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Abstract 

  In  this  paper,  we  investigate  the  impact  of  government’s  stabilization  policy  on  

the  dynamic  behavior  of  the  economic  system  in  an  analytical  framework  of  a  

Keynes-Goodwin  model  of  the  growth  cycle.  In  particular,  we  study  the  effects  

of  the  policy  lag  on    macroeconomic  stability  analytically  and  numerically.  It  is  

shown  that  the  increase  of  the  policy  lag  contributes  to  destabilize  the  system,  

and  cyclical  behavior  and  chaotic  motion  emerge  in  some  ranges  of  the  

parameter  values. 
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1.  Introduction 

  The  discussion  on  stabilization  policies  has  been  one  of  the  most  important  

topics  in  the  macroeconomic  literature,  ever  since  Keynes(1936)  established  the  

notion  of  effective  demand  in  his  classical  book,  The  General  Theory.  His  main  

argument  is  that  our  laissez-faire  capitalist economy  tends  to  settle  down  to  a  

position  of  underemployment  without  government  intervention ;  the  government  should  

have  active  control  over  the  level  of  aggregate  demand  to  achieve  full  

employment.  However,  there  are  several  opposite  views  to  the  effectiveness  of  

Keynesian  demand  management  policy.  For  example,  Friedman(1948)  asserted  that  

the  existence  of  policy  lag  could  be  a  destabilizing  factor.  Although 

Friedman(1948)’s  argument  is  not  based  on  the  full-fledged  dynamic  model  of  

macroeconomic  interdependency,  Phillips(1954,  1957)  studied  the  effects  of  policy  

lag  on  macroeconomic  stability  by  means  of  the  numerical  analysis,  which  is  

explicitly  based  on  a  simple  macrodynamic  model  of  the  multiplier-accelerator  type. 

  After  Phillips(1954,  1957),  there  exist  only  a  few  formal  models  of  policy  lag  

which  are  based  on  the  explicit  consideration  of  macrodynamic  system  of  

interdependency.  Takamasu(1995)  and  Asada  and  Yoshida(2001)  are  two  examples  of  

such  works.  Takamasu(1995)  introduced  the  policy  lag  into  Goodwin(1967)’s  growth  

cycle  model,  and  showed  the  possibility  of  the  chaotic  movement  by  means  of  

the  numerical  simulations.  It  can  be  considered  that  Takamasu(1995)  is  an  

extension  of  Wolfstetter(1982)’s  pioneering  work  which  discussed  the  economic  

implications  of  government’s  stabilization  policy  by  introducing  the  fical  policy  

without  policy  lag  into  Goodwin’s  growth  cycle  model.  However,  Goodwin(1967)’s  

original  formulation,  on  which  Takamasu(1995)  heavily  depends,  has  some  

difficulties  as  a  description  of  the  dynamics  of  the  modern  capitalist  economy.  

Goodwin(1967)’s  model  consists  of   two  main  elements.  First  element  is  dynamic  

of  income  distribution  which  is  based  on  the  real  wage  Phillips  curve,  and  

second  element  is  dynamic  of  employment  which  is  governed  by  the  capital  

accumulation.  But,  in  this  model,  there  is  no  room  for  Keynesian  effective  

demand  to  play  the  active  role,  because  Goodwin(1967)  closed  the  model  by  

assuming  a  sort  of  ‘Say’s  law’.  In  other  words,  in  his  model,  it  is  assumed  

that  firms’  investment  expenditures  are  automatically  adjusted  to  the  levels  of  

capitalists’  savings  to  ensure  the  full  capacity  utilization  of  the  existing  capital  

stock,  and  there  is  no  room  for  the  investment  function  which  is  independent  of  

capitalists’  saving  function.  On  the  other  hand,  Asada  and  Yoshida(2001)  introduced  

the  policy  lag  into  Kaldorian  business  cycle  model  which  is  originated  in  
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Kaldsor(1940),  and  investigated  the  dynamics  of  the  system  analytically  and  

numerically.  In  the  analytical  framework  which  was  adopted  by  Asada  and  

Yoshida(2001),  the  investment  function  which  is  independent  of  the  saving  function  

plays  an  active  role,  and  the  output  fluctuates  according  to  the  Keynesian  

principle  of  effective  demand  instead  of  the  Say’s  law.  Contrary  to  Goodwin’s  

approach,  however,  in  this  Kaldorian  framework,  the  dynamics  of  wages  and  

prices  are  absent,  and  economic  growth  is  also  abstracted  from. 

  In  this  paper,  we  reconsider  the  macroeconomic  implications  of  the  policy  lag  

by  utilizing  the  analytical  framework  of  the  so  called  ‘Keynes-Goodwin  model’,  

which  was  developed  by  Asada(1989),  Skott(1989),  Franke  and  Asada(1994)  and  

others.  This  model  also  considers  the  dynamics  of  income  distribution  and  capital  

accumulation,  but,  contrary  to  the  original  Goodwin  model  which  consists  of  only  

real  dynamics,  in  this  model  the  nominal  wage  dynamics  and  price  dynamics  are  

considered  separately.  Furthermore,  in  our  analytical  framework,  the  active  role  of  

the  independent  investment  function  and  the  variable  capacity  utilization  of  the  

capital  stock  which  is  determined  by  the  Keynesian / Kaleckian  principle  of  

effective  demand  are  explicitly  considered.  ( In  these  respects,  our  ‘Keynes-Goodwin’  

model  of  growth  cycle  is  similar  to  the  ‘Keynes-Wicksell’  model  which  is  due  

to  Chiarella  and  Flaschel(1996)  and  ‘Keynes-Goodwin-Metzler ’ model ( KGM  model )  

which  is  due  to  Chiarella,  Flaschel,  Groh  and  Semmler(2000),  but  structure  of  

our  model  is  simpler  than  their  models. ) 

  By  the  way,  we  add  a  rather  technical  matter.  This  paper  considers  time  lags  

of  fiscal  policies  by  employing  a  continuously  distributed  lag,  although  we  also  

consider  the  case  of  the  fixed  time  lag  as  a  limiting  case.  There  exist  several  

works  which  use  the  distributed  lag  within  Goodwin’s  framework  of  the  growth  

cycle.  They  share  the  same  standpoint ;  they  modify  the  usual  Phillips  curve  to  

allow  for  the  time  delay  in  the  labor  market.  Chiarella(1990,  Chap. 5 )  and  Farkas  

and  Kotsis(1992),  for  instance,  emphasize  that  the  wage  rate  adjusts  sluggishly  to  

the  labor  market  disequilibrium.  Another  example  is  Fanti  and  Manfredi(1998).  

They  pay  attentions  to  a  profit-sharing  rule  and  the  existence  of  asymmetric  

information  in  the  wage  determination.  In  contrast,  our  concern  is  to  examine  the  

effects  of  policy  lag  on  governments’  stabilization  policy. 

  This  paper  is  organized  as  follows.  Based  on  the  basic  model  which  is  

formulated  in  section  2,  section  3  studies  the  effects  of  the  governments’  

stabilization  policy  by  means  of  fiscal  policy  without  policy  lag.  Section  4  

extends  the  basic  model  to  consider  the  policy  lag  and  investigate  the  natures  of  
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the  solutions  analytically.  Our  model  is  formulated  as  a  system  of  

integro-differential  equations,  but,  fortunately,  it  is  shown  that  we  can  reduce  it  

to  a  set  of  ordinary  differential  equations  by  using  the  so  called  ‘linear  chain  

trick’.  It  is  also  shown  that  a  limiting  case  of  this  system  becomes  a  set  of  

differential-difference  equations ( delay-differential  equations ).  In  section  4,  we  

investigate  the  local  stability / instability  properties  of  the  system  analytically  and  

prove  the  existence  of  the  limit  cycle  by  using  Hopf  bifurcation  theorem  in  a  

particular  case  of  more  general  model.  Section  5  is  devoted  to  the  numerical  

simulations  of  the  limiting  case  of  the  fixed  time  lag,  which  is  described  by  a  

set  of  differential-difference  equations,  and  we  show  the  possibility  of  the  chaotic  

movement  which  is  due  to  the  policy  lag  numerically.  Concluding  remarks  are  

given  in  section  6.  In  the  appendix,  some  purely  mathematical  results,  which  are  

not  only  useful  for  our  purposes  but  also  have  potential  applicability  to  wider  

classes  of  macrodynamic  analyses,  are  stated  and  proved. 

 

 

2.  Formulation  of  the  basic  model 

  The  symbols  used  throughout  this  paper  are  defined  as  follows.1  

Y = gross  real  output ( gross  real  national  income ),  K  = real  capital  stock, N  = 

labor  employment,  WC  = workers’  real  consumption  expenditure,  KC  = capitalists’  real  

consumption  expenditure,  I  = gross  real  private  investment  expenditure,  G  = real  

government  expenditure,  T  = real  income  tax,  B  = nominal  stock  of  government  

bond,  p  = price  level,  w  = nominal  wage  rate,  eπ  = expected  rate  of  price  

inflation,  i  = nominal  rate  of  interest  of  government  bond,  Bp  = market  price  of  

government  bond,  d = rate  of  depreciation  of  capital  stock  which  is  assumed  to  

be  constant ( 10 ≤≤ d ). 

 

  Furthermore,  we  define  the  following  three  important  ratios. 2  
  == NYy /  average  labor  productivity  which  is  assumed  to  grow  at  

      the  constant  rate α  ( i. e.,  α=yy /& > 0 ). 3  

  )/()/()( pywpYwNv ==  =  workers’  share  in  national  income. 

== KYu /  capital-output  ratio,  which  is  also  called   ‘ rate  of  capital 

  utilization’. 

