-differential  equations.

(i) &) =e{H(- v(),i- p*(t)) - A- ¢, )d- d)T- V(1))

+ml- ¢ )(u*- (‘i u(s)w(s)ds)ru(t)
(i) &) =(1- g Fu®) +p°t) - a}v(t)
(iii ) p(t) = blo{F(u(t)) +p°(t) - a} - p “(t)] (S)

At first glance, it seems that this system is so complicated that it is
intractable. Fortunately, however, we can transform this system into a relatively
tractable system of (nonlinear) ordinary differentid  equations by using the so

cdled ‘linear chain trick , which is due to MacDonald(1978)."° To this end, let
us define

(t - q)i?
xj(t):d(?)l&e'(”’”“‘s)u(s)ds . j=12 ., n (34)

(j- D!
Differentiation of Eqg. (34) with respect to time gives us

() = (V){u)- %O}, (35)
£ ()= (N/)x,,(0)- %@ : j=2.n (3)

16



This trick produces the following system of (Nn+3) dimensona ordinary

differential  equations.”’

(i) &=e{H(1-v,i-p°)-(1-c)1-d)T-Vv)+ml- ¢ )u*-x,)}tu

° G,(u,v,p®x,; m
(i) &=(@1-g}{F(u)+p®-alve® G,(uv,p®)
(iii ) p& =b[g{F(u)+p°-a}-p°]° Gy(up®)
(iv) %=(n/t)(u-x)°G,(ux;t)
(v) & =(n/t)(X. - X)° Gla(X. % 5 t)
j=2..n (S,)

The equilibrium solution of this system is essentidly identical to that of the
system (S,), namely,

H(@- v*,i)- (1- ¢, )@- d)@- v) =0, (37)
F(u*)-a =0, (38)
p°* =0, (39)
X*=X*= . =X*=u*. (40)

The Jacobian matrix of this system at the equilibrium point becomes as follows.

€0 G, G, O 0 L 0 Guu(mu
€6, 0 G, O 0O L 0 0 4
&G, 0 G, O O L 0 0 d
L.t 0 0 -nt 0 L 0 0§ "
€0 0 0 n/t -nit L O o U
EM M M M M O M M g
g O 0 0 O 0 L -nt 0 3
go 0 O 0 0O L nit -n/t

where G, =-e{H,*-(1-c)@-d)}ur < 0

®

=-eH,*u* > 0
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Gis(M=-e(l-c)u*m , G, =@-g)F*v* > 0 Gy =(1-gv* > 0
G, =bd* >0, ad G,;=-b(1-9g) <0

The characteristic equation of this system becomes

D,()°]Il-3,=0. (42)

First, let us investigate the local dability of this system in case of

m=0. In this case, EqQ. (42) becomes as follows because of G, ,;(0)=0.
D,()=d +n/t)n|| I -V| =l +n/t)n(| 3+ml| 2+rT12| +m,) =0, (43)
where
(j:‘ 0 Gy Gl3l;|
_ u
V= e-21 0 G23U (44)
€G; 0 Gzuf
and
m, =-traceV =- G, >0, (45)
()
0 G 0 G 0 G
m, =‘ I ik ’1=- G, Gy~ G, Gy, (46)
0 Gss Gsl G33 GZl 0 ) (+) )
m, =-detV =- G,G,;,G;+ G, G, G, >0, (47)
) ) (v ) () )
mm, - m, =G,;; G, G33+G, G, G, < 0. (48)

(GO RNCRNCO R CO RN RN G

Eg. (43) implies that in this case the characteristic equation has N multiple
roots | =-n/t < 0, and other three roots ae determined by the equation

I't-v|=0.

Inequality (48) means that the equation |II-V|:O has a least one root with

positive rea part, because one of the Routh-Hurwitz conditions for stable roots is
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violated. In fact the equation || I -V|:O has two roots with positive rea parts

and one negative rea root when three inequalites m >0, m,; >0, and

mm, - m<0 ae saisfied. ® Thus, we have proved the following

Proposition 3.

The equilibrium point of the system (S,)C is localy unstable irrespective of
the vaue of t 30 when m=0.

This proposition simply says that the system is unstable when the government’s
fisca policy is neutral. On the other hand, the following proposition asserts that
the system aso becomes unstable if the policy lag is too long even if the
government conducts stabilization policy.

Proposition 4.

The equilibrium point of the system (S,)( becomes localy unstable irrespective
of the vaue of m if the policy lag t is sufficiently large

Pr oof.

