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Lars Grüne†, Willi Semmler‡ and Malte Sieveking§

Revised Version, October 2003

Abstract

The paper studies creditworthiness in a model with endogenous
credit cost and debt constraints. Such a model can give rise to mul-
tiple candidates for steady state equilibria. We use new analytical
techniques such as dynamic programming (DP) with flexible grid size
to find solutions and to locate thresholds that separate different do-
mains of attraction. More specifically, (1) we compute present value
borrowing constraints and thus creditworthiness, (2) locate thresholds
where the dynamics separate to different domains of attraction, (3)
show jumps in the decision variable, (4) distinguish between optimal
and non-optimal steady states, (5) demonstrate how creditworthiness
and thresholds change with change of the credit cost function of the
debtor and (6) explore the impact of debt ceilings and consumption
paths on creditworthiness.
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1 Introduction

Numerous examples of dynamic economic models with multiple equilibria
exist in the economic literature. 1 Yet, only recently it has been discovered
that the study of the local dynamics needs to be complemented by the study
of the global dynamics. In those models there is history dependence in the
sense that there are thresholds where the dynamics separate to different do-
mains of attraction. Candidate of steady state equilibria may not be optimal
and thresholds may or may not coincide with the candidates for steady state
equilibria. Since there do not seem to exist equations to locate those thresh-
olds, the thresholds need to be detected by applying numerical methods. We
study here a simple economic model with borrower’s and lender’s relationship
which gives rise to multiple candidates of steady state equilibria and thresh-
olds. Although our model lends itself to a multi-variable interpretation to
which our methods can be applied to, for analytical purpose we restrict our
study to a one control-one state variable model.

In this simple variant capital stock is the state variable and investment
is the control variable. We take into account temporary and intertemporal
budget constraints of the agent who is allowed to finance investment through
credit market borrowing. We allow for adjustment cost of capital and state
dependent credit cost which can generate multiple candidates for steady state
equilibria. Moreover, as in recent credit constraint models, we allow for
debt ceilings. Our model resembles the dynamic models with credit market
borrowing such as employed in Blanchard (1983), Bhandari et al. (1990),
Kiyotaki and Moore (1997), Bernanke et al. (1999) and Miller and Stiglitz
(1999). In these models the impact of credit market borrowing and debt
dynamics on economic activity is studied.2

1Examples are given in the literature on development economics where a convex-concave
production function arises which leads to a threshold that separates paths to low per
capita income (poor) countries and high per capita income (rich) countries, see Skiba
(1978) and Azariadis and Drazen (1990). In endogenous growth models of Lucas and
Romer type multiple equilibria may arise by employing externalities or complementarities
in the production function, for the Lucas model, see Benhabib, Perli and Xie (1994)
and for the Romer model see Benhabib and Perli (1994) and Evans, Honkapohja and
Romer (1997). On resources and the ecological management problem, see Brock and
Starret (1999) and Sieveking and Semmler (1997); on trade theory, see Krugman (1991);
on addiction, see Orphanides and Zervos (1998); on labor market search theory, see
Mortensen (1989); and on monetary policy, see Benhabib, Schmitt-Grohe and Uribe
(1998) and Greiner and Semmler (2002).

2In the above models, there is no study of thresholds. Note also that in contrast to some of
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Most of the literature on dynamic credit market models, by assuming per-
fect credit markets, posits that agents can borrow against future income as
long as the discounted future income, the wealth of the agents, is no smaller
than the debt that agents have incurred. There is no credit risk whenever the
intertemporal budget constraint holds. Formally, often the so called transver-
sality condition is invoked to provide a statement on the non-explosiveness of
the debt of the economic agents. Models of this type have been discussed in
the literature for households, firms, governments and countries (with access
to international capital markets).3 Here then, as long as the intertemporal
budget constraint holds, the intertemporal creditworthiness is automatically
fulfilled for sufficiently small initial debt.

There are other studies that assume credit market imperfections so that
borrowing is constrained. Borrowing ceilings are assumed which are supposed
to prevent agents from borrowing an unlimited amount. Presuming that
agents’ assets serve as collateral a convenient way to define the debt ceiling
is then to assume the debt ceiling to be a fraction of the agents’ wealth. The
definition of debt ceilings have become standard, for example, in small scale
macro dynamic models.4

In other research, also building on imperfect capital markets it is posited
that borrowers face a risk dependent interest rate which is assumed to be
composed by a market interest rate (for example, risk-free interest rate) and
an idiosyncratic component determined by the individual degree of risk of the
borrower. Employing the theory of asymmetric information and costly state
verification in Bernanke et al. (1999), for example, credit cost is endogenous
by making it dependent on net worth of the borrower, as collateral for bor-
rowing.5 This gives rise to an external finance premium that entrepreneurs
have to pay contingent on their net worth.6

the other models, for example, the one by Bernanke et al.(1999) we, in order to simplify
matters, do not employ a stochastic version but rather employ a deterministic framework.
A stochastic version is discussed in Sieveking and Semmler (1999).

3For a brief survey of such models for households, firms and governments or countries, see
Blanchard and Fischer (1989, ch.2) and Turnovsky (1995).

4See, for example Barro, Mankiw and Sala-i-Martin (1995). It has also been pointed
out that banks (like the World Bank), often define debt ceilings for their borrowers, see
Bhandari, Haque and Turnovsky (1990).

5Recent work has been undertaken by nesting credit market imperfections and endogenous
borrowing cost more formally in intertemporal models such as the standard stochastic
growth model, see Carlstrom and Fuerst (1997), Cooley and Quadrini (1998) and Krieger
(1999). We restrict our study to a simple investment model.

6Another development of the analysis of credit risk employs less the ”ability to pay” but
rather the ”willingness to pay” approach to explain defaults. For the latter type of
literature, in particular on the problem of incentive compatible contracts, see Eaton and
Fernandez (1995).
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We explore the global dynamics of a model when agents, as in the latter
case, face endogenous credit cost. We also study the impact of debt con-
straints and debt ceilings on the global dynamics. To study global dynamics
we have to compute creditworthiness. We show that debt ceilings should not
be arbitrarily defined but rather given by creditworthiness.7 We use dynamic
programming with flexible grid size to solve such type of models as well as
to distinguish local from global dynamics. In particular, we (1) compute the
present value borrowing constraint and creditworthiness without and with en-
dogenous credit cost, (2) compute thresholds of those types of models where
the dynamics separate to different domains of attraction, (3) show that the
policy function may be discontinuous and compute the jumps in the policy
function, (4) distinguish between optimal and non-optimal steady states and
(5) demonstrate how the thresholds change with change of the credit cost
function and (6) compute creditworthiness curves and thresholds for model
variants with debt ceilings and given consumption paths.