 

  Next,  let  us  consider  the  equations  which  constitute  the  basic  model  in  order. 
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2-1.  Workers ’  consumption 

  A  fraction  δ  ( 0 < δ  < 1 )  of  workers’  income  is  collected  in  the  form  of  

taxes.  Thus  their  disposable  income  is  vpY)1( δ− ,  and  we  assume  that  they  

consume  all  their  disposable  income.  In  this  case,  we  have  the  following  

equation. 

 

  vpYpCW )1( δ−=                                                            (1) 

 

2-2.  Capitalists’  consumption 

  According  to  Wolfstetter(1982),  we  assume  that  only  capitalists  purchase  

government  bond.  For  simplicity,  we  assume  that  government  bond  is  the  ‘consol  

type’.  In  other  words,  we  assume  that  a  holder  of  a  unit  of  government  bond  

is  paid  a  unit  of  money  every  period  by  the  government.  In  this  case,  the  

nominal  interest  payment  per  period  becomes  B  and  the  market  price  of  

government  bond  becomes  the  reciprocal  of  the  nominal  rate  of  interest,  i. e.,  

./1 ip B =  4   Furthermore,  we  assume  that  the  tax  base  on  the  capitalists’  income  

is  the  income  net  of  the  purchase  of  the  government  bond,  and  the  average  tax  

rate  on  capitalists’  income  is  the  same  as  that  on  wage  income.  In  this  case,  

capitalists’  disposable  income  becomes  })1){(1( BpBpYv B
&−+−− δ  

= }./)1){(1( iBBpYv &−+−− δ   We  assume  that  capitalists’  consumption  is  

proportional  to  their  disposable  income.  Namely, 

 

  }/)1){(1( iBBpYvcpC kK
&−+−−= δ                                          (2) 

 

where  kc   is  capitalists’  average  propensity  to  consume ( 0 < kc  < 1 ). 

 

2-3.  Firms’  investment  and  pricing  behavior 

  Next,  let  us  consider  firms’  behavior  with  respect  to  investment  and  pricing.  

Contrary  to  Goodwin(1967)’s  original  model,  we  introduce  firms’  investment  function  

which  is  independent  of  the  saving  function  of  the  capitalists’  household  according  

to  Keynesian  tradition.  The  following  investment  function  is  assumed. 

 

  YivHYvHI e ),1(),1( πρ −−≡−=  ; )1(/1 vHH −∂∂≡ >0, ρ∂∂≡ /2 HH  <0   (3) 

 

where  ei πρ −=   is  the  expected  real  rate  of  interest  of  the  government  bond.  
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Such  an  investment  function  is  justified  by  Kaldor(1961).  He  emphasizes  six  

‘stylized  facts’  as  a  starting  point  for  modeling  the  process  of  economic  change,  

and  the  fifth  stylized  fact  indicates  the  positive  correlation  between  the  share  of  

profits  in    national  income  and  the  share  of  investment  in  output.  In  addition,  

Eq. (3)  says  that  real  investment  expenditure  is  a  decreasing  function  of  the  

expected  real  rate  of  interest,  which  is  a  standard  Keynesian  postulate. 5   We  also  

suppose  that 

 

  dKIK −=&                                                                  (4) 

 

;  which  simply  means  that  the  net  investment  contributes  to  the  changes  of  the  

capital  stock.  

  Now,  we  shall  turn  to  the  formulation  of  firms’  pricing  behavior.  We  suppose  

that  firms  set  a  desired  price  Dp   as  a  constant  markup,  ,m   on  the  unit  

labor  cost ( cf. Kalecki(1971)).  Namely, 

 

  .// ymwYmwNp D ==                                                       (5) 

 

  However,  the  desired  price  is  not  always  realized.  The  actual  dynamics  are  

governed  by 

 

  )/(/ DD pppp && γ=   ;  0 < γ  < 1,                                            (6) 

 

where  0 < γ  < 1  means  a  sort  of  price  rigidity.  For  a  full  account  of  this  

point,  see,  for  example,  Sportelli ( 1995,  pp. 41-42 ). 

 

2-4.  Government’s  fiscal  policy 

  The  tax  revenue  of  government  consists  of  the  income  taxes  on  workers  and  

capitalists,  namely, 

 

  )./(}/)1({ iBBpYiBBpYvvpYpT && −+=−+−+= δδ                          (7) 

 

  Furthermore,  we  specify  government’s  spending  policy  as  follows. 

 

  pYuupYpG )*( −+= µδ                                                     (8) 
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  The  first  term  of  Eq. (8)  indicates  a  regular  expenditure  which  is  proportional  

to  national  income.  The  second  term  represents  a  discretionary  expenditure.  We  

assume  that  the  government  accurately  recognizes  the  macroeconomic  structure  and  

thus  knows  the  equilibrium  rate  of  capacity  utilization  *u   which  is  determined  

by  ),(* 1 α−= Fu   where  the  function  )(uF   is  the  wage-Phillips  curve  which  will  

be  introduced  later.  Government’s  fiscal  policy  is  counter-cyclical  when  µ  > 0,  

while  it  is  pro-cyclical  when  µ  < 0.  The  former  is  called  the  ‘Keynesian  policy  

rule’  and  the  latter  is  termed  the  ‘classical  rule’  by  Wolfstetter(1982). 

  Following  Wolstetter(1982),  we  assume  that  the  government  deficit  is  financed  

only  by  selling  bond  to  the  capitalists  class.  Thus  the  government  budget  

constraint  is  expressed  as  follows.6  

 

  )(/ TGpBiB −+=&                                                          (9) 

 

  As  for  the  monetary  policy  rule  of  the  central  bank,  we  adopt  the  Post  

Keynesian  ‘Horizontalist  view’  in  the  sense  of  Moore(1988).  In  other  words,  we  

assume  that  the  central  bank  accommodates  money  supply  to  the  money  demand  

endogenously  to  keep  the  nominal  rate  of  interest  )(i   at  some  constant  level.  

This  means  that  the  nominal  money  supply  is  proportional  to  the  nominal  

national  income  if  we  assume  the  standard  Keynesian  money  demand  function  

pYiLD )(φ= .  This  hypothesis  contrasts  with  that  of  Asada(1991)  and  Franke  and  

Asada(1994)  which  adopt  the  ‘Verticalist  view’  with  constant  growth  rate  of  the  

nominal  money  supply  and  endogenous  nominal  rate  of  interest.   

 

2-5.  Adjustment  process  in  the  goods  market 

  We  formalize  the  adjustment  process  in  the  goods  market  as  follows. 

 

  }/){( uKGICCu KW −+++= ε&   ;  ε  > 0                                  (10) 

 

  We  assume  that  the  output-capital  ratio  at  the  full  utilization  of  capital  stock  

is  fixed,  but  even  in  this  case,  the  actual  output-capital  ratio  becomes  a  variable  

when  the  capital  stock  is  not  fully  utilized.  In  fact,  the  actual  output-capital  

ratio  is  proportional  to  the  rate  of  capital  utilization.  Eq. (10)  says  that  the  

capital  utilization  fluctuates  according  as  the  excess  demand  in  the  goods  market  

per  capital  stock  is  positive  or  negative.  This  is  a  formalization  of  the  

Keynesian / Kaleckian  quantity  adjustment  process  in  the  modern  capitalist  economy,  
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in  which  the  goods  market  is  not  always  cleared  by  flexible  price  adjustment. 7   

This  feature  of  our  model  contrasts  with  the  original  Goodwin(1967)’s  model  in  

which  a  sort  of  ‘Say’s  law’  is  assumed.  In  fact,  in  Goodwin(1967),  there  is  no  

investment  function  which  is  independent  of  the  saving  function,  and  it  is  

assumed  that  the  investment  is  automatically  adjusted  to  keep  the  full  utilization  

of  capital  stock  in  every  period. 

  It  is  worth  to  note  that  the  adjustment  process  which  is  expressed  by  Eq. (10)  

implicitly  assumes  that  the  discrepancy  between  demand  and  production  is  absorbed  

through  the  changes  of  the  inventory,  and  it  is  supposed  that  the  demand  side  

is  always  realized. 8   As  Chiarella  and  Flaschel(1996)  pointed  out  correc tly,  in  this  

type  of  the  formulation,  “income  concept  is  based  on  production  plans  and  not  

on  actual  sales”( Chiarella  and  Flaschel(1996)  p. 330 ).   

 

2-6.  Wage  adjustment  process 

  We  model  the  wage  adjustment  process  by  rather  standard  expectations-augmented  

wage  Phillips  curve : 

 

  euFww π+= )(/&   ;  )(uF ′  > 0.                                            (11) 

 

  This  formulation  follows  the  procedure  by  Franke  and  Asada(1994).  Namely,  

capital  utilization )(u   is  adopted  as  a  proxy  for  employment  rate  or  the  tightness  

of  labor  market.  As  Franke  and  Asada(1994)  notes,  this  procedure  can  save  one  

state  variable ( employment  rate ),  and  “this  simplification  is  justified  by  the  high  

correlation  on  the  two  variables  over  the  cycle” ( Franke  and  Asada(1994) p. 277).  

Furthermore,  we  assume  the  following  inequalities  as  a  rather  technical  requirement. 

 

  )0(F  < α  < )(uF                                                        (12) 

 

;  where  u   is  the  output-capital  ratio  under  the  full  utilization  of  the  capital  

stock. 