It is easy to show that
. —1n
lim D, (1) =1 -V (49)

irrespective of the value of . This implies, by continuity of the -characteristic

roots with respect to the changes of the parameter vaues, that the characteristic
equation (42) has a least two roots with postive red pats if t s

sufficiently large, because we aready know that the equation |I I -V|:O has

two roots  with positive real parts and one negative red root.

These two propositions ae not surprising, and they provide the rigorous
foundation to the wusual intuitive argument. However, it is difficult to get further
outcomes with economic meaning anayticaly from this genera model of policy
lag. In the next two subsections, we shal examine two particular cases to
establish more accurate results
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4-2. A gspecial case of n=1
In this subsection, let us consider a special case of N=1. In this case the
system  (S,)C is reduced to the following four-dimentiona system of differential

equations.

(i) &=e{H(-vi-p°)- (1-c)1-d)1-v)+ml-c)(u*-x)}u

° G(uv,p,x ; m
(i) ®=@1- vV{F(u)+p®-a}v° G,(u,v,p°)

(i) pL=b[g{FU)+p°-a}-p°]° Gy(up°®)
(iv) %=@O/t)u-x)° G,(ux ;t) (S5)

Although this sysem is only a specid case of the more generd system (S,)¢
from the mathematical point of view, this smplified verson is interesting from
the economic point of view, since we can provide clear economic interpretation
to this particular adjustment process. We can interpret the variable X, as the
capacity utilization which is expected by the government. Thus, Eq. (S;) (i)
implies that the government's fiscal policy is based on the expected capacity
utilization. On the other hand, Eq. (S;)(iv) means that the expected capital
utilization changes according to the formula of the adaptive expectations, and the
speed of adaptation is the reciprocal of the policy lag. The longer the policy
lag, the more duggish is the adaptation.

Proposition 3 and Proposition 4 aso apply to this system, because this system
is a gpecial case of the system in section 4-1. In this paticular case, however,

we can obtain more accurate results anaytically.
The Jacobian matrix of the system (S;) a the equilibrium point becomes

é O GlZ G13 Gl4(rrbl‘:|
u
J,=€* DG (50)
§G31 0 Gy 0 u
gt o 0 -1tg

; where G,(m) =-e(l-c)u*m, and the definitions of other symbols in the

matrix (50) are the same as those in the matrix (41).
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We can express the characteristic equation of this system as follows.
Dy(1)° 1~ 3y =1*+bI®+b, >+b] +b, =0 (51)
where

(i) b =-tracel, =- G, +1/t >0,
“)

G b2 0 Gl [0 Gl [0 Guml oG,
Gy, 0| [Gy Gy [t -1Ut| |0 Gy
Jooo s O
0 -1t] |0 -1/t

=- G, G, - GG, - (Ut )G, (M+Gg}° by (m),
-) %) (+) ) (? (-)
0 Gy 0 0 G5 Gu(m
(iii) by=-10 G, 0 |-G, Ga 0
0O 0 -1/t| it 0o -1/t

0 G, Gu(m 0 G, Gy
-G, 0 0 |-G, 0 G,
1t 0 -1t] |G, O Gy

=- G, GG+ Gy, G, Gy
-) ) ) -) ) )

+ (1/t ){ - GlZ Gzl' Gl3 G3l+ Ggs G14(n.)} ° ba(m)a
-) & ) (-) (?)

(iv) b, =detJ, =(1/t)G(Gy Gy Gy Gy) > O. (52)
() ) ) () )

Note that the Routh-Hurwitz conditions for local dability in this case become
as follows ( cf. Gandolfo(1996)).

b, >0 ( j=1,234), bb,b;-bb,-bj >0 (53)
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In this subsection, we shall investigate the local dynamics of the system under
the following additional assumption.

Assumption 2.

The vaue of |H2*|°HﬂH/ﬂ(i-pe)}* is so smdl tha we have

Z° - GlZ Gzl' G13G31 > 0.
) () (5 ()

If |H,*=0, we hae G,=0 so tha Z is postive Even if |H,* >0

Z becomes postive when the value of |H,* is sufficiently small. Assumption 2

implies that the negative impact of the increase of rea rate of interest on
firms investment expenditure, which is caled ‘Mundell effect and known to be
potentially destabilizing, is not very strong at the equilibrium point.*

Now, we can confirm that the following expression is obtained.

F(m° bbb, - b’b, - b2 =Em? +Pm+W ; E >0 W <0 (54)

where E, P, ad W ae independent of the paameter 1. It is relatively
easy to show that

E=Db(l- g)e*(- ¢ )?u*?*/t® > 0. (55)

We can dso derive the explicit expresson of W after tedious calculation, but,
fortunately, we can prove tha W is in fact negative without such a tedious
calculation. The proof is as follows.