We want to note that since in this paper we are concentrating on method-
ological issues such as history dependence, thresholds, domains of attraction,
suboptimal equilibria and jumps in the policy function we use a stylized
model which is nested in an intertemporal model with utility maximization
but can be studied independently of utility maximization. The main prop-
erty of our model is that the present value of the dynamic decision problem
can be computed independently of the time path of consumption. For each
time period dividend payments, or consumption, do not constrain the dy-
namic decision problem. There is, however, an intertemporal constraint for
consumption. Yet the sequence of consumption decisions can be based on
any preferences.

Finally we want to remark, that dynamic models with thresholds due
to multiple steady state equilibria have been studied also in earlier work,
such as Skiba (1978).8 Yet, most researchers have employed the Hamiltonian
equation derived from Pontryagin’s maximum principle. As shown in Beyn,
Pampel and Semmler (2001) Pontryagin’s maximum principle and the asso-
ciated Hamiltonian can be applied to study the global dynamics of such a
model with multiple steady states in restricted cases. In the current paper we
propose the use of dynamic programming techniques on adaptively refined
grids which is better suited to study a variety of model variants

The remainder of the paper is organized as follows. Section 2 introduces
the basic dynamic model. Section 3 describes numerical methods, in par-

7A more elaborate analysis of how credit ceilings affects welfare is given in Semmler and
Sieveking (1996).

8An extensive discussion of the earlier work on studying thresholds using the Hamiltonian
is given in Brock and Malliaris (1996, ch. 6)
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ticular dynamic programming with flexible grid size that are used to study
different variants of the dynamic model. Sections 4 reports the detailed re-
sults from our numerical study on the different variants of the model. Section
5 concludes the paper.9

2 The Dynamic Model

Next we want to specify the dynamic model that we study analytically and
numerically. As above mentioned in the study of creditworthiness we can
by-pass utility theory though the model can be nested in a model with util-
ity theory. Economists have argued that analytical results in intertemporal
models frequently depend on the form of the utility function employed. We
show that we can study borrowing, lending and creditworthiness, without
the direct use of utility theory. Although our model can be nested in utility
theory, we use a separation theorem that permits us to separate the present
value problem from the consumption problem.10

Note that by focusing on a dynamic decision problem, an optimal invest-
ment problem, where debt can be continuously issued and retired we do not
have to consider that in each period the agent is constrained by financial
constraints but there will be intertemporal debt constraints where debt ca-
pacity will be defined by the agent’s creditworthiness and credit constraints.
Moreover, due the aforementioned separation theorem, dividend payment, or
consumption, represent no constraint on the dynamic decision problem. Sub-
stracting initial debt obligation, any present value generated by the sequence
of investment decisions can finally be consumed. The sequence of consump-
tion decisions faces an intertemporal constraint, but the consumption path
can be determined by any preference.

As to the more specifics of the credit market features of our model we
presume credit market imperfections. Along the line of Bernanke, Gertler
and Gilchrist (1999), henceforth BGG, we assume asymmetric information
and agency costs in borrowing and lending relationships. BGG draw on the
insight of the literature on costly state verification11 in which lenders must
pay a cost in order to observe the borrower’s realized returns. This motivates
the use of collaterals in credit market models. Uncollateralized borrowing is

9For the more extensive version of the generalized model, see Semmler and Sieveking
(1999).

10In Sieveking and Semmler (1998) a more analytical treatment is given of why and un-
der what conditions the subsequent credit market model can be separated from the
consumption problem.

11This literature originates in the seminal work by Townsend (1979).

5



assumed to pay a larger finance premium than collateralized borrowing or
self-financing. The external finance premium is interpretable as the cost of
bankruptcy (for example constituted by auditing, accounting, legal cost, as
well as loss of assets arising from asset liquidation). Thus the external finance
premium frequently also called default premium, drives a wedge between the
expected return of the borrower and the risk-free interest rate whereby the
premium is positively related to the default cost and inversely related to the
borrowers net worth. Net worth is defined as the agent’s collateral value of
the (illiquid) capital stock less the agent’s outstanding obligations.

Following BGG we can measure the inverse relationship between the ex-
ternal finance premium and net worth in a function such as

H (k,B) =
α1

(

α2 + N
k

)µ θB (1)

with H (k,B) the finance premium depending on net worth, N = k −B,
with k( as capital stock and B as debt. For the subsequent use we may
write N

k
= 1 − B

k
. The parameters are α1, α2, µ > 0 and θ is the risk-free

interest rate. Note that this function implicitly constrains the state (k,B)
by B < (α2 + 1)k, since H(k,B) tends to infinity as B tends to (α2 + 1)k.
In the analytical and numerical study of the model below we presume that
the external finance premium will be zero for N = k and thus for B(t) = 012

so that in the limit the borrowing rate is the risk-free rate.
Alternatively, we will also consider a credit cost that is simply convex in

the level of debt. Note, however, that even if the credit cost is endogenized
we might want to define the agent’s financial constraints which in our model
will be given by an upper bound of the debt-capital ratio, see section 4.

Employing the above theory of endogenous credit cost based on net worth,
we study the following intertemporal model with credit market borrowing

V (k) = Max
j

∫ ∞

0

e−θtf (k(t), j(t)) dt (2)

k̇(t) = j(t) − σk(t), k(0) = k. (3)

.
Ḃ(t) = H (k(t), B(t)) − (f (k(t), j(t)) − c(t)), B(0) = B0 (4)

12Bernanke, Gertler and Gilchrist (1999) employ the same functional relationship as above.
They state that ”.. the external finance premium depends inversely on the share of the
firm’s capital investment that is financed by the entrepreneur’s own net worth” (p.166).
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The model represents an optimal investment problem with adjustment
cost of capital and endogenous credit cost. In addition, debt constraints can
be imposed. The agent‘s net income

f(k, j) = akα − j − jβk−γ (5)

is generated from capital stock, through a production function, akα , and
investment, j, is undertaken so as to maximize the present value of net income
in (5) given the adjustment cost of capital jβk−γ . Note that σ > 0, α > 0, β >
1, γ > 0, are constants. 13 Equ. (3) represents capital accumulation and
equ. (4) the evolution of debt of the economic agent. We allow for investment
rates j ≥ 0. If we take β = 2 and γ = 0 we have the standard model with
quadratic adjustment cost of investment. Instead of akα we may also employ
a convex-concave production function and drop the adjustment cost term
jβk−γ as can be found in Skiba (1978).

Note that in (4) c(t) is a consumption stream that is, in the context
of our model, treated as exogenous.14 Below the consumption stream will
be specified further. Since net income in (5) less the consumption stream
c(t) can be negative the temporary budget constraint of the agent requires
further borrowing from credit markets and if there is positive net income less
consumption debt can be retired.

In equ. (4), along the line of the theory of imperfect capital markets, we
assume that the credit cost H (k,B) may be state dependent, depending on
the capital stock, k, and the level of debt B with Hk > 0 and HB < 0. Note,
however, that if we assume that credit cost depends inversely on net worth15

as, for example, in equ. (1) we get a special case of our model when only the
risk-free interest rate is accounted for in the credit cost.