 

2-7.  Two  missing  equations 

  Eq. (1)  through  Eq. (11)  constitute  eleven  independent  equations  with  thirteen  

endogenous  variables ).,,,,,,,,,,,,( vwuBGTppKICC eD
KW π   Therefore,  we  need  

two  more  equations  to  close  the  system. 
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  The  first  missing  equation  concerns  the  expectations  formation  process  of  the  

price  inflation.  We  adopt  the  following  adaptive  expectations  hypothesis ( cf. 

Asada(1991),  Franke  and  Asada(1994),  Chiarella  and  Flaschel(1996)  et. al ). 

 

  )/( ee pp πβπ −= &&   ;  β  > 0                                              (13) 

 

  We  can  obtain  the  second  missing  equation  by  the  logarithmic  differentiation  of  

the  equation  )/( pywv = ,  which  is  nothing  but  the  definition  of  v ,  i. e., 

 

  α−−= ppwwvv /// &&&                                                       (14) 

 

  These  two  equations  can  close  our  basic  model. 

 

 

3.  Analysis  of  the  basic  model  without  policy  lag 

  In  this  section,  we  shall  analyze  mathematically  the  performance  of  the  basic  

model  without  policy  lag  which  was  formulated  in  the  previous  section. 

 

3-1.  Reduced  form  of  equations 

  We  can  transform  the  system  in  the  previous  section  into  the  following  reduced  

form,  which  is  a  three-dimensional  nonlinear  dynamical  system. 

 

  ( i )    uuucvcivHu kk
e )}*)(1()1)(1)(1(),1({ −−+−−−−−−= µδπε&  

           evuf π,,(1≡  ; )µ  

  ( ii )   ),,(})(){1( 2
ee vufvuFv παπγ ≡−+−=&  

  ( iii )  ),(]})({[ 3
eeee ufuF ππαπγβπ ≡−−+=&                             )( 1S  

 

  We  can  obtain  Eq. )( 1S ( i )  as  follows.  Substituting  equations (7)  and  (8)  into  

Eq. (9),  we  have 

 

  .)*()/(/ pYuuiBBpGpTiBB −−−=−=− µδ &&                               (15) 

 

  Solving  this  equation  with  respect  to  ,/ iBB &−   we  obtain 
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  ).1/()*(/ δµ −−−=− pYuuiBB &                                             (16) 

 

  Substituting  equations  (1),  (2),  (3),  (8)  and  (16)  into  Eq. (10),  we  obtain  Eq. 

)( 1S  ( i ).   

  On  the  other  hand,  we  can  obtain  Eq. )( 1S ( ii )  as  follows.  Differentiating  Eq. 

(5)  and  substituting  it  into  Eq. (6),  we  have 

 

  )./()//(/ αγγ −=−= wwyywwpp &&&&                                         (17) 

 

  Substituting  equations  (17)  and  (11)  into  Eq. (14),  we  obtain  Eq. )( 1S ( ii ).  

Finally,  Eq. )( 1S ( iii )  is  obtained  from  equations  (11),  (13)  and  (17). 

  It  is  worth  to  note  that  in  our  model  the  dynamics  of  the  government  bond  

do  not  feed  back  into  the  movement  of  ,u   ,v   or  eπ   so  that  the  system  

becomes  decomposable  unless  we  introduce  the  wealth  effect  on  the  capitalists’  

consumption. 9   

 

3-2.  The  properties  of  the  equilibrium  solution 

  The  non-zero  equilibrium  solution  of  the  system  )( 1S   is  given  by  

*)*,*,( evu π   such  that  ,0=== evu π&&&   where 

 

  ,0*)1)(1)(1()*,1( =−−−−− vcivH k δ                                        (18) 

  ,0*)( =−αuF                                                              (19) 

  .0* =eπ                                                                    (20) 

 

  It  is  obvious  from  Eq. (11)  and  the  inequality  (12)  that  there  exists  a  unique  

).,0(* uu ∈   We  assume  the  existence  of  the  unique      solution  ).1,0(*∈v   

Furthermore,  the  following  assumption  is  added. 

 

Assumption 1.   *)]1(/[*1 vHH −∂∂≡  > ).1)(1( δ−− kc  

 

  This  means  that  the  marginal  propensity  to  invest  of  firms  exceeds  the  

marginal  propensity  to  save  at  the  equilibrium  point,  which  is  a  standard  

assumption  in  Kaldorian  business  cycle  theory (cf.  Kaldor(1940),  Asada(1987),  

Asada(1991),  and  Asada  and  Yoshida(2001) ).   

  Let  us  discuss  the  equilibrium  solution  from  the  economic  point  of  view.  From  

Eq. (20),  the  expected  rate  of  inflation  is  zero,  so  that  the  same  is  true  of  
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actual  rate  of  inflation.  What  is  more,  it  follows  from  Eq. (19)  that  the  nominal  

wage  rate  grows  at  growth  rate  of  labor  productivity,  whic h  means  that  the  real  

wage  rate  also  grows  at  the  same  rate  because  of  no  price  inflation.  The  

equilibrium  rate  of  economic  growth  is  determined  endogenously  by  the  formula 

 

  .**)*,1(// gduivHKKYY ≡−−== &&                                       (21) 

 

  Substituting  *uu =   into  Eq. (16),  we  also  have 

 

  ./ iBB =&                                                                   (22) 

 

  It  follows  from  equations  (21)  and  (22)  that  the  bond-income  ratio )/( YB   

eventually  tends  to  zero  at  the  long  run  equilibrium  if  and  only  if   the  

inequality 

 

  i  < *g                                                                    (23) 

 

is  satisfied.  We  assume  that  in  fact  this  inequality  is  satisfied.  In  this  case,  the  

structure  of  the  government  bond  is  sustainable  in  the  long  run. 

  How  can  the  equilibrium  values  of  the  system  change  when  there  is  change  

in  any  of  the  policy  parameters?  A  change  in  µ   has  no  effect  upon  the  long  

run  equilibrium  position,  because  the  target  rate  of  capacity  utilization  is  fixed  at  

the  equilibrium  rate.  A  rise  in  δ   increases  the  wage  share  under  Assumption 1,  

i. e., 

 

  )}1)(1(*/{)1)(1(/* 1 δδδ −−−−−=∂∂ kk cHcv  > 0.                          (24) 

 

3-3.  Local  stability  analysis  and  Hopf  bifurcation 

  To  inquire  into  the  local  stability  of  the  equilibrium  point,  we  use  the  

coefficients  of  the  linearized  system  near  the  equilibrium  point.  The  Jacobian  

matrix  of  the  system  )( 1S ,  which  is  evaluated  at  the  equilibrium  point,  is  given  

by 
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














=

3331

2321

131211

1

0
0

)(

ff
ff

fff

J

µ

                                                    (25) 

 

;  where  µεµ *)1()(11 ucf k−−= ,  *)}1)(1(*{ 112 ucHf k δε −−−−=  < 0,  

**213 uHf ε−=  > 0,  **)1(21 vFf ′−= γ  > 0,  *)1(23 vf γ−=  > 0,  *31 Ff ′= βγ  > 0,  

and  )1(33 γβ −−=f  < 0.  

  Then,  we  can  write  the  characteristic  equation  of  the  basic  model  as  follows. 

 

  0)( 32
2

1
3

11 =+++=−≡∆ aaaJI λλλλλ                                    (26) 

 

;  where 

 

( i )    ),()( 1
)(

33
(?)

1111 µµ afftraceJa ≡−−=−=
−

 

( ii )   
0

)()(
0
0

21

1211

3331

1311

33

23
2 f

ff
ff
ff

f
f

a
µµ

++=  

          = ),()( 2
)(

21
)(

12
)(

31
)(

13
)(

33
(?)
11 µµ affffff ≡−−

+−++−
 

( iii )  
)(

33
)(

21
)(

12
)(

31
)(

23
)(

1213 det
−+−++−

+−=−= ffffffJa  > 0.                              (27) 

 

  From  these  relationships,  we  obtain  the  following  result. 

 

  DBAaaa ++=−≡Ψ µµµ 2
321)( ,                                          (28) 

 

where  
)(

33
222 *)1(

−
−−= fucA kε  > 0,  ),(*)1( 2

33
)(

21
)(

12
)(

31
)(

13 fffffucB k −−−−=
+−++

ε   and  

)(
31

)(
23

)(
12

)(
33

)(
31

)(
13

++−−++
+= ffffffD  < 0.   

  It  follows  from  Eq. (28)  that 
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  D=Ψ )0(  < 0,                                                             (29) 

 

which  implies  that  the  equilibrium  point  of  the  system  )( 1S   becomes  locally  

unstable  because  one  of  the  Routh-Hurwitz  conditions  for  stable  roots ( 1a  > 0,  3a  

> 0,  321 aaa −  > 0 )  is  violated  when  the  government’s  fiscal  policy  is  ‘neutral’ 

( 0=µ ).   

  Next,  let  us  investigate  how  the  government  can  stabilize  the  potentially  

unstable  economy  by  means  of  the  local  stability  analysis.  As  a  preliminary  of  

such  an  analysis,  let  us  note  that  the  quadratic  equation  0)( =Ψ µ   has  two  real  

roots ( HL µµ , )  such  that  Lµ  < 0 < ,Hµ   and  we  have  )(µΨ  < 0  for  all  

),,( HL µµµ ∈   and  we  have  )(µΨ  > 0  for  all  ).,(),( +∞∪−∞∈ HL µµµ    

 

Proposition 1. 

  The  equilibrium  point  of  the  system  )( 1S   is  locally  stable  for  all  

),,( +∞∈ Hµµ   and  it  is  locally  unstable  for  all  ).,( Hµµ −∞∈  

 

Proof. 