When m=0, we have bj >0( ] =1,2 3,4) under Assumption 2 because

G,(0)=0. Hence, if W >0, al of the Routh-Hurwitz conditions for stable
roots ( inequalities (53) ) are satisfied when =0, which contradicts Proposition 3

which says that the read pat of a least one characteristic root becomes positive
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when nm=0. On the other hand, if W =0, the characteristic equation must
have a par of pure imaginary roots and two roots with negative rea parts ( cf.
Lemma(ii ) in Appendix ) when m =0, which aso contradicts Proposition 3. This
proves that W < O.

It is obvious from Eq. (54) that we can find two parameter values m, m,
such that F(m)=F(m,)=0 and m < 0 <m),. Furthermore, we have F () <0
for al mi (m,m), and we have F(m) >0 for dl ml (-¥,m)E (m, ,+¥).

Proposition 5.

(i) The equilibium point of the system (S;) is localy sable for all
ml (m,+¥), and it is localy unstable for al mi (-¥,m,).

(ii) At the point m=m, a Hopf bifurcation occurs. In other words,

there exist some non-constant periodic solutions of the system (S,)

a some parameter values N which ae sufficiently close to ).

Proof.
(i) It follows from Assumption2 that b, >0 ( | =1,2 3 4) ae saisfied for

al 3 0. Theefore, al of the Routh-Hurwitz conditions for stable roots
( inequdlities (53) ) are satisfied when mM>m,.

On the other hand, Eq. (52)( ii ) implies that there exists a vaue N* <0
such that b,(nf) =0, and we have b,(M<0 ( b,(mM>0) for al m<n*
(m>mnr* ). This means that the system is locally unstable when m<m*,

Furthermore, we obtain F(nf)=-b’b, - b7 <0 a m=n* which implies that

m <m*. Therefore, the system becomes localy unstable aso in the region
ml [, m,), because in this region the inequality F(m) <O is satisfied.

(i) At the point m=m, b;>0( j =1234) ad F(m)=0 ae

satisfied, which implies that the characteristic equation (51) has a pair of pure
imaginary roots and two roots with negative read parts ( cf. Lemma (ii ) in
Appendix ). Furthermore, we can easily see thaa F(m)>0 a m=m, which

means that the real part of te imaginary roots is not stationary with respect
to the changes of m when m=m,. These dituations are enough to apply

Hopf bifurcation theorem.
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This proposition is qudlitatively the same as propositions 1 and 2 in section 2.
Namely, the sufficiently ‘Keynesian' fiscal policy rule can dabilize a potentialy
unstable economy, and the cyclicd movement occurs a the intermediate fisca
parameter vaues. This concluson was derived under the assumption that the
policy lag is fixed a some level. It must be noted, however, that even if the
system is locally stable under some fiscal parameter vaue when the policy lag
is relaively short, the system becomes unstable under the same fisca parameter
vaue if the policy lag sufficiently increases. This statement follows from
Proposition 4, which is dso applicable to the model in this subsection.

4-3. Limiting case of n ? + 8
Next, let us consider the limiting case of N® +¥ . Recal that the weighting
function w(s) which is defined by Eq. (32) is in fact the density function with

its mean t and its variance t?/n.  Therefore, the limiting case of nN® +¥
corresponds to the case of the fixed policy lag, t >0. In this case, government

behavior is expressed as follows.*
G(t) = dY (t) + m{u* - u(t - )} Y (1) (56)

Thus, we have the following dynamical system, which 8 a system of nonlinear
differentia-difference equations ( or delay-differential equations ).

(i) &t) =e[H- v(t),i- p°(1))- @- ¢ )A- d)A- v(t))

+m1- ¢ {u*-u(t- t)Hu(t) © Gy (u(t),u(t- t),v().p°(t);m
(i) &) =(1- gf{FUu®)+p 1) - ahv(t) ° Gy(u(®),v(t).p ()
(i) p&(t) = blg{F(u®) +p°(t)-a}-p ()] ° G;(u(t),p"(t)) ()

The equilibrium point of this systlem ( u*,vF,p°* such that
Kt) =&t) =& (t) =0 and u(t)=u(t-t)=u* ) is dso the same as that of
the system (S)). Linearization of this system around the equilibrium point gives

the expression

(i) &) =G, (m{u(t-t)- u*}+G{Wt) - v} +G{p °(t) - p**}
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(i) &) =G, {u() - U} +G,{p°(t) - p**}
( iii ) pgf(t)=G3l{U(t)- U*}+633{pe(t)' pe*} (57)

; where G (M =-el-c)u*m and other symbols ae the same as those in
Eq. (41). Substituting the exponential functions u(t)- u* = A€'', v(t)- v =Ag'",

and pe(t)-p°*=Ag€"' into Eg (57, we have the following characteristic

equation ( cf. Bellman and Cooke(1963)).

