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Abstract

The paper relates to the burgeoning literature that combines an interest rate reaction function

of the central bank with an IS equation and a Phillips curve relationship. It takes up the deter-

ministic prototype model advocated by J.B.Taylor and D.Romer and, under the assumption

of open market operations, makes the implied dynamics of bonds and high-powered money

explicit. As a minor extension, consumption, via disposable income, is supposed to depend

on the interest payments on bonds. The resulting dynamic system is possibly totally unsta-

ble, that is, no coeÆcients in the Taylor rule are able to achieve local stability. A numerical

investigation demonstrates that stability as well as instability can be brought about by fairly

reasonable parameter values. On the other hand, full convergence and divergence are both

extremely slow. This implies that, practically, there is a whole continuum of stable equilibria,

such that the bond dynamics can be said to exhibit near-hysteresis.

JEL classi�cation: E12, E 32, E52.

Keywords: Taylor rule, government budget restraint, bond dynamics, local stability, hysteresis.
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1 Introduction

The traditional IS{LM model and its various dynamic extensions have been designed to under-

stand macroeconomic uctuations. Regarding monetary policy, this framework is based on the

supposition that the central bank targets the money supply. In recent times, however, a broad

consensus has emerged that most central banks follow an interest rate rule. This observation

calls for an alternative to the IS{LM approach which reverses the causality in the money market

equilibrium condition. Rather than use money as an instrument and have the money market

determined the rate of interest, monetary policy now sets the interest rate and the equilibrium

condition serves to determine the corresponding quantity of the money supply. It is evident that

the LM curve, which on the basis of a given money supply relates the market clearing interest

rate to the output levels, becomes obsolete in this way. In a recent paper, David Romer (2000)

emphasizes the advantages of this \Keynesian macroeconomics without the LM curve". Besides

addressing the weakness of IS-LM that it assumes money targeting, he, in particular, argues that

the new approach also makes the treatment of monetary policy easier, in that it reduces the

amount of simultaneity and gives rise to dynamics that are simple and reasonable.

Romer's discussions and graphical illustrations amount to a condensed deterministic version

of the (stochastic) models underlying a burgeoning branch of investigations surrounding the Taylor

rule, which in addition to this rule employ a dynamic IS equation and a Phillips curve relationship.

In fact, this outlines \a distinctive modern form of macroeconomics that is now being used widely

in practice" (Taylor, 2000a, p. 93). All these systems have in common that they do not include

the movements of money and bonds that are implied by the open market operations enforcing the

time path of the interest rate. These variables remain in the background since possible feedbacks

from them on the rest of the economy are considered of secondary importance.

The present paper puts this assumption under closer scrutiny. Our starting point is a slight

extension of the simple deterministic model put forward by Romer (2000) and Taylor (2000a,

2001), which exhibits a stable steady state position. In this context, the paper �rst makes the

bond dynamics explicit, as it is derived from a government budget restraint and the motions of the

monetary base. Asking for the conditions under which, in the appendix to the main system, bonds

and money, too, converge to their steady state values, it is readily established that this should

not be a great problem. Matters become more involved when subsequently aggregate demand in

the model is di�erentiated by supposing that consumption depends on disposable income, part

of which in turn is given by the interest payments. Though this provides a minimal feedback

of bonds on the demand side, it turns out that local stability of the steady state is no longer

easily warranted. There are meaningful sets of numerical parameters that cause the steady state
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to be unstable, regardless of how strong the interest rate reactions in the central bank's policy

function may be chosen.1 Even more important, however, is the medium-run behaviour of the

economy. Whether in the long-run stability prevails or not, here it is appropriate to characterize

the dynamics of bonds as (near-) hysteresis.

The material is organized as follows. The next section recapitulates the Romer-Taylor

setting in continuous time. Section 3 introduces bonds and high-powered money together with

a money multiplier, a money demand function, and the government budget restraint. Section

4 derives the bond dynamics in intensive form, which is still a mere appendix to the ination

dynamics of the Romer-Taylor model, and establishes a condition for its stability. Section 5

modi�es the IS equation; as has just been mentioned it makes consumption, via disposable income,

dependent on the interest payments on bonds. In this way, the dynamics of bonds and the rate

of ination are interrelated. The analysis of the resulting two-dimensional system of di�erential

equations leads to conditions for the local stability, or instability, of its steady state position.