To begin with the simplest case we take a constant interest rate. The
optimal investment problem reads

13Note that the production function akα has a scaling factor. For the analytics we leave it
aside. Other authors have used the simplification H(k,B) = θB, β = 2, γ = 1 to study
such a model, see Blanchard (1983).

14Note that in our model all variables are written in efficiency labor, therefore σ represents
sum of the capital depreciation rate, population growth and rate of exogenous technical
change. Our model resembles the one by Blanchard (1983) but builds on imperfect
capital markets and thus it endogenizes credit cost.

15In computing the present value of the future net income we do not have to assume a
particular fixed interest rate, as in Kiyotaki and Moore (1997) and Miller and Stiglitz
(1999).
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max
j

∫ ∞

0

e−θt(f(k(t), j(t))dt

k̇ = j − σk k(0) = k

j ≥ 0

Ḃ = θB − f(k, j) (6)

The above model holds regardless of B(t). We call the maximized integral
the present value of k.

One then may ask the following two questions. (1) why is V (k) < ∞?
and (2) is supB(t) < ∞?

The answer is given by partial integration of (6) which is

∫ T

0

e−θtf(k, j)dt = B(0) − e−θT B(t).

If j solves the optimal investment problem, then we obtain

V (k) = B(0) − lim
T→∞

e−θT B(T )

Hence, if V (k)−B(0) > 0 then B(T ) < 0 eventually, but if V (k)−B(0) <
0 then limT→∞ e−θT B(T ) > 0, and B(t) increases exponentially.

Hence, in solving the optimal investment problem the intertemporal bud-
get constraint is automatically satisfied provided that

B(0) < V (k)

but B(t) increases exponentially, if B(0) > V (k), no matter how j is cho-
sen. Therefore we might define creditworthiness of k by B∗(k) = V (k) and
incorporate the state constraint B(0) < B∗(k) as well as (6) into the optimal
investment problem.

Next let us consider consumption. Suppose the problem is to optimize
welfare

max
c,j

∫ ∞

0

e−θ1tU(c(t))dt

k̇ = j − σk k(0) = k

Ḃ = θB − f(k, j) + c, B(0) = B (7)
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Note that in the latter case, we have two control variables j, c. Partial
integration of the second differential equation this time gives

max
c,j

∫ T

0

e−θtf(k, j)dt = B(0) − B(T )e−θT +

∫ T

0

e−θtc(t)dt

Hence, if V (k) − B(0) > 0

V (k) = B(0) − lim e−θT B(T ) +

∫ ∞

0

e−θtc(t)dt

V (k) = B(0) +

∫ ∞

0

e−θtc(t).

The above suggests a two stage procedure: (1) solve the optimal invest-
ment problem provided that V (k) > B(0) and (2) solve

max
c

∫ ∞

0

e−θ1tU(c(t))

s.t.

∫ ∞

0

e−θtc(t)dt = V (k) − B(0). (8)

Now suppose16 instead of θB we have an external finance premium H(k,B)
as in equ. (1), and presume first

Ḃ = H(k,B) − f(k, j) (c = 0)

Definition: Call the pair of initial capital and debt (k,B) creditworthy
if there is an investment rate j(t) such that the solution to

k̇ = j − σk

Ḃ(t) = H(k,B) − f(k, j), B(0) = B.

satisfies B(t) ≤ 0 for some t > 0. B∗(k) = sup{B | (k,B) creditworthy }
is called creditworthiness of k. Note that this definition of creditworthiness
excludes the points on the critical curve B∗(k) itself, since, as it turns out, it
is impossible to drive a state (k(0), B∗(k(0))) with B∗(k(0)) > 0 to (k(t), 0)
in finite time t.

16Note that the constraint expressed in equ. (8) is, in the case B(0) = 0, represents
the intertemporal consumption based asset pricing model, whereby in equ. (8) the
discount rate, θ, is a constant, and not derived from the growth rate of marginal utility
of consumption. How the equ. (8) looks like presuming the latter discount rate, see
Grüne and Semmler (2003).

9



Next, we add the intertemporal budget constraint B ≤ B∗(k) to the optimal
investment problem. The form of H(k,B) represents our attempt to capture
real credit market features whereby the above inclusion of an upper borrowing
limit, B < k(α2 + 1), excludes debt explosiveness.

Our next task is to analyze creditworthiness and its relation to the present
value as well as feasible consumption. We use the more general formulation
of credit cost as given in equ. (1) but it can include the case H(k,B) = θB.
We define extremal investment rates j± to decrease B as much as possible
while in(de)creasing capital:

Definition: Suppose H(k,B) > f(k, σk) then j+(k,B) is defined by

Min
j>σk

H(k,B) − f(k, j)

j − σk
=

H(k,B) − f(k, j+(k,B))

j+(k,B) − σk

and, respectively, j−(k,B) is defined by

Max
j<σk

H(k,B) − f(k, j)

j − σk
=

H(k,B) − f(k, j−(k,B))

j−(k,B) − σk

We want to remark that we use β > 1 to prove that j± are uniquely defined
and locally Lipschitz. Suppose that H(k,B) > f(k, σk), then there is a
unique solution

(x±(t, k, B), y±(t, k, B)) = (x(t), y(t))

to

ẋ = j± − σx, ẏ = H(x, y) − f(x, j±(x, y)), x(0) = k, y(0) = B.

Note that x+(t, k, B) as well as y+(t, k, B) are increasing functions of t.
Hence, the following definition makes sense.

Definition:

B+(k) = sup{B | l
t
im y+(t, k, B) < ∞}

Note that x−(t, k, B) is decreasing while y−(t, k, B) is decreasing or first
decreasing and then increasing. Therefore we may define

B−(k) = sup{B | l
t
im y−(t, k, B) < ∞}
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We have the following theorem as should be intuitive clear to the reader
from a sketch of the set H(k,B) ≤ σk, see figure 1.

B

k

S

q sB=f(k, k)

Figure 1: The θB = f(k, σk) curve

Theorem:

B∗(k) = max(B+(k), B−(k))

Corollary 1: Creditworthiness {(k,B∗(k)) ‖ k ≥ 0} is composed of a solu-
tion to the optimal investment problem with initial values (k(0), B∗(k(0))) =
(k(0), B(0)).
Stationary states (k,B∗(k) have to satisfy H(k,B) = f(k, σk). In case
H(k,B) = θB the boundary of the set S = {(k,B) | H(k,B) < f(k, σk)} is
the graph of a function such as represented in figure 1.
Moreover, if creditworthiness (k,B∗(k)) touches S we have the following
equation:

H(k,B) − f(k, j+)

j+ − σk
= −∂f

∂j
(k, j+) = 1 + βσβ−1kβ−γ−1

=
∂

σk
(θ−1f(k, σk)) in case H(k,B) = θB.