D,()°l1-3,0)[=0 (58)
where
G,(me" G, Gyl
e u
Ju(l)=6 Gau 0 G (59)
& Gs, 0 GssH

When m=0, we have J,(I )=V, where the matrix V is given by Eqg. (44).
Therefore, we can conclude that the equilibrium point of the system (S,) is
localy unstable when m =0, because we adready know that the equation

|I | - V| =0 has two roots with postive red pats and one negative real root.

If m*0, Eg (58 is no longer the simple polynomial but it becomes a
transcendental equation, and it has the infinite number of the roots including

complex roots.

Although it is difficult to obtain further information which is economicaly
meaningful if we dick to andyticd approach, we can obtan some important
insight by employing numericd simulations. In the next section, we shal report
some results of our numerical simulations of the system (S,).

5. Numerical simulations of the case of n ? + 8
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To practice numerical simulations, we must approximate a system of

differentia-difference equations (S,) by a sysem of difference equations.

In this paper, we adopt the following ‘Euler’s agorithm' .

(1) ut+Dt)=u()+ (DG (u(),u(t-t),v®),p °t) ;m)
(i) v(t+ D) =v(t) +(D)G, (ut), v(t),p° (1))

(i) pS(t+Dt) =p°(t) +(D)G,(u(t),p°(t)) (60)

We adopt the time intervad Dt =0.1, and the numerica specifications

of the involved functions and parameter values are chosen as follows.?

H(@- v(t),i- pe(t)) =1.51- v(t))° - 0.001( - p*(t))- 0.0027, (61)
F(u(t)) =0.K1/(1.1- u(t)) - 4.8}, (62)
a=002 b=08 e=01 g=05 ¢ =03

d=2/7, i=003 t=31 d=03 (63)

The equilibrium values of u, Vv, and g ae gven by

u* =09, V=024, g*=004. (64)

Since i <g*, the condition tI(i@m¥{B(t)/Y(t)}:0 is saisfied a the equilibrium

point. The equilibrium values which are given by Eqg. (64) ae independent of the
vaue of the fiscd parameter 1. In other words, the fisca parameter T cannot
affect the long run equilibrium position. This implies that the classica irrelevance
theorem seems to apply if we concentrate on the long run equilibrium position.
However, the concentration on the long run equilibrium cannot be judified in our
model, because in our model the government's fisca policy can affect the out
of steady state dynamics quite drasticdly, as the following simulation results
reved it clearly.

Figures 2 — 6 ae the results of the numerical simulations which correspond to
the parameter vaues =500, =590, nm=597, NM=6.06, and m=6.30
respectively. All figures are plotted after transent motions are removed from the

trajectories.
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Insert Fig. 2 — Fig. 6 here.

At the top of each figure the two-dimensional projection of the trgectory on
the (v,u) plane is presented. Furthermore, the bottom of each figure displays
the corresponding power spectrum. The abscissa denotes the frequency(Hz) and the
ordinate denotes the power spectra density(PSD). As for the exposition of the
power spectral anadysis, see, for example, Lorenz(1993) chap. 6 and Medio(1992)
chap. 5. Lorenz(1993) writes as follows. “A power spectrum can loosdy be
defined as each frequency's contribution to the overall motion of the time series.

Power spectra with several distinguishable peaks indicate the presence of
guasi-periodic  behavior. The dominating peaks repressit the basic incommensurable
frequencies of the motion, while minor pesks can be explaned as linear
combinations of the basic freguencies. .. If a continuum of peaks emerges, the
power spectrum is said to reflect broad band noise. The motion is then either
purely random or chaotic for both underlying time concepts.” ( Lorenz(1993) p. 203 )
As Medio(1992) noted, “the presence of sharp peaks, however, does not
necessarily exclude chaos. Certain embedded periodicities may be present in
otherwise chaotic behavior.” ( Medio(1992) p. 107 )

In Figures 2 — 4, we can observe a limit cyclee a period 2 cycle and a
period 4 cycle respectively. Period doubling bifurcations take places Every
bifurcation doubles the number of sharp frequency components. We see that peaks
appear in the power spectrum corresponding to submultiples of the fundamental
frequency, 0.70 Hz.