Since the corresponding inequalities are rather complicated, Section 6 takes some trouble to set

up a numerical scenario. The subsequent investigation in Section 7 is �rst concerned with ceteris

paribus parameter variations and how they a�ect local stability, and then with the system's

dynamic properties over the medium-run. Section 7 concludes. An appendix �nally collects the

mathematical computations.

2 The IS{MP{IA model

In this section we formalize in a continuous-time framework the elementary adjustment mecha-

nisms set forth in Romer (2000), or likewise in a recent textbook by Taylor (2001, Chs 24, 25).

Romer christens this approach the IS{MP{IA model, where the acronyms MP and IA stand for

monetary policy and ination adjustments, respectively. As Taylor (2001, p. 554) writes, this

model combines Keynes's idea that aggregate demand causes departure of real GDP from poten-

tial GDP with newer ideas about central banking and how expectations and ination adjust over

time.

Let us begin with monetary policy MP, which means that the central bank sets the interest

rate according to a Taylor rule (Taylor, 1993, p. 202). Romer(2001, p. 13) and Taylor (2001,

p. 559) consider reactions of the interest rate to ination only, but here we may just as well add an

inuence of economic activity. Thus, denote the nominal rate of interest by i, the rate of ination

by �, the output-capital ratio, which is invoked as a measure of capacity utilization, by y, and let

1By construction, the model admits of no variable that might jump on the stable branch of a saddle point.
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ro be the equilibrium real rate of interest, �o the target level of ination, and yo the output-capital

ratio in long-run equilibrium. �� being a positive, �y a nonnegative coeÆcient, we then have

i = ro + � + ��(� � �o) + �y(y � yo) (1)

In many (quarterly) discrete-time models or empirical estimations of interest rate reaction func-

tions, expected ination is used rather than the current ination rate �. Usually these expecta-

tions refer to the next quarter and are supposed to be rational. As we are working in continuous

time where the next period is in�nitesimally near, this concept of inationary expectations may

presently be left aside. Another di�erence to the literature is that economic activity is commonly

represented by the output gap. Since, however, the output gap and the (detrended) output-capital

ratio show strong comovements over the business cycle, employing the output-capital ratio y in

(1) ful�lls the same role.2

Regarding the IS part of the model, we treat i�� as the real rate of interest and suppose that

the temporary equilibrium condition for the goods market is already solved for the output-capital

ratio. y may thus be represented as a decreasing function of i��,

y = fy(i� �) ; f 0
y
< 0 (2)

To ensure existence of a long-run equilibrium, the central bank must set the real interest rate ro

in (1) at a suitable level that makes it compatible with this IS curve. In detail, with io := ro+�o,

the function fy is required to satisfy fy(r
o) = fy(i

o
� �o) = yo.

Eqs (1) and (2) give rise to an inverse relationship between ination and output. Accordingly,

y can be directly conceived as a decreasing function of �,

y = y(�) ; where y(�o) = yo ; y� := dy=d� < 0 (3)

The negative slope is obvious for �y=0, where (3) is immediately inferred from substituting (1) in

(2). With �y > 0, (3) follows from a straightforward application of the Implicit Function Theorem

(see the appendix).

The third building block of the model is IA, ination adjustments. It assumes an accelera-

tionist Phillips curve, which is to say that the rate of ination is given at any point in time and

shifts up (down) when real output is above (below) its natural level (Romer, 2000, p. 16; Taylor,

2001, pp. 566�). In continuous time, the concept reads,

_� = f�(y � yo) ; f�(0) = 0 ; f 0� > 0 (4)

2Adopting the Hodrick-Prescott �lter, we have computed a correlation coeÆcient of 0.97 over the four major