In general if G = H(k,B) − f(k, σk)

∂G

∂k
+

∂G

∂B

∂f

∂j
= 0, G = 0

Corollary 2: Steady states (k,B∗(k)) satisfy

11



∂G

∂k
+

∂G

∂B

∂f

∂j
= 0, G = 0 (9)

which for H(k,B) = θB gives

d

dk
f(k, σk) + θ

∂f

∂j
(k, σk) = 0 (10)

Next we explore how creditworthiness B∗(k) relates to the present value
of k - and consumption - now that we imposed B(t) ≤ B∗(k(t)) defined by a
finance premium H(k,B) > θB. The answer is again obtained by considering
the equation

Ḃ = H(k,B) − f(k, j).

Multiplying by e−θt and using partial integration we find

∫ T

0

e−θtf(k, j)dt = B(0) − e−θT B(T ) +

∫ T

0

e−θt(H − θB)dt.

Let us define the present value of the external finance premium - with
initial value (k,B) - by

∫ ∞

0

e−θt(H − θB)dt = VH(k,B).

where we use the optimal investment rate j. Then for T → ∞ we find

V (k) = B(0) − lim e−θT B(T ) + VH(k,B)

Note that we permit B(t) to be negative. The term VH(k,B) would be
equal to zero for the case H(k,B) = θB.17

In particular, if B(0) = B∗(k) we have

V (k) = B∗(k) + VH(k,B∗(k))

The quantity lim e−θT B(T ) measures feasible consumption. Considering now
consumption we can write

17Note that in practise the discount rate θ is often approximated by taking a weighted
average cost of capital (WACC), composed of the weighted average of equity return and
bond return, see Benninga (2000, ch. 2), see also Abel and Blanchard (1986).
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Ḃ = H(k,B) − f(k, j) + c and
∫ T

0

e−θtf(k, j)dt = B(0) − e−θT B(T ) +

∫ T

0

e−θtcdt +

∫ t

0

e−θt(H − θB)dt

Suppose c(t) is chosen in such a way that

lim e−θT B(T ) = 0

This is feasible. Then,

V (k) = B(0) +

∫ ∞

0

e−θtc(t)dt + VH(k,B)

Hence, c(t) is feasible if and only if

∫ ∞

0

e−θtc(t)dt ≤ V (k) − B(0) − VH(k,B)

and we see that VH(k,B) can be interpreted as welfare loss that constitutes
the cost for the risk-insurance arising from default risk.18

The preceding characterization of feasible consumption may again be
stated as a separation theorem: the optimal consumption may be com-
puted by a two stage optimization - first, compute the optimal investment
and thereby V (k) − B(0) − VH(k,B), then, second, compute sup{U(c) | c
feasible}.19

Finally note, that in the case of endogenous credit cost the Modigliani
and Miller theorem does not hold. Thus, borrowing with a finance premium
affects the value of the firm. This is made clear in the following remark 1,
see also sect. 4.3.

Remark 1: We want to point out how to compute V (k) and its component
parts. We can use the above theorem to compute the solution to the optimal
investment problem:

1. Compute B∗(k), thereby find the optimal path (k(t), B(t)) which sat-
isfies B(t) = B∗(k(t)).

18Note that in the latter integral, asset prices and consumption are not determined as in
equ. (8) but the finance premium VH(k,B) has to be taken into account.

19We want to note here that, strictly speaking, this statement only holds if B represents
outside debt(liabilities to outside creditors). For inside debt, of course, the consumption
stream within a country can also be financed through investment in bonds,B, generating
an income and thus consumption stream for a creditor. In the latter case what is
consumable then is V (k) = B∗(k).
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2. Compute

VH(k,B) =

∫ ∞

0

e−θt(H(k(t), B(t)) − θB(t))dt

3. Compute

V (k) = B∗(k) + VH(k,B∗(k)). (11)

Remark 2: The particular form of our production function is not decisive
for our results, nor the particular form of H(k,B). What is decisive is that
the optimal value function is finite.

Remark 3: Note that we are considering here a deterministic case where the
present value is achievable if B(0) < B∗(k) and which is impossible to achieve
for B(0) > B∗(k). In case there are stochastic influences the realization of the
present value will always be impossible to achieve with a positive probability
and hence the B(t) will influence the optimal investment j(t) in all times.

In sum, Remark 1 allows to compute the creditworthiness, for the case
H(k,B) = θB where V (k) = B∗(k) and for the case of an external finance
premium H(k,B), where for H(k,B∗(k)) the creditworthiness will be less
than V (k). We also can consider the case when there are fixed debt ceilings.

3 Numerical Dynamic Programming

In the literature it has been shown that dynamic optimization models giving
rise to multiple steady state equilibria can be of concave20 or non-concave
type and yet generating multiple equilibria with thresholds.21 Although
most of the historical models, as discussed in the introduction, build on
non-concave models, yet recently examples have been given where such phe-
nomena can also arise in concave models.22 In the case of the existence
of multiple steady state equilibria of system (2)-(4) a rigorous study of the
dynamics of the model and the thresholds were the dynamics separate to

20The problem is concave if, following the Mangasarian definition, the Hamiltonian for the
above problem is both concave in the state as well as control variables.

21In the development literature such a threshold – which has, however, been identified
with the middle unstable steady state – has been called a development trap, see for
example, Azariadis and Drazen (1990).

22See, for example, Hartl et al. (2003), and Deissenberg et al. (2003).
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different domains of attraction would require locating the thresholds analyt-
ically. This appears to be feasible only if the thresholds coincide with one of
the steady state equilibria. As has been shown this occurs if the relevant (un-
stable) equilibria is a node. In the concave model the unstable equilibria is
necessarily a node, but a node can also occur in a non-concave model.23 Yet,
it is impossible to locate the threshold analytically if the threshold does not
coincide with the (unstable) equilibria. Thus, the thresholds that will exists
in the vicinity of the unstable steady state – and will render the neighboring
unstable steady state to be non-optimal– have to be located by numerical
methods.24

In this section we describe two dynamic programming algorithms which
enable us to compute the creditworthiness curve B∗(k) and the thresholds.
While the two algorithms presented here are of quite different nature, a
common feature of both is the adaptive discretization of the state space
which leads to high numerical accuracy with moderate use of memory.

3.1 The Discounted Infinite Horizon Problem

The first algorithm is applied to discounted infinite horizon optimal con-
trol problems of type (2)–(4) when, however, no restriction on the dynamics
is present. In our model, this applies if the credit cost is constant, i.e.,
H(k,B) = θB as in (6) and if in addition no explicit constraint on B(t) is
imposed, since in this case it follows that B∗(k) is easily obtained from V (k)
in (2), namely

B∗(k) = V (k) = Max
j

∫ ∞

0

e−θtf (k(t), j(t)) dt

cf. the discussion after (6).
We will briefly describe the algorithm which goes back to Capuzzo Dol-

cetta (1983), Falcone (1987) and Grüne (1997). For details and for a mathe-
matically rigorous convergence analysis we refer to these papers as well as to
Appendix A in the monograph by Bardi and Capuzzo Dolcetta (1997) and
to Grüne, Metscher and Ohlberger (1999).