( i )   It  is  easy  to  check  that  all  of  the  Routh-Hurwitz  conditions  for 

    stable  roots  are  satisfied  when  µ  > .Hµ  

( ii )  From  Eq. (27)( i )  we  can  see  that  we  have  01 =a   when  

*})1(/{)1(1 uck−−−≡= εγβµµ  < 0,  and  1a  < 0 ( 1a  > 0 )  is  obtained  whenever  

µ  < 1µ  ( µ  > )1µ .  This  means  that  the  equilibrium  point  is  locally  unstable  

when  µ  < 1µ   because  one  of  the  Routh-Hurwitz  conditions  is  violated.  

Furthermore,  from  Eq. (28)  we  have  31 )( a−=Ψ µ  < 0,  which  means  that  Lµ  < 

,1µ   and  thus  we  have  )(µΨ  < 0  for  all  Hµµµ ,[ 1∈ ).  This  implies  that  the  

equilibrium  point  becomes  locally  unstable  also  in  the  case  of  µµ ≤1  < Hµ .   

 

  This  proposition  implies  that  the  government  cannot  stabilize  the  potentially  

unstable  economy  if  the  ‘classical’  fiscal  policy  rule ( µ  < 0 )  is  adopted,  but  the  

government  can  stabilize  the  economy  at  least  locally  by  adopting  sufficiently  

active  ‘Keynesian’  policy  rule ( µ  > Hµ ).  The  particular  parameter  value  Hµ   

defines  the  ‘bifurcation  point’  which  divides  the  parameter  values  of  µ   into  

unstable  and  stable  regions.  We  can  easily  confirm  that  at  Hµµ =   the  following  

relationships  are  satisfied. 

 

( i )    ,0321 =− aaa  
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( ii )   132 / aaa =  > 0, 

( iii )  µ∂−∂ /)( 321 aaa  > 0.                                                   (30) 

 

  These  relationships  are  enough  to  apply  the  Hopf  bifurcation  theorem  to  

establish  the  existence  of  the  cyclical  movement. 

 

Proposition 2. 

  There  exist  some  non-constant  periodic  solutions  of  the  system  )( 1S   at  some  

parameter  values  µ   which  are  sufficiently  close  to  .Hµ  

 

Proof. 

  We  can  apply the  Hopf  bifurcation  theorem,  which  asserts  the  existence  of  the  

closed  orbit,  if  we  show  that  (i) the  characteristic  equation  (26)  has  a  pair  of  

pure  imaginary  roots  and  a  non-zero  real  root,  and  (ii) the  real  part  of  the  

imaginary  roots  is  not  stationary  with  respect  to  the  changes  of  the  parameter  

µ . 10   These  conditions  are  equivalent  to  the  following  conditions  in  terms  of  the  

coefficients  of  the  characteristic  equation :  ,0321 =− aaa   2a  > 0,  and  

0/)( 321 ≠∂−∂ µaaa   at  the  bifurcation  point.11   Eq. (30)  implies  that  all  of  these  

conditions  are  in  fact  satisfied  at  .Hµµ =                      

 

 

4.  Time  lag  in  fiscal  policy 

  The  argument  in  the  previous  section  makes  it  clear  that  Keynesian  fiscal  

policy  has  stabilizing  effects  in  our  analytical  framework  of  a  Keynes-Goodwin  

growth  cycle  model.  However,  we  could  obtain  this  result  by  assuming  that  the  

government  can  respond  to  the  changes  of  the  economic  environment  without  time  

lag.  In  actual,  the  effect  of  stabilization  policy  depends  on  the  length  of  policy  

lag,  as  Friedman(1948)  pointed  out  in  a  classical  paper.  This  theme   has    been  

repeatedly  taken  up  in  many  elementary  textbooks  on  Macroeconomics.  Obviously,  

it  is  doubtful  that  demand  management  policies  are  conducted  thoroughly  and  

timely  by  the  policy  makers  in  the  real  world.  The  government  actually  faces  

limitations  on  forecasting  ability  and  difficulties  in  political  processes,  so  that  the  

timing  of  policy  would  be  subject  to  delay.  Therefore,  it  will  be  of  great  

significance  that  we  study  the  effects  of  policy  lag  on  the  macroeconomic  

stability. 
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4-1.  A  general  model  of  policy  lag 

  Phillips(1954,  1957)  argues  the  above-mentioned  subject  employing  a  simple  

multiplier-accelerator  model,  while  the  argument  of  Friedman(1948)  is  intuitive  and  

descriptive.  Phillips  presents  three  types  of  fiscal  policy :  proportional,  integral,  and  

derivative  stabilization  policies. 12   In  this  subsection,  we  adopt  a  sort  of  integral  

stabilization  policy  to  examine  the  effects  of  time  lag  explicitly. 13   The  government  

spending  function  is  assumed  to  have  the  following  form. 

 

  ∫ ∞−
−+=

t
dsssuutYtG )()}(*{)(/)( ωµδ                                       (31) 

 

;  where 

 

  ))(/(
1

)!1(
)(

)()( stn
n

n e
n

stn
s −−

−

−
−

= τ

τ
ω  ,  τ  > 0.                                    (32) 

 

  Note  that  n   is  a  positive  integer.  If  we  note  that  ∫ ∞−
=

t
dss ,1)(ω   the  

function  )(sω   can  be  thought  of  as  a  weighting  function,  which  is  identical  

with  a  density  function  with  the  mean,  τ ,  and  the  variance,  n/2τ . 14   Thus  

the  economic  meaning  of  Eq. (31)  is  that  the  length  of  policy  lag  is  τ   on  

average.  When  ,1=n   it  is  the  exponential  distribution.  For  ,2≥n   )(sω   has  a  

one-hump  form  with  a  maximum  value  at  ,/)1( nnts τ−−=   for  fixed  .t   We  

depict  the  graphs  of  )(sω   with  5.1=τ   and  ,2=n   16,  and  74  in  Fig. 1.  It  

shows  that  a  sharp  peak  appears  around  τ−= ts   as  n   increases.  Henceforth,  

we  shall  call  the  parameter  τ   ‘policy  lag’  for  simplicity. 

 

 

                               Insert  Fig. 1  here. 

 

 

  We  have  an  analytical  advantage  over  Phillips(1954, 1957),  since  our  expression  

(31)  enables  us  to  consider  the  policy  lag  explicitly,  as  mentioned  above.  Our  

expression  is  similar  to  Phillips’  in  that  government  expenditures  are  dependent  

not  on  the  degree  of  the  capacity  utilization  at  the  particular  time  but  on  the  
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whole  past  data  on  .u   However,  there  is  a  slight  difference  between  two  

expressions.  That  is,  we  connect  the  level  of  government  spending  with  the  

weighted  average  of  the  past  sequence  of  uu −*   by  employing  the  weighting  

function  which  is  expressed  by  Eq. (32),  whereas,  in  Phillips’  formula,  government  

purchases  are  made  in  proportion  to  the  time  integral ( or,  summation )  of  the  

past  sequence  of  uu −*   with  1)( ≡sω   on  the  time  interval  ).,( t−∞ 15  

  Using  the  fact  that  ∫ ∞−
=

t
dss ,1)(ω   we  can  convert  Eq. (31)  to  the  form 

 

  ∫ ∞−
−+=

t
dsssuutYtG ).)()(*()(/)( ωµδ                                       (33) 

 

  Replacing  Eq. (8)  in  section 2  with  the  new  equation  (33),  we  obtain  the  

following  reduced  form  of  a  Keynes-Goodwin  model  with  policy  lag,  which  is  a  

system  of  nonlinear  integro-differential  equations. 

 

  ( i )    ))(1)(1)(1())(),(1({)( tvctitvHtu k
e −−−−−−= δπε&  

                ∫ ∞−
−−+

t

k tudsssuuc )()})()(*)(1( ωµ  

  ( ii )   )(})())((){1()( tvttuFtv e απγ −+−=&  

  ( iii )  )](})())(({[)( tttuFt eee παπγβπ −−+=&                              )( 2S  

 

  At  first  glance,  it  seems  that  this  system  is  so  complicated  that  it  is  

intractable.  Fortunately,  however,  we  can  transform  this  system  into  a  relatively  

tractable  system  of  (nonlinear)  ordinary  differential  equations  by  using  the  so  

called  ‘linear  chain  trick’ ,  which  is  due  to  MacDonald(1978).16   To  this  end,  let  

us  define 

 

  dssue
j

stn
tx stn

j
jt

j )(
)!1(

)(
)()( ))(/(

1
−−

−

∞− −
−

= ∫ τ

τ
  ;  j  = 1, 2,  , .n                 (34) 

 

  Differentiation  of  Eq. (34)  with  respect  to  time  gives  us 

 

  )},()(){/()( 11 txtuntx −= τ&                                                   (35) 

  )}()(){/()( 1 txtxntx jjj −= −τ&   ;  j  =  2,  , .n                            (36) 
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  This  trick  produces  the  following  system  of  )3( +n   dimensional  ordinary  

differential  equations.17  

 

  ( i )    uxucvcivHu nkk
e )}*)(1()1)(1)(1(),1({ −−+−−−−−−= µδπε&  

           n
e xvuG ,,,(1 π≡  ; µ ) 

  ( ii )   ),,(})(){1( 2
ee vuGvuFv παπγ ≡−+−=&  

  ( iii )  ),(]})({[ 3
eeee uGuF ππαπγβπ ≡−−+=&  

  ( iv )  1411 ,())(/( xuGxunx ≡−= τ&  ; τ ) 

  ( v )   jjjjjj xxGxxnx ,131 ())(/( −+− ≡−= τ&  ; τ ) 

           ;  j  =  2,  , .n                                               )( 2 ′S  

 

  The  equilibrium  solution  of  this  system  is  essentially  identical  to  that  of  the  

system  ),( 1S   namely,   

 

  ,0*)1)(1)(1()*,1( =−−−−− vcivH k δ                                        (37) 

  ,0*)( =−αuF                                                              (38) 

  ,0* =eπ                                                                    (39) 

  == ** 21 xx   .** uxn ==                                                 (40) 

 

  The  Jacobian  matrix  of  this  system  at  the  equilibrium  point  becomes  as  follows. 
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                 (41) 

 

;  where  *)}1)(1(*{ 112 ucHG k δε −−−−=  < 0,  **213 uHG ε−=  > 0,  
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µεµ *)1()(31 ucG kn −−=+ ,  **)1(21 vFG ′−= γ  > 0,  *)1(23 vG γ−=  > 0,  

*31 FG ′= βγ  > 0,  and  )1(33 γβ −−=G  < 0.  