Figures 5 and 6 represent chaotic fluctuations. Fig. 5 exhibits narrow-band chaos
and Fig. 6 reveds broad-band chaos. They are very similar to the so cdled
Rosder atractor or ‘spiral type chaos ( cf. Rosder(1977)). The largest Lyapunov
exponents are postive in both cases; 002 and 0.16 respectively. ® It must be
noted, however, that there sdtill remain the sharp peaks or fundamental frequencies
in the power spectrum. This type of chaos is often cdled ‘non-mixing chaos’ or
‘phase coherence ( cf. Crutchfield, Farmer, Packard, Shaw, Jones and Donnelly(1980),
and Farmer, Crutchfield, Froehling, Packard and Shaw(1980)).

Insert Fig. 7 — Fig. 8 here
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Fig. 7 is a bifurcation diagran of the varidble VvV with respect to the parameter
m, for 20E£m £6.3. This diagran shows the loca maxima and minima of V
on the business cycles, so that the vertica difference expresses the amplitude of
the cycles. Fig. 8 is an enlarged bifurcation diagram, where a period doubling
route to chaos is shown clearly and minutely. We can see from Fig. 7 that the
stronger  application of the Keynesan policy ( increese of m) can in fact
contribute to stabilize the economy if N <mM»4.1 while more vigorous use of
Keynesian policy rather destabilizes the economy ( increases the amplitude of the
cycles) if m>Mm, and the too strong application of the Keynesian policy is
responsible for the chaotic movement in this model with fixed policy lag. In
this example, the government can establish the minimum amplitude of fluctuation
a the parameter value =M. Findly, we cdose this section by making a
practicd proposal to policy makers. “You should react immediately and promptly
to economic disturbances. Otherwise your intended plans for stabilization may cause

chaotic business cycles contrary to your intention.”

6. Concluding remarks

In this paper, we andyzed basicaly two models of the policy lag in an
analyticadl framework of the Keynes-Goodwin mode of the growth cycle. They are
two particular cases of more general model of the distributed policy lag. Unlike
Goodwin(1967)'s original model, our models are developed by taking into account
Keynesian features : the models emphasize the effective demand. In the first mode,
it was shown that counter-cyclica fiscd policy is the preferred method for
preventing economic fluctuations. Vigorous use of Keynesian policy stabilizes the
economy completely. The result of the second mode is not simple, however. It
gives a good example of controversy on dabilization policy between Keynesians
and Monetarists. In case of a short policy lag, a counter-cyclica policy is dill
available for dtabilization. In contrast, if policy is implemented with a long lag,
then a very active intervention tends to amplify disturbances and induces the
complicated fluctuations in the economy. It is not correct, however, to say that
the Keynesian doabilization policy is entirely ineffective to doabilize the potentialy
unstable eonomy even in this casee As we observed in the dsimulation anaysis

in section 5, the government can reduce the amplitude of the cyclical fluctuation
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by adopting the proper vaue of the policy parameter, even if it is impossble
to sabilize the economy completely because of the relatively long policy lag.

Appendix
In this appendix, we shal prove the following purely mathematica results,

which provide us some useful criteria for the occurrence of Hopf bifurcation in

four-dimensional system.

Lemma.
(i) The polynomia eguation

D )°1*+bl%+b,l%+b)] +b, =0 (A1)

has a pair of pure imaginary roots and two roots with non-zero red parts
if and only if ether of the following set of conditions (A) or (B) is sdtisfied.

(A) b =0 b;,=0, and b, <O.

® b0 b,*0 b,*0, sign b =sign b, and

F ° bbb, - b’b, - by =0.
(ii) The polynomia equation (Al) has a par of pure imaginary roots and two
roots with negative real pats if and only if the following set of conditions (C)
is sdatisfied.

© b >0, b,>0, b,>0, and F ° bbb, - Db, - b=0.

Proof.
(i) (1) ‘If" part. Suppose that a set of conditions (A) is satisfied. Then, we

have
D(I)=1*+bl2+b,=0 ; b, <O. (A2)

In this case, we obtan

1(-b, - /b2~ 4b,)/2° &, <Of -
(-, o2 - 4b,)/2° a, >0

s0 that we have four roots | J. (j=1,2,3,4) such that

| 2
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|, =xif-a , 1,0,=+a, (Ad)
where i=+-1.

Next, suppose that a set of conditions (B) is satisfied. In this casg
we can rewrite Eg. (Al) as follows.