In the first step, the continuous time optimal control problem is replaced
by a first order discrete time approximation given by

23See Hartl et al. (2003) and Deissenberg et al. (2003).
24Note that for a constant interest rate we might apply the Hamiltonian from Pontryagin’s

maximum principle to determine the optimal investment. Yet, if there is more than one
positive candidate for an optimal stationary capital stock by local analysis, one would
get not information that one of those (and which) is non-optimal.
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Vh(k) = Max
j

Jh(k, j), Jh(k, j) = h
∞

∑

i=0

(1 − θh)if(kh(i), ji) (12)

where kh is defined by the discrete dynamics

kh(0) = k, kh(i + 1) = kh(i) + h(ji − σkh(i)) (13)

and h > 0 is the discretization time step. Note that j = (ji)i∈N0
here denotes

a discrete control sequence.
The optimal value function is the unique solution of the discrete Hamilton–

Jacobi–Bellman equation

Vh(k) = Max
j

{hf(k, j0) + (1 − θh)Vh(kh(1))} , (14)

where kh(1) denotes the discrete solution corresponding to the control j and
initial value k after one time step h. Abbreviating

Th(Vh)(k) = Max
j

{hf(k, j0) + (1 − θh)Vh(kh(1))} (15)

the second step of the algorithm now approximates the solution on a grid Γ
covering a compact subset of the state space, i.e., a compact interval [0, K]
in our setup. Denoting the nodes of Γ by ki, i = 1, . . . , P , we are now looking
for an approximation V Γ

h satisfying

V Γ
h (ki) = Th(V

Γ
h )(ki) (16)

for each node ki of the grid, where the value of V Γ
h for points k which are

not grid points (these are needed for the evaluation of Th) is determined by
linear interpolation. We refer to the papers cited above for the description of
iterative methods for the solution of (16). Note that an approximately opti-
mal control law (in feedback form for the discrete dynamics) can be obtained
from this approximation by taking the value j∗(k) = j for j realizing the
maximum in (14), where Vh is replaced by V Γ

h . This procedure in particular
allows the numerical computation of approximately optimal trajectories.

In order to distribute the nodes of the grid efficiently, we make use of a
posteriori error estimation. For each cell Cl of the grid Γ we compute

ηl := Max
k∈Cl

|Th(V
Γ
h )(k) − V Γ

h (k)|

(more precisely we approximate this value by evaluating the right hand side
in a number of test points). It can be shown that the error estimators ηl
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give upper and lower bounds for the real error (i.e., the difference between
Vh and V Γ

h ) and hence serve as an indicator for a possible local refinement
of the grid Γ. It should be noted that this adaptive refinement of the grid is
very effective25 for detecting thresholds, because the optimal value function
typically fails to be differentiable in these points, resulting in large local errors
and consequently in a fine grid, see Figure 5.

3.2 Domains of Attraction

For the general model, i.e., with endogenous credit cost H(k,B) as defined
in (1) and/or restrictions of the type B/k ≤ c, this algorithm unfortunately
is not applicable. Even though in certain cases a HJB equation for a dis-
crete time version of the problem is available, it is not clear whether the
full discretization procedure described above leads to a valid and convergent
approximation of B∗

Hence we propose a different approach for the solution of this problem,
based on a set oriented method for the computation of domains of attraction.
The method relies on the following observation: define the set

D =

{

(k0, B0)

∣

∣

∣

∣

there exists j such that B(t(j)) ≤ 0
for some t(j) > 0

}

.

Then the curve B∗(k) is exactly the upper boundary of D. Note that explicit
debt ceilings of the type B(t) ≤ ck(t) are easily incorporated into this setup
by considering only those trajectories in the definition of D which meet this
restriction.

The set D is what is called a controlled domain of attraction of the set
A = {(k,B) ∈ R

2 |B ≤ 0} and we will now give a brief description of an
algorithm for the computation of such sets, for details we refer to Grüne
(2001) and Grüne (2002, ch. 7).

Again we consider a first order discrete time approximate model, now
both for k and B given by the Euler discretization26

kh(i + 1) = kh(i) + h(ji − σkh(i))

Bh(i + 1) = Bh(i) + hH(kh(i), Bh(i)) − hf(kh(i), ji)

25Actually, for the one–dimensional problem at hand it is possible to compute rather
accurate approximations vΓ

h
also with equidistributed grid points. In higher dimensions

the computational advantage of adaptive gridding is much more obvious, see, e.g., the
examples in Grüne (1997) or Grüne et al. (1999).

26We use the simple first order Euler scheme here in order to avoid too much technicality in
our presentation. For higher order discrete time approximations see, e.g., Grüne (2002,
ch. 5).
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and abbreviate the right hand side by Ψ(k,B, j). Just as above, for the space
discretization we use a grid Γ, now covering a two–dimensional rectangular
domain [0, K] × [0, B]. For each cell Cl, l = 1, . . . , Q of the grid we use a
collection of test points xi

l = (ki
l , B

i
l ), i = 1, . . . , N in order to compute the

set image

Φ(Cl, ̄) =
⋃

m

Cm for all m ∈ {1, . . . , Q} with Ψ(ki
l , B

i
l , j

i) ∈ Cm

where ̄ = (j1, . . . , jN) is a vector of N control values associated to the N
test points. For a sequence (̄i), i = 0, 1, 2, . . . of such control vectors we can
iterate the map Φ and we denote the resulting iterated map by Φi(Cl, (̄i)).
Now we can define the following three sets

DΓ =
⋃

m

Cm for all m with Φi(Cm, (̄i)) ⊆ A for some (̄i) and some i

BΓ =
⋃

m

Cm for all m with Φi(Cm, (̄i)) ∩ A = ∅ for all (̄i) and all i

EΓ =
⋃

m

Cm for all m with Cm 6⊆ DΓ and Cm 6⊆ EΓ

These sets are easily computed by a dynamic programming type iteration
and under appropriate conditions it can be shown that the set DΓ approx-
imates D, the set BΓ approximates Dc (the complement of D) and the set
EΓ approximates ∂D (the boundary of D), which in our case is exactly the
curve B∗(k). It turns out that for obtaining more and more accurate approx-
imations (with respect to the space discretizations) it is sufficient to increase
the accuracy on the set EΓ, i.e., to refine the cells Cm ⊆ EΓ.