  The  characteristic  equation  of  this  system  becomes 

 

  .0)( 22 =−≡∆ JIλλ                                                        (42) 

 

  First,  let  us  investigate  the  local  stability  of  this  system  in  case  of 

.0=µ   In  this  case,  Eq. (42)  becomes  as  follows  because  of  .0)0(31 =+nG  

 

  0)()/()/()( 32
2

1
3

2 =++++=−+=∆ mmmnVIn nn λλλτλλτλλ ,            (43) 

where 

  



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




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




=

3331

2321

1312

0
0
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GG
GG
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V                                                       (44) 

and 

  
)(

331
−

−=−= GtraceVm  > 0,                                                  (45) 

  
0
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0
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33
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G
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)(

21
)(

12
)(

31
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13
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−−= GGGG                     (46) 

  
)(

33
)(

21
)(

12
)(

31
)(

23
)(

123 det
−+−++−

+−=−= GGGGGGVm  > 0,                                (47) 

  
)(

31
)(

23
)(

12
)(

33
)(

31
)(

13321
++−−++

+=− GGGGGGmmm  < 0.                                    (48) 

 

  Eq. (43)  implies  that  in  this  case  the  characteristic  equation  has  n   multiple  

roots  τλ /n−=  < 0,  and  other  three  roots  are  determined  by  the  equation  

.0=−VIλ  

  Inequality  (48)  means  that  the  equation 0=− VIλ   has  at  least  one  root  with  

positive  real  part,  because  one  of  the Routh-Hurwitz  conditions  for  stable  roots  is  
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violated.  In  fact  the  equation  0=− VIλ   has  two  roots  with  positive  real  parts  

and  one  negative  real  root  when  three  inequalities  1m  > 0,  3m  > 0,  and  

321 mmm − < 0  are  satisfied. 18  Thus,  we  have  proved  the  following      

 

Proposition 3. 

  The  equilibrium  point  of  the  system  )( 2 ′S   is  locally  unstable  irrespective  of  

the  value  of  0≥τ   when   .0=µ  

 

  This  proposition  simply  says  that  the  system  is  unstable  when  the  government’s  

fiscal  policy  is  neutral.  On  the  other  hand,  the  following  proposition  asserts  that  

the  system  also  becomes  unstable  if  the  policy  lag  is  too  long  even  if  the  

government  conducts  stabilization  policy. 

 

Proposition 4. 

The  equilibrium  point  of  the  system  )( 2 ′S   becomes  locally  unstable  irrespective  

of  the  value  of  µ   if  the  policy  lag  τ   is  sufficiently  large. 

 

Proof. 

  It  is  easy  to  show  that 

  VIn −=∆
+∞→

λλλ
τ

)(lim 2                                                      (49) 

irrespective  of  the  value  of  µ .  This  implies,  by  continuity  of  the  characteristic  

roots  with  respect  to the  changes  of  the  parameter  values,  that  the  characteristic  

equation  (42)  has  at  least  two  roots  with  positive  real  parts  if  τ   is  

sufficiently  large,  because  we  already  know  that  the  equation  0=− VIλ   has  

two  roots  with  positive  real  parts  and  one  negative  real  root.                          

 

 

These  two  propositions  are  not  surprising,  and  they  provide  the  rigorous  

foundation  to  the  usual  intuitive  argument.  However,  it  is  difficult  to  get  further  

outcomes  with  economic  meaning  analytically  from  this  general  model  of  policy  

lag.  In  the  next  two  subsections,  we  shall  examine  two  particular  cases  to  

establish  more  accurate  results. 
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4-2.  A  special  case  of  n = 1 

  In  this  subsection,  let  us  consider  a  special  case  of  .1=n   In  this  case,  the  

system  )( 2 ′S   is  reduced  to  the  following  four-dimentional  system  of  differential  

equations. 

 

  ( i )    uxucvcivHu kk
e )}*)(1()1)(1)(1(),1({ 1−−+−−−−−−= µδπε&  

           11 ,,,( xvuG eπ≡  ; µ ) 

  ( ii )   ),,(})(){1( 2
ee vuGvuFvv παπ ≡−+−=&  

  ( iii )   ),(]})({[ 3
eeee uGuF ππαπγβπ ≡−−+=&  

  ( iv )   1411 ,())(/1( xuGxux ≡−= τ&  ; τ )                                   )( 3S  

 

  Although  this  system  is  only  a  special  case  of  the  more  general  system  )( 2 ′S   

from  the  mathematical  point  of  view,  this  simplified  version  is  interesting  from  

the  economic  point  of  view,  since  we  can  provide  clear  economic  interpretation  

to  this  particular  adjustment  process.  We  can  interpret  the  variable  1x   as  the  

capacity  utilization  which  is  expected  by  the  government.  Thus,  Eq. )( 3S ( i )  

implies  that  the  government’s  fiscal  policy  is  based  on  the  expected  capacity  

utilization.  On  the  other  hand,  Eq. )( 3S ( iv )  means  that  the  expected  capital  

utilization  changes  according  to  the  formula  of  the  adaptive  expectations,  and  the  

speed  of  adaptation  is  the  reciprocal  of  the  policy  lag.  The  longer  the  policy  

lag,  the  more  sluggish  is  the  adaptation. 

  Proposition 3  and  Proposition 4  also  apply  to  this  system,  because  this  system  

is  a  special  case  of  the  system  in  section  4-1.  In  this  particular  case,  however,  

we  can  obtain  more  accurate  results  analytically. 

  The  Jacobian  matrix  of  the  system  )( 3S   at  the  equilibrium  point  becomes  
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; where  µεµ *)1()(14 ucG k−−= ,  and  the  definitions  of  other  symbols  in  the  

matrix  (50)  are  the  same  as  those  in  the  matrix  (41). 



 21 

  We  can  express  the  characteristic  equation  of  this  system  as  follows. 

 

  0)( 43
2

2
3

1
4

33 =++++=−≡∆ bbbbJI λλλλλλ                              (51) 

 

;  where 
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  ( iv ) =4b )()/1(det
)(

31
)(

23
)(

33
)(

21
)(

123
++−+−

−= GGGGGJ τ > 0.                            (52) 

 

  Note  that  the  Routh-Hurwitz  conditions  for  local  stability  in  this  case  become  

as  follows ( cf. Gandolfo(1996)). 

 

  jb  > 0  ( ,1=j  2, 3, 4 ),  2
34

2
1321 bbbbbb −−  > 0                             (53) 
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  In  this  subsection,  we  shall  investigate  the  local  dynamics  of  the  system  under  

the  following  additional  assumption. 

 

Assumption 2. 

  The  value  of  *)}(/{*2
eiHH π−∂∂≡   is  so  small  that  we  have  

)(
31

)(
13

)(
21

)(
12

+++−
−−≡ GGGGZ  > 0. 

 

  If  ,0*2 =H   we  have  013 =G   so  that  Z   is  positive.  Even  if  *2H  > 0,  

Z   becomes  positive  when  the  value  of  *2H   is  sufficiently  small.  Assumption 2  

implies  that  the  negative  impact  of  the  increase  of   real  rate  of  interest  on  

firms’  investment  expenditure,  which  is  called  ‘Mundell  effect’  and  known  to  be  

potentially  destabilizing,  is  not  very  strong  at  the  equilibrium  point.19  

  Now,  we  can  confirm  that  the  following  expression  is  obtained. 

 

  WPEbbbbbb ++=−−≡Φ µµµ 22
34

2
1321)(   ;  E  > 0,  W  < 0               (54) 

 

where  ,E   ,P   and  W   are  independent  of  the  parameter  .µ   It  is  relatively  

easy  to  show  that 

 

  3222 /*)1()1( τεγβ ucE k−−=  > 0.                                         (55) 

 

  We  can  also  derive  the  explicit  expression  of  W   after  tedious  calculation,  but,  

fortunately,  we  can  prove  that  W   is  in  fact  negative  without  such  a  tedious  

calculation.  The  proof  is  as  follows. 

  When  ,0=µ   we  have  jb  > 0 ( j  = 1, 2, 3, 4 )  under  Assumption 2  because 

.0)0(14 =G   Hence,  if  W  > 0,  all  of  the  Routh-Hurwitz  conditions  for  stable  

roots ( inequalities  (53) )  are  satisfied  when  ,0=µ   which  contradicts  Proposition 3   

which  says  that  the  real  part  of  at  least  one  characteristic  root  becomes  positive  
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when  .0=µ    On  the  other  hand,  if  ,0=W   the  characteristic  equation  must  

have  a  pair  of  pure imaginary  roots  and  two  roots  with  negative  real  parts ( cf. 

Lemma ( ii )  in  Appendix )  when  ,0=µ   which  also  contradicts  Proposition 3.  This  

proves  that  W  < 0. 