U.S. cycles between 1961 and 1991.
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Incidentally, it is readily checked that this speci�cation of ination adjustments implies counter-

cyclical motions of the price level around its trend, which by now appears to be a well established

stylized fact of the business cycle in many industrialized countries.3

Eq. (4) completes the model. Clearly, y= yo, �=�o, i= io= ro + �o constitute a long-run

equilibrium position. The return of the economy from disequilibrium back to steady state growth

is also evident: a positive departure of the output-capital ratio from normal causes an increase

in the rate of ination, which causes the central bank to raise the real interest rate, which then

moves the output-capital ratio back to normal. Substituting (3) in (4), the dynamics is formally

described by one di�erential equation in the ination rate �,

_� = F (�) := f�[y(�)� yo] (5)

By (3), �o is a stationary point of (5). It is stable, even globally so, since F 0(�) = f 0
�
y� < 0.

As Romer (2000, p. 18) concludes with his \Advantage 6" of the IS{MP{IA model: \The model's

dynamics are straightforward and reasonable."

3 Bonds and high-powered money

With this section we begin to consider the implications of the interest rate variations for the

monetary sector. Romer (2000, pp. 20{24) as well as Taylor (2001, pp. 559f) entertain the view

that the central bank changes the interest rate through open market operations. In addition,

Romer (p. 24) states explicitly that the corresponding adjustments of the stock of money, i.e., of

the monetary base, have no further e�ect on aggregate demand, and the same holds true for the

bonds that are bought or sold in the open market. In a �rst step, we accept this hypothesis and

study the resulting bond dynamics, which is thus a mere appendix to the system of the previous

section.

Let H be the stock of high-powered money and 1=� the (constant) money multiplier, so that

the money supply is given by M s = H=�. M denotes money and B the outstanding �xed-price

bonds with their variable interest rate i (the bond price normalized at unity). M and B may

be the only �nancial assets in the economy. Money demand Md is speci�ed as a fraction fm of

M+B that decreases in the interest rate and (possibly) increases with economic activity as it is

measured by the output-capital ratio:

Md = fm(i; y) � (M +B) ; fmi < 0 ; fmy � 0 (6)

3See, for example, Cooley and Ohanian (1991), Backus and Kehoe (1992), Fiorito and Kollintzas (1994).
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where 0 < fm < 1 and fmi = @fm=@i, fmy = @fm=@y. Hence, the money market equilibrium

condition M s =Md reads H=� = fm(i; y) (H=� +B).

As the discussion takes place in a growth context, the equilibrium condition has to be given

in intensive form. Designating h = H=pK, b = B=pK (p the price level, K the capital stock) and

multiplying through by �, the equation becomes

(h+ �b) fm(i; y) � h = 0 (7)

Since monetary policy uses the interest rate as its instrument, equality in (7) is not brought about

by i, but by suitable combinations of the bond ratio b and the ratio of high-powered money h.

For the further analysis it is useful to treat h in (7) as a function of i, y, and b. Denoting it by

fh, we have

h = fh(i; y; b) ; with fhi < 0 ; fhy � 0 ; fhb > 0 (8)

The signs of the reactions to the ceteris paribus changes in these variables are obvious (similar as

above, fhi = @fh=@i, etc.). The precise formulae are provided in the appendix.

Bonds and the monetary base are linked together in a second relationship, which is of a

dynamic form. This is the government budget restraint, _H + _B = pG+ iB � T . To reect the

idea of automatic stabilizers, though in a simple way, we allow for countercyclical movements

of government spending G; with two nonnegative parameters k, y and Y o = yoK the level of

normal output, it is given by G = kK � y(Y �Y
o). As for nominal taxes T , a proportional tax

rate � levied on total income pY + iB is assumed.4 The intensive form of the budget identity is

then calculated as

_h + _b = k + yy
o
� (y+�)y + (1��)ib � (h+b)(�+g) (9)

where g designates the growth rate of the capital stock K.

To derive an ordinary di�erential equation from (9), a reduced-form representation of h has

to be established, such that h is a function of the dynamic state variables of the system to be

considered. For example, if the state variables are � and b and _� = F�(�) as in (5), we have

h = h(�; b) with partial derivatives h� and hb, which gives rise to _h = h� _�+hb _b = h�F�(�)+hb _b.