While the convergence analysis in the general case is rather complicated
and depends on certain properties of D, for our problem we can use the
fact that the boundary ∂D is given by the curve B∗(k) which is monotone
increasing in k. Hence, if we use a rectangular grid, and choose the test
points in each cell to be the 4 corners of this rectangular cell, we obtain that
if a cell Cm intersects both D and Dc, then there exist test points xk1

m and
xk2

m in this set such that xk1

m ∈ D and xk2

m 6∈ D. Consequently, the iterated
cell image Φi cannot be contained in A for any (̄i) (implying that Cm 6⊆ DΓ)
but it intersects A for some (̄i) (implying that Cm 6⊆ BΓ). Thus, if a cell
Cm intersects both D and Dc then we obtain that Cm ⊆ EΓ which finally
yields that the set EΓ always covers the boundary ∂D and hence gives an
approximation of the curve B∗(k) whose accuracy is equal to the width of
the set EΓ.27

27Of course, this discussion concerns the spatial discretization error only. For the analysis
of the full error we refer to the cited references.
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Since the problem which is solved by this algorithm is not a classical
optimal control problem (though it can be interpreted as an optimal control
problem for the set valued dynamics) it is not possible to obtain optimal
trajectories with respect to some given functional. However, it is not too
difficult to prove that the boundary of a domain of attraction D is weakly
invariant (i.e., for an initial value on the boundary ∂D we can always find
trajectories that remain on ∂D for all future times), provided it is a “proper”
domain of attraction, i.e., its boundary does not intersect with the boundary
of A and provided that no additional restrictions apply. Due to this fact,
for each initial value (k,B) ∈ DΓ (recall that this set forms our numerical
approximation of the set {(k,B)|B < B∗(k)} of subcritical initial values) we
can compute a control sequence ji realizing a (discrete time) trajectory for
which Bh(i) remains bounded for all times i ≥ 0 and for initial values on
the upper part of the boundary ∂DΓ we can even expect to find trajectories
that stay on the boundary ∂DΓ for all future times, i.e., they are (up to the
numerical error) of the form (k(t), B∗(k(t)). The limiting behavior of these
trajectories can then be used for the detection of the thresholds and it turns
out that this procedure yields very good results.

4 The Numerical Study

In this section we present numerical results for different variants of our model
(2)-(4). The differences pertain to the production function, adjustment cost
of capital and the choice of H(k,B). Throughout this section we specify
the model parameter σ = 0.15 and γ = 0.3. Other parameters will be model
specific. Unless otherwise noted we first use c(t) ≡ 0 in our numerical studies,
which will be relaxed later.

All examples were computed for k in the compact interval [0, 2] with
control range28 j ∈ [0, 0.25] except for the variant of the convex-concave
production function. For the algorithm from Section 3.1 we have used the
numerical time step h = 0.05 and an initial grid with 39 nodes. The final
adapted grid consisted of 130 nodes. The range of control values was dis-
cretized using 101 equidistributed values. For the algorithm from Section 3.2
we used the time step h = 0.5, in order to generate the discrete time model
Ψ we used a highly accurate extrapolation method. For this algorithm the
range of control values was discretized using 51 equidistributed values. The
domain covered by the grid was chosen to be (k,B) ∈ [0, 2] × [0, 3]. The
initial grid was chosen with 1024 cells, while the final adapted grids con-
sisted of about 100000 up to 500000 cells, depending on the example. For

28In all our experiments larger control ranges did not yield different results.
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this algorithm the figures below always show the set EΓ which approximates
the creditworthiness curve B∗(k). Recall that the width of this set gives an
estimate for the spatial discretization error.

4.1 Quadratic Adjustment Cost

The first case we explore will assume a concave production function akα, 0 <
α < 1 and quadratic adjustment costs, bjβ. Such a model has often been
used as a benchmark model in economics. As model parameters we specify
α = 0.5, β = 2, b = 0.5, a = 0.29 and θ = 0.1. This specifies the most simplest
variant of a dynamic decision problem which has often been employed in
economics and which can be shown to exhibit solely one positive steady state
equilibrium k∗. The creditworthiness curve is simply given by the present
value borrowing constraint, since we here assume a constant credit cost and
a debt equation as shown in equ. (6).

Figure 2: Optimal value function and feedback for example from Section 4.1

In this case we can use the optimal control algorithm of section 3.1. The
creditworthiness curve is given by the optimal value function in figure 2 and
the solution path of the dynamic decision problem, the investment decision,
is given by the optimal control in figure 2. For the debt dynamics it holds
that all initial levels of debt below the creditworthiness curve, can be steered
bounded.
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4.2 Convex-Concave Production Function

Next we compute the creditworthiness curve for a model variant with a
convex-concave production function as suggested by Skiba (1978). We disre-
gard, as in Skiba, adjustment cost of investment but again presume a constant
borrowing cost θ = 0.1. The convex-concave production function is for our
numerical purpose specified as a logistic function of k

y =
a0 exp(a1k)

exp(a1k) + a2

− a0

1 + a2

with a0 = 2500, a1 = 0.0034, a2 = 500. This convex-concave production
function takes the place of the production function akα in equ. (5), yet there
is no adjustment cost term jβk−γ . The net income, f(k, j), in equ. (5) is
thus linear in the decision variable, j, and one would thus expect a bang-
bang solution. In our numerical solution we restrict the net income such that
f(k, j) ≥ 0. The results, using again the algorithm of Section 3.1, are shown
in figure 3.

Figure 3: Optimal value function and feedback for example from Section 4.2

The optimal value function again demonstrates the creditworthiness curve
and the optimal control, the dynamic decision problem. This variant of our
model gives multiple steady states at 0 and 2847 which have been obtained
by simulations, and a threshold, a Skiba point, at 1057 in the vicinity of
which there is likely to be another, but non-optimal steady state.

Again any debt, B0, below the creditworthiness curve can be steered
bounded but capital stock with initial condition, k0, to the left of the Skiba
point will contract and to the right of the Skiba point will expand approaching
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the high steady state 2847. Thus the Skiba point is unstable and 0 and 2847
are attractors. As also clearly visible, at the Skiba point the control variable is
discontinuous, it jumps. Note, however, that the jump of the control problem
at the high steady state arises from the fact that, without adjustment cost,
we have a decision problem linear in the decision variable.

4.3 Adjustment Cost and Constant Credit Cost

Next we consider a model variant with akα as production function in equ. (5)
and the nonlinear adjustment cost term jβ k−γ , but take H(k,B) = θB. We
again can use the algorithm of Section 3.1 in order to solve the discounted
infinite horizon problem (2)–(4). Figure 4 shows the corresponding optimal
value function representing the creditworthiness curve (upper graph) and the
related optimal control in feedback form (lower graph).

Figure 4: Optimal value function and feedback for example from Section 4.3

The threshold k+ = 0.267 is clearly visible in the optimal control law,
which is discontinuous at this point. For initial values k(0) < k+ the op-
timal trajectories tend to k∗ = 0, for initial values k(0) > k+ the optimal
trajectories tend to the stable equilibrium k∗∗ = 0.996.29

Figure 5 shows the optimal feedback control in a neighborhood of the
threshold. The discontinuity in the control variable is clearly observable.
Investment to the left of k+ is lower than σk and makes the capital stock

29Here again the non-negative equilibria are obtained by simulations. The equilibrium
candidates can numerically be computed by using equ. (10).
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shrinking whereas investment to the right of k+ is larger than σk and in-
creases the capital stock. At k+ investment jumps.