  It  is  obvious  from  Eq. (54)  that  we  can  find  two  parameter  values  lµ , hµ   

such  that  0)()( =Φ=Φ hl µµ   and  lµ  < 0 < hµ .  Furthermore,  we  have  )(µΦ  < 0  

for  all  ),,( hl µµµ ∈   and  we  have  )(µΦ  > 0  for  all  ).,(),( +∞∪−∞∈ hl µµµ  

 

Proposition 5. 

( i )   The  equilibrium  point  of  the  system  )( 3S   is  locally  stable  for  all 

   ),,( +∞∈ hµµ   and  it  is  locally  unstable  for  all  ).,( hµµ −∞∈  

( ii )  At  the  point  hµµ =   a  Hopf  bifurcation  occurs.  In  other  words,   

there  exist  some  non-constant  periodic  solutions  of  the  system  )( 3S    

at  some  parameter  values  µ   which  are  sufficiently  close  to  hµ . 

 

Proof. 

( i )   It  follows  from  Assumption 2  that  jb  > 0  ( j  = 1, 2, 3, 4 )  are  satisfied  for  

all  0≥µ .  Therefore,  all  of  the  Routh-Hurwitz  conditions  for  stable  roots 

( inequalities (53) )  are  satisfied  when  .hµµ >   

        On  the  other  hand,  Eq. (52)( ii )  implies  that  there  exists  a  value  0* <µ   

such  that  0*)(2 =µb ,  and  we  have  0)(2 <µb   ( 0)(2 >µb  )  for  all  *µµ <  

( *µµ >  ).  This  means  that  the  system  is  locally  unstable  when  .*µµ <   

Furthermore,  we  obtain  0*)( 2
34

2
1 <−−=Φ bbbµ   at  *,µµ =   which  implies  that  

.*µµ <l   Therefore,  the  system  becomes  locally  unstable  also  in  the  region  

hµµµ *,[∈ ),  because  in  this  region  the  inequality 0)( <Φ µ  is  satisfied. 

( ii )    At  the  point  ,hµµ =   0>jb  ( j  = 1, 2, 3, 4 )  and  0)( =Φ hµ   are  

satisfied,  which  implies  that  the  characteristic  equation  (51)  has  a  pair  of  pure  

imaginary  roots  and  two  roots  with  negative  real  parts ( cf. Lemma ( ii )  in  

Appendix ).  Furthermore,  we  can  easily  see  that  0)( >Φ′ µ   at  ,hµµ =   which  

means  that  the  real  part  of  the  imaginary  roots  is  not  stationary  with  respect  

to  the  changes  of µ   when  .hµµ =    These  situations  are  enough  to  apply  

Hopf  bifurcation  theorem.                                                     
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  This  proposition  is  qualitatively  the  same  as  propositions  1  and  2  in  section  2.  

Namely,  the  sufficiently  ‘Keynesian’  fiscal  policy  rule  can  stabilize  a  potentially  

unstable  economy,  and  the  cyclical  movement  occurs  at  the  intermediate  fiscal  

parameter  values.  This  conclusion  was  derived  under  the  assumption  that  the  

policy  lag  is  fixed  at  some  level.  It  must  be  noted,  however,  that  even  if  the  

system  is  locally  stable  under  some  fiscal  parameter  value  when  the  policy  lag  

is  relatively  short,  the  system  becomes  unstable  under  the  same  fiscal  parameter  

value  if  the  policy  lag  sufficiently  increases.  This  statement  follows  from  

Proposition 4,  which  is  also  applicable  to  the  model  in  this  subsection. 

 

4-3.  Limiting  case  of  n ?  + 8  

  Next,  let  us  consider  the  limiting  case  of  +∞→n .  Recall  that  the  weighting  

function  )(sω   which  is  defined  by  Eq. (32)  is  in  fact  the  density  function  with  

its  mean  τ   and  its  variance  ./2 nτ    Therefore,  the  limiting  case  of  +∞→n   

corresponds  to  the  case  of  the  fixed  policy  lag,  .0>τ   In  this  case,  government  

behavior  is  expressed  as  follows. 20   

 

  )()}(*{)()( tYtuutYtG τµδ −−+=                                            (56) 

 

  Thus,  we  have  the  following  dynamical  system,  which  is  a  system  of  nonlinear  

differential-difference  equations ( or  delay-differential  equations ). 

 

  ( i )    ))(1)(1)(1())(),(1([)( tvctitvHtu k
e −−−−−−= δπε&  

                ));(),(),(),(()()}](*){1( 1 µπττµ ttvtutuGtutuuc e
k −≡−−−+  

  ( ii )   ))(),(),(()(})())((){1()( 2 ttvtuGtvttuFtv ee παπγ ≡−+−=&  

  ( iii )   ))(),(()](})())(({[)( 3 ttuGtttuFt eeee ππαπγβπ ≡−−+=&              )( 4S  

 

  The  equilibrium  point  of  this  system ( **,*, evu π    such  that  

0)()()( === ttvtu eπ&&&   and  *)()( ututu =−= τ  )  is  also  the  same  as  that  of  

the  system  ).( 1S   Linearization  of  this  system  around  the  equilibrium  point  gives  

the  expression 

 

  ( i )    *})({*})({*})(){()( 131211
ee tGvtvGutuGtu ππτµ −+−+−−=&  
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  ( ii )   *})({*})({)( 2321
ee tGutuGtv ππ −+−=&  

  ( iii )  *})({*})({)( 3331
eee tGutuGt πππ −+−=&                               (57) 

 

;  where  ,*)1()(11 µεµ ucG k−−=   and  other  symbols  are  the  same  as  those  in  

Eq. (41).  Substituting  the  exponential  functions  ,*)( 1
teAutu λ=−   teAvtv λ

2*)( =− ,  

and  tee eAt λππ 3*)( =−   into  Eq. (57),  we  have  the  following  characteristic  

equation ( cf. Bellman  and  Cooke(1963)). 

 

  0)()( 44 =−≡∆ λλλ JI                                                     (58) 

 

where 
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131211
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
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




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
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−
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GGeG

J

τλµ
λ                                             (59) 

 

  When  ,0=µ   we  have  VJ =)(4 λ ,  where  the  matrix  V   is  given  by  Eq. (44).  

Therefore,  we  can  conclude  that  the  equilibrium  point  of  the  system  )( 4S   is  

locally  unstable  when  ,0=µ   because  we  already  know  that  the  equation  

0=− VIλ   has  two  roots  with  positive  real  parts  and  one  negative  real  root.  

If  ,0≠µ   Eq. (58)  is  no  longer  the  simple  polynomial  but  it  becomes  a  

transcendental  equation,  and  it  has  the  infinite  number  of  the  roots  including  

complex  roots.   

  Although  it  is  difficult  to  obtain  further  information  which  is  economically  

meaningful  if  we  stick  to  analytical  approach,  we  can  obtain  some  important  

insight  by  employing  numerical  simulations.  In  the  next  section,  we  shall  report  

some  results  of  our  numerical  simulations  of  the  system  ).( 4S  

 

 

5.  Numerical  simulations  of  the  case  of  n ?  + 8  
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  To  practice  numerical  simulations,  we  must  approximate  a  system  of   

differential-difference  equations  )( 4S   by  a  system  of  difference  equations.   

In  this  paper,  we  adopt  the  following  ‘Euler ’s  algorithm’ . 21  

 

  ( i )    )(),(),(),(()()()( 1 ttvtutuGttuttu eπτ−∆+=∆+  ; )µ  

  ( ii )   ))(),(),(()()()( 2 ttvtuGttvttv eπ∆+=∆+  

  ( iii )   ))(),(()()()( 3 ttuGtttt eee πππ ∆+=∆+                                (60) 

 

  We  adopt  the  time  interval  ,1.0=∆t   and  the  numerical  specifications   

of  the  involved  functions  and  parameter  values  are  chosen  as  follows. 22  

 

  ,0027.0))((001.0))(1(5.1))(),(1( 5 −−−−=−− titvtitvH ee ππ                  (61) 

  },8.4))(1.1/(1{1.0))(( −−= tutuF                                             (62) 

  ,02.0=α   ,8.0=β   ,1.0=ε   ,5.0=γ   ,3.0=kc  

,7/2=δ    ,03.0=i   ,1.3=τ   .3.0=d                                     (63) 

 

  The  equilibrium  values  of  ,u   ,v   and  g   are  given  by 

 

  ,9.0* =u   ,24.0* =v   .04.0* =g                                            (64) 

 

  Since  *,gi <   the  condition  0)}(/)({lim =
+∞→

tYtB
t

  is  satisfied  at  the  equilibrium  

point.  The  equilibrium  values  which  are  given  by  Eq. (64)  are  independent  of  the  

value  of  the  fiscal  parameter  µ .  In  other  words,  the  fiscal  parameter  µ   cannot  

affect  the  long  run  equilibrium  position.  This  implies  that  the  classical  irrelevance  

theorem  seems  to  apply  if  we  concentrate  on  the  long  run  equilibrium  position.  

However,  the  concentration  on  the  long  run  equilibrium  cannot  be  justified  in  our  

model,  because  in  our  model  the  government’s  fiscal  policy  can  affect  the  out  

of  steady  state  dynamics  quite  drastically,  as  the  following  simulation  results  

reveal  it  clearly. 

  Figures  2 – 6  are  the  results  of  the  numerical  simulations  which  correspond  to  

the  parameter  values  ,00.5=µ   ,90.5=µ   ,97.5=µ   ,06.6=µ   and  30.6=µ   

respectively.  All  figures  are  plotted  after  transient  motions  are  removed  from  the  

trajectories. 
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                          Insert  Fig. 2 – Fig. 6  here. 