Substituting this expression in (9) �nally allows one to resolve it into a di�erential equation of the

form _b = Fb(�; b). This is spelled out and subsequently examined for stability in the next section.

As this procedure appears rather technical, we may before briey discuss the determination

of bonds and high-powered money in a discrete-time setting; for simplicity with respect to original

4Output Y may be thought of as net of capital depreciation.
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levels. Let Ht, Bt be the beginning-of-period stocks and D = D(ptYt; itBt) the period t nominal

de�cit. Then the government budget restraint for period t�1 is

(Ht �Ht�1) + (Bt �Bt�1) = D(pt�1Yt�1; it�1Bt�1)

On the analogy to (8), Ht satis�es a functional relationship

Ht = fh(it; Yt; Bt)

Thus, there are two interrelated equations to compute the stocks Ht and Bt: one is the condition

for money market equilibrium, the other the �nancing of the government de�cit. A problem may

be that Ht cannot be represented by an explicit function; Ht and Bt would then only be implicitly

determined.

4 Bond dynamics in the IS{MP{IA model

When the IS{MP{IA model is augmented by high-powered money and bonds, in an appendix

to eq. (5), we get another state variable besides the ination rate �, namely, the bond ratio b.

To establish the di�erential equation for b, we �rst take the output function y= y(�) in (3) and

substitute it in the Taylor rule (1). In this way the interest rate is expressed as a function of �,

i = i(�) := ro + � + ��(� � �o) + �y [y(�)� yo] (10)

Although dy=d� is negative, it is easily shown that the real interest rate always increases in

response to an increase in ination: di=d� > 1 for all values of �y � 0.5

The two functions y=y(�) and i= i(�) can be plugged into (8), to the e�ect that the ratio

of high-powered money h can be expressed as a function of � and b,

h = h(�; b) := fh[i(�); y(�); b] (11)

After di�erentiating (11) with respect to time, _h = h� _� + hb _b, it remains to substitute the

derivative in the government budget restraint (9) and solve the resulting equation for _b. In eq. (9)

we assume that the capital growth rate g, like the output-capital ratio in (2), depends solely on

the real interest rate, so that g, like y in (3), can also be expressed as a function of the rate of

ination, g=g(�). Taking �nally account of eq. (4) for _�, we obtain

_b = Fb(�; b) :=
1

1 + hb

n
� h�f�[y(�)� yo] + k + yy

o

� (y+�) y(�) + (1��) i(�) b � (h+ b) [� + g(�)]
o

(12)

5With y� as computed at the beginning of the appendix, one has di=d� = 1+��+�yy� = 1+�� [1��yjf
0

yj=(1+

�yjf
0

yj)] = 1 + ��=(1+�y jf
0

yj).
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The long-run equilibrium level of b, which renders _b = 0, is computed as follows. Denote, to this

end, all steady state values by a superscript `o', in particular, go = g(�o) and fom = fm(i
o; yo)

(recall io = ro+�o). Eq. (7) gives ho = � fom bo=(1�fom), while with y(�
o) = yo, the time derivative

_b vanishes if k � �yo+ (1��)iobo� (ho+bo)(�o+go) = 0. Solving the latter equality for bo yields

bo =
k � � yo

[1 + �fom=(1�f
o
m)] (�

o + go) � (1��)io
(13)

As it is made more precise in Section 6 below, k� �yo is reasonably positive. A positive value of

bo then requires the denominator in (13) to be positive. Given that �fo
m
=(1�fo

m
) is fairly low, we

may directly posit that the equilibrium nominal growth rate of the economy, �o+go, exceeds the

after-tax equilibrium rate of interest (1��)io. Since this supposition will also be invoked later on

in the analysis, we set it up as

Assumption 1. The tax rate � is less than k=y
o. For the steady state values of

the rates of interest, ination, and real growth, the following inequality is satis�ed,