In addition, in this figure the adaptively distributed grid points are shown.
As mentioned in Section 3.1, the grid is in particular refined around the
threshold, the reason for this is the (barely visible) kink in the optimal value
function at this point, resulting in a non–differentiable value function and
hence in large local errors.

Figure 5: Optimal feedback law and distribution of grid points at threshold

4.4 Adjustment Cost and Endogenous Credit Cost

Next we consider a model variant which is the same as in Section 4.3 but
with H(k,B) from (1). For this more general model with

H (k(t), B(t))) =
α1

(

α2 + N(t)
k(t)

)µ θB(t)

it is not possible to transform the problem into a standard infinite horizon
optimal control problem, hence we will use the algorithm for the computation
of domains of attractions from Section 3.2 and undertake experiments for
different shapes of the credit cost function.

In this formula we specify µ = 2. Taking into account that we want θ to
be the risk–free interest rate, we obtain the condition α1/(α2 + 1)2 = 1 and
thus α1 = (α2 + 1)2. Note that for α2 → ∞ and 0 ≤ B ≤ k one obtains
H(k,B) = θB, i.e., the model from the previous section. In order to compare

23



these two models we use the formula H(k,B) = α1

α2

2

θB for B > k.30

Figure 6 shows the respective creditworthiness curves B∗ under the con-
dition supt≥0 B(t) < ∞ for α2 = 100, 10, 1,

√
2 − 1 (from top to bottom)

and the corresponding α1 = (α2 + 1)2.

Figure 6: Creditworthiness curve B∗ for different α2

For α2 = 100 the trajectories on the curve B∗ show almost the same
behavior as the optimal trajectories in the previous section: There exists
a threshold (now at k+ = 0.32) and two stable equilibria at k∗ = 0 and
k∗∗ = 0.99.31 Further simulations have revealed that for decreasing values of
α2 ≤ 100 the threshold value k+ increases (i.e., moves to the right) and the
stable equilibrium k∗∗ decreases (i.e., moves to the left), until they meet at
about α2 = 31. For all smaller values of α2 there exists just one equilibrium
at k∗ = 0 which is stable. The reason for this behavior lies in the fact that
for decreasing α2 credit becomes more expensive, hence for small α2 it is no
longer optimal to borrow large amounts and to increase the capital stock,
instead it is optimal to shrink the capital stock and to reduce the stock of
debt B(t) to 0. Thus, with small α2 and thus large borrowing cost it is for
any initial capital stock optimal to shrink the capital stock.

From the figure 6 one can observe that, as our equ. (11) predicts, the
creditworthiness curve moves down with a steeper slope of the credit cost
function, equ. (1), which gives rise to a larger VH(k,B∗) in equ. (11).

30For small values of α2 it turns out that the creditworthiness curve satisfies B∗(k) < k,
hence this change of the formula has no effect on B∗.

31Those are again obtained by simulations. The candidates for equilibria for the case of
H(k,B) can be computed by equ. (9).
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α2 100 10
√

2 − 1

VH(k,B∗(k)) 0.041 0.274 1.140

B∗(k) 2.477 2.214 1.273

V (k) 2.518 2.488 2.410

Table 1: Optimal values

In order to evaluate the extent wo which a value loss occurs, due to the
finance premium of equ. (1), we compute for equ. (11) the component parts
of V (k) for different slopes of the credit cost function. Hereby the lower
α2 represents a higher finance premium. As table 1 shows the numerical
values obtained for the different α2 indicate that the value loss, VH(k,B),
substantially increases, the creditworthiness, B∗(k), substantially decrease
and the value V (k) slightly decreases with rising finance premium (falling
α2).

4.5 Adjustment Cost and Convex Credit Cost

Next we specify the endogenous credit cost as H(k,B) = θBκ. In this section
we use the algorithm from Section 3.2 and repeat the computations from the
previous section for the credit cost function H(k,B) = θBκ.32 Figure 7 shows
the respective curves for κ = 1, 1.05, 1.25, 2 (from top to bottom at the right
boundary of the diagram).

For κ = 1 this is exactly the optimal value function from Figure 4, while
for increasing κ the values of B∗(k) increase for small k and decrease for
larger k. This is due to the fact that for increasing κ and B > 1 the credit
cost increases whereas for increasing κ and B < 1 the credit cost decreases,
hence it is becomes possible to borrow larger amounts with small capital
stock. It should also be noted that in all cases we have B∗(0) = 0, how-
ever, for larger κ the creditworthiness curve becomes discontinuous at 0, i.e.,
limk→0,k>0 B∗(k) > 0. Again, this is due to the fact that for larger κ the
credit cost is small for small B.

This behavior of the creditworthiness is also reflected in the thresholds.
For κ = 1.05 the qualitative behavior of the trajectories is just as in the case
κ = 1: there exists a threshold k+ > 0 where the control is discontinuous
and there are two stable equilibria k∗ = 0 and k∗∗ > k+. For increasing
values of κ the threshold k+ moves to the left until it hits 0 and vanishes;

32Note that this type of interest cost where the interest payment is convex in the agent’s
debt is frequently posited in the literature, see for example Bhandary, Haque and
Turnovsky (1990) Again, equ. (9) can be used for computing equilibrium candidates.
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Figure 7: Creditworthiness curve B∗ for different κ

for κ = 1.25 and κ = 2 it has already vanished, implying that all trajectories
with initial values on the B∗(k) curve converge to a strictly positive stable
equilibrium k∗∗. Note that this behavior is just the opposite to what happens
for H(k,B) from (1) in Section 4.4 for decreasing α2, which is due to the
fact that the credit cost for small B behaves the opposite way. We can
thus observe that for both type of credit cost functions the asset price and
thus the creditworthiness is affected, yet for the convex credit cost the asset
price decreases (relative to the a credit cost with risk-free rate) only for
large capital stock and borrowing. This rather unexpected behavior of the
convex credit cost function – increasing creditworthiness with small capital
stock and borrowing – makes the first formulation of endogenous credit cost,
through equ. (1), a more reasonable approach to pursue. On the other hand
one might argue that small firms might need to be advantaged in order to
allow them to enjoy a take-off. In this case a credit cost function of the type
H(B) = θBκ appears to be more reasonable.

4.6 Debt Ceilings

Next we explore an extension of our model by introducing debt ceilings. For
H(k,B) from (1) with α2 = 100 and for H(k,B) = θBκ with κ = 2 we now
impose the restriction B(t)/k(t) ≤ c for some constant c. Again we use the
algorithm from Section 3.2 where now in the definition of DΓ we only take
into account those cell images which satisfy the restriction. Figure 8 shows
the respective curves without restriction and for the restriction with c = 1.2
and c = 0.6 (from top to bottom). In addition, the restriction curves B = ck
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are shown with dots for c = 1.2 and c = 0.6.