DA ) =1*+bl°+(0bb, /b, +b,/b)l 2 +b,| +b,

=(12+b,/b)(1 2 +b) +bb,/b)=0 (A5)

where b,/b, >0, b * 0, and bb,/b,* O, so that we have four roots
such that

| 1, =+ifb, /b, |,+1,=-b10, I,,=bb,/b,*0. (A6)

It is obvious that the red pats of |, ad |, in (A6) ae not
zevo.

(2) ‘Only if’ part. Suppose that Eg. (A1) has two roots such that
l,=wi, I,=-wi (w0 ) and rea pats of other two roots ( | ;,
| ,) ae not zero. Then, Eq. (A1) becomes as follows.

DA )=( -wi)l +w i) - 1)1 -1,)
= (12w 2= (L + 10 +1 50}
=1*- (I,+1 4)I3’+(W2+I3I 4)I2- (I3+I4)W2I +w?| s, =0 (A7)
In this case, we have the following relationships.
by=-(,+1,), by=w’+l,, by=-(I;+I,)w’=bw?
b, =w?l Jl ,, (A8)
F © bbb, - b'b, - b;

=bw2W? +1 4 ,)- bw?l Jl , - bAv* = 0. (A9)

Only two <cases ae possble In  the firs case, we have
l,=-1,20. In this case, it follows from (A8 tha b =0, b,=0, ad
b, <0. In the second case, we have |, -1, and red pats of both roots

ae not zero. In this case, it follows from (A8) tha b ' 0, b;*0,
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b,? 0, ad sgn b, = sign b;.

(i) (D ‘If" part. Suppose that a sat of condition (C) is satisfied. Then, we
have Eg. (A5 with b,/b, >0, b >0, ad bb,/b,>0. In this case, we
have four roots which ae given by (A6) with |,+l,<0 and I, ,>0.
These two inequalities imply that readl pats of |, ad |, ae negaive

(2) ‘Only if part. Suppose that Eg. (Al) has a par of pure imaginary
roots |,,/l,=#wi (w*0 ) ad red pats of other two roots ( |,,l,) are
negative. In this case, we have the rdationships (A8 and (A9) with
[,+1,<0 and I, ,>0, which imply that a set of conditions (C) is in
fact satisfied.

Remarks.
(i) If a set of conditions (A) is saisfied, the condition F =0 is dso
satisfied.
(ii) If a st of conditions (C) is saisfied, the conditon b, >0 is aso
satisfied.

The result (ii ) in this lemma provides a complete characterization of the so
cdled ‘smple’ Hopf bifurcation, while the vresult (i) provides a complete
characterization of the more general types of Hopf bifurcation. In fact, the result
(ii) is but a speciad case of the theorem which was proved by Liu(1994) in
a genera n-dimensional system. This result is used by Fanti and Manfredi(1998),
and it is dso implicit in Franke and Asada(1994). Also in the text of this
paper, we used only the result (ii ) to esablish the Hopf bifurcation in our
four-dimensional system. Nevertheless, it will be of some interest to report the
full content of the Lemma with explicit proof because of two reasons. First,
our proof can make it explicit that we can deive the result (ii) a a
corollary of the more general result ( i). Second, as far as we acknowledge, the
result (i) of this lemma is not avalable in usual economic literatures nor
textbooks of mathematics, dthough it provides us some wuseful information for
general type of Hopf bifurcation, which cannot be neglected in some economic
models. For example, in dynamic optimization models, we cannot exclude the
roots with postive rea parts in some dStuation, so that the knowledge on

‘smple’ Hopf bifurcation is not enough for the analysis of such a situation.*
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Notes

(1) Here and henceforth, we suppress the time argument when no confusion is
caused. Furthermore, a dot over a symbol denotes the derivative with respect
to time

(2) Definitions of these ratios are the same as those in Franke and Asada(1994).

(3) This assumption means that we are assuming Harrod-neutral exogenous technical
progress.

(4) See, for example, Asada(1987).

(5) Eq. (3) dso implies that the rate of investment | /K approximately positively
correlates with the rate of profit r =(1- V)Y/K and it negatively correlates
with the expected real rate of interest. These features are qualitatively similar
to the theory of investment which is based on Tobin's q theory ( cf.
Sargent(1987) and Asada(1989) ).

(6) Obvioudy, Eg. (99 dso implies that the government purchases the bond from
capitalists when the government budget is in surplus.

(7) Eq. (10) has some similarity with the so caled ‘Kadorian' adjustment process,
which is formulated as Y= e(C+1+G-Y) (cf. Kaldor(1940), Asada(1987)).
The formulation of Eq. (10) may be more suitable in the context of the long
run growth theory, because in the origind Kadorian formulation, zero excess
demand in the goods market is incompatible with economic growth, while Eq.
(10) is compatible with the growth equilibrium with zero excess demand ( cf.
Asada(1991)).