 

 

  At  the  top  of  each  figure,  the  two-dimensional  projection  of  the  trajectory  on  

the  ),( uv   plane  is  presented.  Furthermore,  the  bottom  of  each  figure  displays  

the  corresponding  power  spectrum.  The  abscissa  denotes  the  frequency(Hz)  and  the  

ordinate  denotes  the  power  spectral  density(PSD).  As  for  the  exposition  of  the  

power  spectral  analysis,  see,  for  example,  Lorenz(1993)  chap. 6  and  Medio(1992)  

chap. 5.  Lorenz(1993)  writes  as  follows.  “A  power  spectrum  can  loosely  be  

defined  as  each  frequency’s  contribution  to  the  overall  motion  of  the  time  series. 

 Power  spectra  with  several  distinguishable  peaks  indicate  the  presence  of  

quasi-periodic  behavior.  The  dominating  peaks  represent  the  basic  incommensurable  

frequencies  of  the  motion,  while  minor  peaks  can  be  explained  as  linear  

combinations  of  the  basic  frequencies.  If  a  continuum  of  peaks  emerges,  the  

power  spectrum  is  said  to  reflect  broad  band  noise.  The  motion  is  then  either  

purely  random  or  chaotic  for  both  underlying  time  concepts.” ( Lorenz(1993) p. 203 )  

As  Medio(1992)  noted,  “the  presence  of  sharp  peaks,  however,  does  not  

necessarily  exclude  chaos.  Certain  embedded  periodicities  may  be  present  in  

otherwise  chaotic  behavior.” ( Medio(1992) p. 107 ) 

  In  Figures  2 – 4,  we  can  observe  a  limit  cycle,  a  period  2  cycle,  and  a  

period  4  cycle  respectively.  Period  doubling  bifurcations  take  place.  Every  

bifurcation  doubles  the  number  of  sharp  frequency  components.  We  see  that  peaks  

appear  in  the  power  spectrum  corresponding  to  submultiples  of  the  fundamental  

frequency,  0.70 Hz. 

  Figures  5  and  6  represent  chaotic  fluctuations.  Fig. 5  exhibits  narrow -band  chaos  

and  Fig. 6  reveals  broad-band  chaos.  They  are  very  similar  to  the  so  called  

Rossler  attractor  or  ‘spiral  type’  chaos ( cf.  Rossler(1977)).  The  largest  Lyapunov  

exponents  are  positive  in  both  cases ;  0.02  and  0.16  respectively. 23   It  must  be  

noted,  however,  that  there  still  remain  the  sharp  peaks  or  fundamental  frequencies  

in  the  power  spectrum.  This  type  of  chaos  is  often  called  ‘non-mixing  chaos’  or  

‘phase  coherence’ ( cf.  Crutchfield,  Farmer,  Packard,  Shaw,  Jones  and  Donnelly(1980),  

and  Farmer,  Crutchfield,  Froehling,  Packard  and  Shaw(1980)). 

 

 

                            Insert  Fig. 7 – Fig. 8  here. 
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  Fig. 7  is  a  bifurcation  diagram  of  the  variable  v   with  respect  to  the  parameter  

µ ,  for  .3.60.2 ≤≤ µ   This  diagram  shows  the  local  maxima  and  minima  of  v   

on  the  business  cycles,  so  that  the  vertical  difference  expresses  the  amplitude  of  

the  cycles.  Fig. 8  is  an  enlarged  bifurcation  diagram,  where  a  period  doubling  

route  to  chaos  is  shown  clearly  and  minutely.  We  can  see  from  Fig. 7  that  the  

stronger  application  of  the  Keynesian  policy ( increase  of  µ )  can  in  fact  

contribute  to  stabilize  the  economy  if  ,1.4≈< µµ   while  more  vigorous  use  of  

Keynesian  polic y  rather  destabilizes  the  economy ( increases  the  amplitude  of  the  

cycles )  if  ,µµ >   and  the  too  strong  application  of  the  Keynesian  policy  is  

responsible  for  the  chaotic  movement  in  this  model  with  fixed  policy  lag.  In  

this  example,  the  government  can  establish  the  minimum  amplitude  of  fluctuation  

at  the  parameter  value  .µµ =   Finally,  we  close  this  section  by  making  a  

practical  proposal  to  policy  makers.  “You  should  react  immediately  and  promptly  

to  economic  disturbances.  Otherwise  your  intended  plans  for  stabilization  may  cause  

chaotic  business  cycles  contrary  to  your  intention.” 

 

 

6.  Concluding  remarks 

  In  this  paper,  we  analyzed  basically  two  models  of  the  policy  lag  in  an  

analytical  framework  of  the  Keynes-Goodwin  model  of  the  growth  cycle.  They  are  

two  particular  cases  of  more  general  model  of  the  distributed  policy  lag.  Unlike  

Goodwin(1967)’s  original  model,  our  models  are  developed  by  taking  into  account  

Keynesian  features :  the  models  emphasize  the  effective  demand.  In  the  first  model,  

it  was  shown  that  counter -cyclical  fiscal  policy  is  the  preferred  method  for  

preventing  economic  fluctuations.  Vigorous  use  of  Keynesian  policy  stabilizes  the  

economy  completely.  The  result  of  the  second  model  is  not  simple,  however.  It  

gives  a  good  example  of  controversy  on  stabilization  polic y  between  Keynesians  

and  Monetarists.  In  case  of  a  short  policy  lag,  a  counter -cyclical  policy  is  still  

available  for  stabilization.  In  contrast,  if  policy  is  implemented  with  a  long  lag,  

then  a  very  active  intervention  tends  to  amplify  disturbances  and  induces  the  

complicated  fluctuations  in  the  economy.  It  is  not  correct,  however,  to  say  that  

the  Keynesian  stabilization  policy  is  entirely  ineffective  to  stabilize  the  potentially  

unstable  economy  even  in  this  case.  As  we  observed  in  the  simulation  analysis  

in  section  5,  the  government  can  reduce  the  amplitude  of  the  cyclical  fluctuation  
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by  adopting  the  proper  value  of  the  policy  parameter,  even  if  it  is  impossible  

to  stabilize  the  economy  completely  because  of  the  relatively  long  policy  lag. 

 

 

Appendix 

  In  this  appendix,  we  shall  prove  the  following  purely  mathematical  results,  

which  provide  us  some  useful  criteria  for  the  occurrence  of  Hopf  bifurcation  in  

four-dimensional  system.  

 

Lemma. 

( i )   The  polynomial  equation 

      0)( 43
2

2
3

1
4 =++++≡∆ bbbb λλλλλ                                    (A1) 

    has  a  pair  of  pure  imaginary  roots  and  two  roots  with  non-zero  real  parts  

if  and  only  if  either  of  the  following  set  of  conditions  (A)  or  (B)  is  satisfied. 

    (A)   ,01 =b   ,03 =b   and  .04 <b  

    (B)   ,01 ≠b   ,03 ≠b   ,04 ≠b   sign 1b  = sign 3b ,  and 

          .02
34

2
1321 =−−≡Φ bbbbbb  

( ii )  The  polynomial  equation  (A1)  has  a  pair  of  pure  imaginary  roots  and  two  

roots  with  negative  real  parts  if  and  only  if  the  following  set  of  conditions  (C)  

is  satisfied. 

    (C)   ,01 >b   ,03 >b   ,04 >b   and  .02
34

2
1322 =−−≡Φ bbbbbb  

 

Proof. 

( i ) (1) ‘If’  part.   Suppose  that  a  set  of  conditions  (A)  is  satisfied.  Then,  we  

have 

          0)( 4
2

2
4 =++=∆ bb λλλ   ;  .04 <b                                (A2) 

          In  this  case,  we  obtain 

          












>≡−+−

<≡−−−
=

02/)4(

02/)4(

24
2
22

14
2
222

abbb

abbb
λ                                 (A3) 

        so  that  we  have  four  roots  jλ  ( j = 1, 2, 3, 4 )   such  that 
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          ±=21 ,λλ 1ai −  ,  ±=43 ,λλ 2a                                 (A4) 

        where  .1−=i  

          Next,  suppose  that  a  set  of  conditions  (B)  is  satisfied.  In  this  case,  

we  can  rewrite  Eq. (A1)  as  follows. 

          43
2

13341
3

1
4 )//()( bbbbbbbb +++++=∆ λλλλλ  

               0)/)(/( 3411
2

13
2 =+++= bbbbbb λλλ                           (A5) 

        where  ,0/ 13 >bb   ,01 ≠b  and  0/ 341 ≠bbb ,  so  that  we  have  four  roots  

such  that 

          ±=21 ,λλ 13 / bbi ,  ,0143 ≠−=+ bλλ   .0/ 34143 ≠= bbbλλ         (A6) 

          It  is  obvious  that  the  real  parts  of  3λ   and  4λ   in  (A6)  are  not  

zero. 

(2) ‘Only  if ’  part.   Suppose  that  Eq. (A1)  has  two  roots  such  that  

ωλ =1 ,i   ωλ −=2 i  ( 0≠ω  )  and  real  parts  of  other  two  roots ( 3λ ,  

4λ  )  are  not  zero.  Then,  Eq. (A1)  becomes  as  follows. 

           ωλλ −=∆ ()( ωλ +)(i ))()( 43 λλλλ −−i  

                })(){( 4343
222 λλλλλλωλ ++−+=  

                0)()()( 43
22

43
2

43
23

43
4 =++−+++−= λλωλωλλλλλωλλλλ  (A7) 

           In  this  case,  we  have  the  following  relationships. 