Figure 8: Creditworthiness curve B∗ for different ceilings, H(k,B) from (1)

For c = 0.6 the creditworthiness curve B∗(k) coincides with the “restric-
tion curve” B(k) = ck; in this case the curve (k,B∗(k)) is no longer invariant
for the dynamics,33 i.e., each trajectory B(t) with B(t) ≤ B∗(k(t)) leaves the
curve (k,B∗(k)) and reaches B(t) = 0. For c = 1.234 the curves B∗(k) and
B = ck coincide only for k ≥ 1.46. Here one observes the same equilibria k∗

and k∗∗ and threshold k+ as for the sup–restriction (see Section 4.4), how-
ever, in addition to these here a new threshold appears at k++ = 1.54. For
initial values (k,B∗(k)) with k+ < k < k++ the trajectory tends to the stable
equilibrium k∗∗, while for k > k++ the behavior is the same as for c = 0.6,
i.e., the corresponding trajectories leave the curve B∗(k) and eventually B(t)
reaches zero.35

We have repeated these computations for H(k,B) = θBκ and κ = 2.
Figure 9 shows the respective curves for the restriction supt≥0 B(t) < ∞ and
for the ratio–restriction with c = 1.2 and c = 0.6 (from top to bottom). In
addition, the restriction curves B = ck are shown with dots for c = 1.2 and
c = 0.6.

33As mentioned in Section 3.2 the boundary of the domain of attraction is invariant for
the trajectories if no explicit restriction is active. In the case of a debt ceiling, however,
this invariance property is no longer valid.

34This curve is difficult to see because it coincides with the curve without restriction for
small k and with the restriction curve B = ck for large k.

35The simulation are halted at zero, but we would like to report if continued the B(t)
curve becomes negative and tends to −∞.
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Figure 9: Creditworthiness curve B∗ for different ceilings, H(k,B) = θB2

Again, without restriction the curve is discontinuous at k = 0. Just as
for H(k,B) from (1), for c = 0.6 the creditworthiness curve B∗(k) coincides
with the “restriction curve” B(k) = ck and the curve (k,B∗(k)) is no longer
invariant for the dynamics and for each trajectory with B(t) ≤ B∗(k(t))
the second component B(t) reaches 0. For c = 1.2 the curves B∗(k) and
B(k) = ck coincide for k ∈ [0, k∗∗], where k∗∗ = 0.8 is exactly the stable
equilibrium for all trajectories starting on the curve B∗(k).

4.7 Consumption

Note that in equ. (2)-(4) and the subsequent analytical study in sect. 2,
we have treated consumption as exogenous and predicted that the exogenous
constant consumption will move down the creditworthiness curve. Therefore,
we next investigate—again for H(k,B) from (1) with α2 = 100 and for
H(k,B) = θBκ with κ = 2—the case when the agent’s net income f is
reduced by a constant consumption c(t) ≡ η. In this case the creditworthiness
curve B∗ may become negative. This means that there is an initial level of
capital stock required—the level of capital stock where the creditworthiness
curve becomes positive—that supports the consumption path c(t) = η. All
levels of capital stock below this point do not support the consumption path
c(t) = η. We have to specify the dynamics for B(t) < 0 which we choose
to be Ḃ(t) = θB(t) − f . For this model we also choose the set A as A =
{(k,B) |B ≤ −1} in order to allow the extension of the B∗–curve to B < 0.

Note that for the linear model from Section 4.3 subtracting a constant η
from f simply results in an optimal value function Vη = V − θη. Since for
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α2 = 100 the creditworthiness B∗ for H(k,B) from (1) is very close to the
model from Section 4.3 we would expect much the same behavior. Figure 10
shows that this is exactly what happens here.

Figure 10: Creditworthiness curve B∗ for different η, H(k,B) from (1)

The fact that the curves here are just shifted is also reflected in the
stable equilibria and the threshold, which do not change their positions.
In particular, the dynamical behavior does not depend on the consumption
rate.36

Again, we have repeated our computations with H(k,B) = θBκ and
κ = 2. Figure 11 shows the respective curves for η = 0, 0.04, 0.07, again
from top to bottom.

In this nonlinear model here with κ = 2 the effect of η is truly nonlinear, as
it is easily seen from the figure, because the difference between the curves at
the right boundary of the diagram is much smaller than on the left boundary.
However, again the dynamical behavior does not change: just as for η = 0,
for both considered positive values of η the resulting trajectories converge
to a stable equilibrium k∗∗ > 0 and no thresholds could be observed. The
position of the equilibria k∗∗ depends on η, more precisely k∗∗ increases, i.e.,
moves to the right as η increases.

As concerns the behavior of the creditworthiness curve for our two differ-
ent credit cost functions we here too see a slight difference in the outcome
for our convex credit cost function as compared to our function represented
by equ. (1).

36Note that this is an obvious case where our separation theorem of section 2 is valid.
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Figure 11: Creditworthiness curve B∗ for different η, H(k,B) = θB2

5 Conclusions

We study a credit market model where the agents can borrow from credit
market for investment and where the credit cost may be state dependent and
the agents may face debt ceilings. The basis of the credit market model is
a dynamic investment decision model with adjustment cost with imperfect
capital markets due to asymmetric information and costly state verification.
Borrowing cost becomes endogenously determined by endogenous collaterals
of firms, given by a creditworthiness curve, or borrowing may be constrained
by exogenous debt ceilings. The shape of creditworthiness curve is theoret-
ically and numerically explored for a variety of model variants pertaining
to the shape of the production function, the adjustment cost of capital and
specifications of the imperfect capital markets.

Some of the model variants give rise to multiple steady state equilibria.
Those model variants imply history dependence. The optimal path for capital
and debt depend on initial conditions where the credit cost and constraints
may interact. In the model variant with a unique positive steady state the
initial debt is constrained in the sense that it must be below the creditwor-
thiness curve which is in the standard model the present value borrowing
constraint. In the model variants with multiple steady states the initial con-
ditions for both debt and capital stock as well as possible debt ceilings – if
imposed on the firm – matter for investment and thus for the path of the cap-
ital stock. Computing creditworthiness in the case of a unique steady state
equilibrium is straight forward and may be even undertaken by employing
the Hamiltonian equation but the computation of the creditworthiness curve
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with endogenous credit cost, debt ceiling and a given consumption path is
more cumbersome.

In this paper we apply dynamic programming with flexible grid size that
proves to be useful to compute creditworthiness, thresholds and the global
dynamics. Using this method we can determine the present value borrowing
constraint and thus the region in which the borrower remains creditworthy.
We can detect thresholds, domains of attraction, jumps in the policy func-
tion and suboptimal equilibria. Finally we want to note that our model is
nested in utility theory but can be studied separately. The model implies
that neither the firm, in its dynamic investment decisions, nor the house-
hold, in its consumption decisions, face a period by period constraint. The
net worth generated by the firms optimal investment decision feed finally
into consumption but the firm is not constrained by each period’s dividend
payment. Consumption faces solely an intertemporal constraint whereby the
sequence of consumption decisions can be based on any preference.
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