(8) In our formulation as well as the traditionad Kadorian formulation, inventory
plays the purely passve role Obvioudy, the formulation becomes more
complicated if we explicitly introduce the active roles of firms inventory
policy. However, in this paper we do not investigate this theme to
concentrate on the analysis of the policy lag. As for the more sophisticated
treatment of inventory dynamics, see, for example, Franke (1990, 1996 ) and
Chiarella, Flaschel, Groh and Semmler (2000).

(9) We can observe the dsmilar characteristic adso in the so cadled ‘dynamic
Keynesian model’ which was formulated by Sargent(1987).

(10)See, for example, Gandolfo(1996) or Lorenz(1993).

(11)As for the formal proof, see Asada and Semmler(1995) or Asada(1995).

(12 As for the expodstion of Phillips’ argument, see, for example, Flaschel(1993)
chap. 3.

(13)The policy rule in the previous section is caled the proportiona stabilization
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policy in terms of Phillips.

(14)As for the expostion of this type of the weighting function, see, for
example, Medio(1992) chap. 11.

(15)Strictly spesking, in Phillips’ formula, the government’'s target is the deviation
of the actuad from the desred leved of ‘output’ rather than the degree of
capacity utilization. But, this difference is not important here.

(16)As for the examples of the use of the ‘linear chain trick in economic
analysis, see, for example, Jarsulic(1993) and Fanti and Manfredi(1998).

(17)In this expression, we suppress the time argument (t) for simplicity of the
notation.

(18)As for the proof of this assertion, see Asada(1995).

(19)As for the economic interpretation of the ‘Mundell effect, see Chiarela,
Flaschel, Groh and Semmler(2000).

(20)This type of the government policy function with fixed policy lag is
formulated by Takamasu(1995) and Asada and Y oshida(2001).

(21)As Flaschel(1993) noted, “It(Euler’s method) represents the only method which
gives rise to a discrete dynamics that can be interpreted in an economicaly
meaningful way” (Flaschel(1993) p. 271).

(22)We adso smulated the model by assuming Dt =0.01. Even in this case, we
obtained virtualy the same results. Furthermore, we found that we can obtain
the amost same results even if we adopt the Runge-Kutta algorithm instead
of the Euler’s agorithm.

(23)It is reported in Wolf, Swift, Swinney, and Vastano(1985) that the largest
Lyapunov exponent for the Rosder attractor is 0.13.

(24)Feichtinger, Novak and Wirl(1994) provided a set of mathematica conditions for
the occurrence of Hopf bifurcation in a specid type of the four-dimensiona
model of dynamic optimization. However, the result (i) of our lemma is
more genera than their result, because our criteria are applicable to any
four-dimensional system of differential equations.
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Figures

Fig. 1.

Weighting function

35



1.2

i

SIS (T A PRy SRR T

e

08

0.7 r

06

05

0.8

0.6

04

0.2

~—
k.l
e
1 1 1 ' ’ 1 1
' ' ' r ' ] 1
U ] ' r ' ' r
3y W ol g ol o Wt e ol kol il i o
. ' [ 1 [ " ] ]
¢ ' L] 1 1 1 1 1
H ' 1 1 1 1 1 1
- s edemesdeacssdaccndeccdacecadeacadenndeas
L] L) I 1 L ] L}
1 L] I 1 ' ] L}
’ | ! 1 L ] ]
- a snduasdissdoscsdadadeesdewsdaeedas i
I ' ] ! 1 L] L]
] ] ] [ 1 (] 1 .ﬂ
1 ] L] ) L) 1 |} 1
seadsscdasaldaasdaas semdemcedec e demed e
I L] 1 L) 1 I [ ] 1
] ] 1 L) 1 ' ] 1
r 1 1 ' 1 ' ' 1
L 'l 1 i A L | i
' 1 1 " 1 r ' 1
' 1 1 1 1 ] '
' 1 1 ' ' ] ] 1
mmedeassdenndesasdeassdesndocnsdecccdeeedas
] 1 | ' ' ' ] 1
1 L] ' U ' ] ] i
-\ 1 ' L ' L] Ll 1
mmmd e e e e e e e it ™ [ [
1 ! ' L) L] L) L] 1
1 ' ' U ] 1 1 U
1 ) L L L 1 1
asnadaspsdeansdonadesndenmdan=dasssdssmda
| ' 1 I 1 1 1 (]
] ' 1 I ' 1 1 '
1 1 ] [l '] 1 ' ]
e ol el ik o s o i i A v ol e il g il ), v
' I I I 1 ' 1 1
' U I ] 1 L) 1 1
1 ] ] 1] 1 1 1 1
1 s L 1 1 1 i 1
I
I~
asd i
—

Limit cycle (m=5.00).