           ),( 431 λλ +−=b   ,43
2

2 λλω +=b   ,)( 2
1

2
433 ωωλλ bb =+−=  

           ,43
2

4 λλω=b                                                      (A8) 

           2
34

2
1321 bbbbbb −−≡Φ  

            .0)( 42
143

22
143

222
1 =−−+= ωλλωλλωω bbb                         (A9) 

            Only  two  cases  are  possible.  In  the  first  case,  we  have  

.043 ≠−= λλ   In  this  case,  it  follows  from  (A8)  that  ,01 =b   ,03 =b   and  

.04 <b   In  the  second  case,  we  have  43 λλ −≠   and  real  parts  of  both  roots  

are  not  zero.  In  this  case,  it  follows  from  (A8)  that  ,01 ≠b   ,03 ≠b   
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,04 ≠b   and  sign 1b  =  sign 3b . 

( ii ) (1) ‘If ’  part.   Suppose  that  a  set  of  condition  (C)  is  satisfied.  Then,  we  

have  Eq. (A5)  with  ,0/ 13 >bb   ,01 >b   and  .0/ 341 >bbb   In  this  case,  we  

have  four  roots  which  are  given  by  (A6)  with  043 <+ λλ   and  043 >λλ .  

These  two  inequalities  imply  that  real  parts  of  3λ   and  4λ   are  negative. 

     (2) ‘Only  if’  part.   Suppose  that  Eq. (A1)  has  a  pair  of  pure  imaginary  

roots  ωλλ ±=21 , i  ( 0≠ω  )  and  real  parts  of  other  two  roots ( 43 ,λλ )  are  

negative.  In  this  case,  we  have  the  relationships  (A8)  and  (A9)  with  

043 <+ λλ   and  043 >λλ ,  which  imply  that  a  set  of  conditions  (C)  is  in  

fact  satisfied.         

 

Remarks. 

( i )   If  a  set  of  conditions  (A)  is  satisfied,  the  condition  0=Φ   is  also  

satisfied. 

( ii )   If  a  set  of  conditions  (C)  is  satisfied,  the  condition  02 >b   is  also  

satisfied. 

 

  The  result  ( ii )  in  this  lemma  provides  a  complete  characterization  of  the  so  

called  ‘simple’  Hopf  bifurcation,  while  the  result  ( i )  provides  a  complete  

characterization  of  the  more  general  types  of  Hopf  bifurcation.  In  fact,  the  result  

( ii )  is  but  a  special  case  of  the  theorem  which  was  proved  by  Liu(1994)  in  

a  general  n-dimensional  system.  This  result  is  used  by  Fanti  and  Manfredi(1998),  

and  it  is  also  implicit  in  Franke  and  Asada(1994).  Also  in  the  text  of  this  

paper,  we  used  only  the  result  ( ii )  to  establish  the  Hopf  bifurcation  in  our  

four-dimensional  system.  Nevertheless,  it  will  be  of  some  interest  to  report  the  

full  content  of  the  Lemma  with  explicit  proof  because  of  two  reasons.  First,  

our  proof  can  make  it  explicit  that  we  can  derive  the  result  ( ii )  as  a  

corollary  of  the  more  general  result  ( i ).  Second,  as  far  as  we  acknowledge,  the  

result  ( i )  of  this  lemma  is  not  available  in  usual  economic  literatures  nor  

textbooks  of  mathematics,  although  it  provides  us  some  useful  information  for  

general  type  of  Hopf  bifurcation,  which  cannot  be  neglected  in  some  economic  

models.  For  example,  in  dynamic  optimization  models,  we  cannot  exclude  the  

roots  with  positive  real  parts  in  some  situation,  so  that  the  knowledge  on  

‘simple’  Hopf  bifurcation  is  not  enough  for  the  analysis  of  such  a  situation. 24    
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Notes 

(1) Here  and  henceforth,  we  suppress  the  time  argument  when  no  confusion  is  

caused.  Furthermore,  a  dot  over  a  symbol  denotes  the  derivative  with  respect  

to  time. 

(2) Definitions  of  these  ratios  are  the  same  as  those  in  Franke  and  Asada(1994). 

(3) This  assumption  means  that  we  are  assuming  Harrod-neutral  exogenous  technical  

progress. 

(4) See,  for  example,  Asada(1987). 

(5) Eq. (3)  also  implies  that  the  rate  of  investment  KI /   approximately  positively  

correlates  with  the  rate  of  profit  KYvr /)1( −=   and  it  negatively  correlates  

with  the  expected  real  rate  of  interest.  These  features  are  qualitatively  similar  

to  the  theory  of  investment  which  is  based  on  Tobin’s  q  theory ( cf. 

Sargent(1987)  and  Asada(1989) ). 

(6) Obviously,  Eq. (9)  also  implies  that  the  government  purchases  the  bond  from  

capitalists  when  the  government  budget  is  in  surplus. 

(7) Eq. (10)  has  some  similarity  with  the  so  called  ‘Kaldorian’  adjustment  process,  

which  is  formulated  as  )( YGICY −++= ε&  ( cf.  Kaldor(1940),  Asada(1987)).  

The  formulation  of  Eq. (10)  may  be  more  suitable  in  the  context  of  the  long  

run  growth  theory,  because  in  the  original  Kaldorian  formulation,  zero  excess  

demand  in  the  goods  market  is  incompatible  with  economic  growth,  while  Eq. 

(10)  is  compatible  with  the  growth  equilibrium  with  zero  excess  demand ( cf.  

Asada(1991)). 

(8) In  our  formulation  as  well  as  the  traditional  Kaldorian  formulation,  inventory  

plays  the  purely  passive  role.  Obviously,  the  formulation  becomes  more  

complicated  if  we  explicitly  introduce  the  active  roles  of  firms’  inventory  

policy.  However,  in  this  paper  we  do  not  investigate  this  theme  to  

concentrate  on  the  analysis  of  the  policy  lag.  As  for  the  more  sophisticated  

treatment  of  inventory  dynamics,  see,  for  example,  Franke (1990,  1996 )  and  

Chiarella,  Flaschel,  Groh  and  Semmler (2000). 

(9) We  can  observe  the  similar  characteristic  also  in  the  so  called  ‘dynamic  

Keynesian  model’  which  was  formulated  by  Sargent(1987). 

(10) See,  for  example,  Gandolfo(1996)  or  Lorenz(1993). 

(11) As  for  the  formal  proof,  see  Asada  and  Semmler(1995)  or  Asada(1995). 

(12) As  for  the  exposition  of  Phillips’  argument,  see,  for  example,  Flaschel(1993) 

chap. 3. 

(13) The  policy  rule  in  the  previous  section  is  called  the  proportional  stabilization  
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policy  in  terms  of  Phillips. 

(14) As  for  the  exposition  of  this  type  of  the  weighting  function,  see,  for  

example,  Medio(1992)  chap. 11. 

(15) Strictly  speaking,  in  Phillips’  formula,  the  government’s  target  is  the  deviation  

of  the  actual  from  the  desired  level  of  ‘output’  rather  than  the  degree  of  

capacity  utilization.  But,  this  difference  is  not  important  here. 

(16) As  for  the  examples  of  the  use  of  the  ‘linear  chain  trick’  in  economic  

analysis,  see,  for  example,  Jarsulic(1993)  and  Fanti  and  Manfredi(1998). 

(17) In  this  expression,  we  suppress  the  time  argument )(t   for  simplicity  of  the  

notation. 

(18) As  for  the  proof  of  this  assertion,  see  Asada(1995). 

(19) As  for  the  economic  interpretation  of  the  ‘Mundell  effect’,  see  Chiarella,  

Flaschel,  Groh  and  Semmler(2000). 

(20) This  type  of  the  government  policy  function  with  fixed  policy  lag  is  

formulated  by  Takamasu(1995)  and  Asada  and  Yoshida(2001). 

(21) As  Flaschel(1993)  noted,  “It(Euler ’s  method)  represents  the  only  method  which  

gives  rise  to  a  discrete  dynamics  that  can  be  interpreted  in  an  economically  

meaningful  way”(Flaschel(1993)  p. 271). 

(22) We  also  simulated  the  model  by  assuming  .01.0=∆t  Even  in  this  case,  we  

obtained  virtually  the  same  results.  Furthermore,  we  found  that  we  can  obtain  

the  almost  same  results  even  if  we  adopt  the  Runge-Kutta  algorithm  instead  

of  the  Euler ’s  algorithm. 

(23) It  is  reported  in  Wolf,  Swift,  Swinney,  and  Vastano(1985)  that  the  largest  

Lyapunov  exponent  for  the  Rossler  attractor  is  0.13. 

(24) Feichtinger,  Novak  and  Wirl(1994)  provided  a  set  of  mathematical conditions  for  

the  occurrence  of  Hopf  bifurcation  in  a  special  type  of  the  four-dimensional  

model  of  dynamic  optimization.  However,  the  result  ( i )  of  our  lemma  is  

more  general  than  their  result,  because  our  criteria  are  applicable  to  any  

four-dimensional  system  of  differential  equations. 
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Figures 

 

 

 

 

 Fig. 1.   Weighting function 
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Fig. 2. Limit cycle ( µ = 5.00 ). 
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Fig. 3.   Period 2   cycle ( µ = 5.90 ).  
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Fig. 4  Period 4   cycle ( µ = 5.97 ). 
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Fig. 5. Narrow -band   chaos ( µ = 6.06 ). 
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Fig. 6.   Broad-band  chaos ( µ = 6.30 ). 
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Fig. 7. Bifurcation diagram 
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Fig. 8.   Bifurcation diagram  ( an enlarged version ). 
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