Fig. 2.

36



1.2

R

09 |

08 r

i

06 -

0.5

0.8

0.6

0.4

0.2

[
|
1

1
]
]
[
[]

|
I
1
£
!

I
1
L}
[}
]
I

e I
]

[}
]

i
i
[]

1
1
L]

o e m -

1
I
J

B e I I I

e T e e I

'

I ] ] 1
I ] ] !
I I ' 1
wkhcm sl DY Rpa—
I I I i
I I I [}
i I I [}

I
!
|

I
1
L

e ===l
]
I
'

e e e L T T S e o e
¥

b s abhss=lk

T T

(]
]
[

e O L I R S e
L}
)
)

-k e =k~

1
i

I L I b T e R e L

i
1
i
e - - e - =
]
L]
I

([
|
i
SR
1
1
1

== =Y

asd

1.973

=3.0=-02 '_)

1.3

5.90).

Fig. 3. Period 2 cycle( m

37



0.8

0.6

0.4

0.2

|
t
]

1
1
|l

0
]
¥

(]
¥
B

R e L T

. R e el e
]

]
1
1

. L

i
(]
I
[

L

i
I
'
B e R T e e Y e
|
I
[

bcsmbde—boceatbtacscshecsbaccacbaccckbaccabvann

]
I
'
b - sl ==
I
I
]

I e T I et
]

. T T L

asd

"
W
Laeed
i ¥
(RO [ —
1
1
' o
PREVTRTTIER. [ Sty
]
1 l{
I|Ii.-_l. J
1
1
- mads
T
r
r
r
||||n||:.
1
1
-j
I
59
P
]
]
“
[N
mU
¥
&
LY

13

Fig. 4 Period 4 cycle ( m=5.97).

38



0.8

0.6

04

0.2

]
r
]

-

I
]
I

e e L L E L I

1
1
1
i
1
i

ambeacebeccctbtccatbeaseba-cbacaban~-

o |

M
x5

L} t

] '

L L]

donmde =

1 '

1 1

' i

d e daa

] 1

1 U

1 '

S R

1 '

1 ]

1 1

Ao e S

' 1

' 1

' 1

Il i

t

L)

"

a

L]

'

]

4

1

1

e R e L L L R

1
1
1
- L

R e T I e T e R ettt

b - - =

s B i T

..__..L__—L.——L—n-L---.-——L——_I-...--I.---L_--

SRR BRI SRR S AP AT Ry

L T

dasd

1.875

Fig. 5. Narrow-band chaos ( m= 6.06).

39



—
{ g |
N N
5
[ ] 1 ] ] [ L2
' I ' [ ' [
- Q [ [ l ' '
L | l el o st ) et W el o b T N DR
1 ' i [ '
1 ' ' 1 [ i ]
1 ' ' 1 [ | ]
- el et il il i S il ir o o il ol 2
1 1 1 i [ i [
1 1 ' 1 ' | ]
[ 1 1 [ | ' ]
- o - ] S LN | H o | J e il
o | ' 1 1 " 1 1 ]
L] 1 1 1 1 1 1
" [ 1 i ' 1 | '
ol v ol v ol o wrial i o g P e
1 L] 1 1 1 r ) 1
1 ' ' 1 ' ' ' '
1 1 ' 1 \ ' ' [
<t . A L L L
- ' 1 ' ' ' ' -—
[ | ' 1 ' ' 1 ' [ ]
L} 1 L) 1 1 ] L L]
i e e O s 0 s i B B e i, s s i ]
[ 1 | ' 1 ' ' '
L] 1 L] 1 1 L} L} ]
[ [ 1 1 l 1 [ :
Bk 4 SR el ke o 2 S 2 W R | il
2 1 Ll 1 1 ] 1 L] 1
l \ 1 ' | [ 1 | 1 )
o | T T T
PEHTEIE. gR R ORI R ([ J o - 4
[ 1 1 1 ' )
1 1 1 1 .
1 1 1 1 f k(]
- 0 i o o e s o f)
] 1 ! |
' 1 1 1 b
1 | 1 1
© . . _ h
u
. =+
o

asd

Broad-band chaos ( m=6.30).

Fig. 6.



IR S AR SR

e u&ﬁw; Wl

W
2

At

Fig. 7. Bifurcation diagram

41



Fig. 8. Bifurcation diagram ( an enlarged version ).
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