(1��) io < �o + go

The bond dynamics converges locally to bo if @Fb=@b < 0 in (12). This partial derivative

results like @Fb=@b = [(1��)io � (1 + hb) (�
o + go)] = (1 + hb), where hb = @h=@b is calculated as

hb = fhb = �fo
m
=(1�fo

m
) (cf. the appendix). Hence 1 + hb > 0, and @Fb=@b < 0 if Assumption 1

applies. Considering eqs (5) and (12) together as a two-dimensional di�erential equations system

in � and b, we have for the entries of its Jacobian matrix: j11 = @ _�=@� < 0, j22 = @ _b=@b < 0, and

j12 = @ _�=@b = 0. Irrespective of the sign of the fourth entry j21 = @ _�=@b, @Fb=@b < 0 ensures

that the Jacobian has a negative trace and a positive determinant. These �ndings are summarized

in Proposition 1, which allows us to conclude that the dynamics of bonds and the monetary base

that takes place in the background of the IS{MP{IA model, is no great problem.

Proposition 1. Suppose Assumption 1 holds true. Then the equilibrium point

(�o; bo) of the IS{MP{IA model, eq. (5), with its associated bond dynamics, eq. (12), is

locally asymptotically stable.

5 Interest payments and their impact on stability

So far, bonds had no feedback on the real sector. On the other hand, bonds are bought by agents

because of the interest receipts, which are an income item and so have an e�ect on demand, most
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prominently on consumption. If furthermore total income is taxed proportionately as laid out in

the government budget restraint above, then it is not seen how these interest payments should

cancel out in the determination of aggregate demand. From this point of view it is almost a

consistency requirement that interest payments, and thus bonds, enter explicitly into the model's

IS equation.6

Besides better tractability of the model, an economic reason for disregarding the income

e�ects of interest payments on aggregate demand is that they are a small part of total income and

so may be expected to have a minor bearing on the dynamics only. With this section we embark

on checking this intuition.

To set the stage, decompose aggregate demand into consumption, investment and govern-

ment spending. Consumption C is supposed to be made up of a basic component that grows

with the capital stock and a component that varies in line with disposable income, where the

latter includes the interest payments. With a constant ck > 0 and cy the marginal propensity to

consume out of disposable income, 0 < cy < 1, we have

C = ckK + cy (1��) (Y + iB=p) (14)

This type of consumption function that allows bonds to enter aggregate demand will be the only

essential amendment to the IS{MP{IA model considered above.

For notational simplicity, the real interest rate is supposed to act merely on investment

I. Other factors related to current output levels that may inuence investment are likewise

neglected.7 The investment function is thus

I = fg(i� �) �K ; f 0g < 0 (15)

As government spending has already been speci�ed before, clearing of the goods market, Y =

C + I +G, is fully determined. To obtain the IS equilibrium value of the output-capital ratio y,

we �rst abbreviate the interest rate reaction function (1) as

j = j(y; �) := ro + � + ��(� � �o) + �y(y � yo) (16)

6Another tax rule in macroeconomic modelling is to de�ne (nominal) tax collections T net of transfers, and

to include interest payments as part of those transfer payments. If additionally T=pK = const. is postulated and

that it is after-tax income on which aggregate demand depends, bonds again disappear from the IS equation. This

simplifying device is, for example, adopted by Sargent (1987) in his textbook on macroeconomic theory (cf. pp. 16f,

113f) and by many Keynesian-oriented macro models in its wake.
7The only e�ect of adding an accelerator argument by making investment dependent on Y would be an increase

in the multiplier. More precisely, the partial derivatives y� and yb in eq. (20) below would be higher since the term

Ac de�ned in (19) would be lower.
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and then de�ne excess demand for goods, normalized by the capital stock, as a function Ey =

Ey(y; �; b), so that the IS equilibrium condition reads,

Ey(y; �; b) := ck + cy (1��) [y+j(y; �)b] + fg[j(y; �)��] + k � y(y�y
o) � y = 0 (17)

Equilibrium in (17) is brought about by variations of y. Accordingly, let y = y(�; b) be the value

of the output-capital ratio at which, given � and b, excess demand Ey(y; �; b) vanishes. In this

way, the accelerationist Phillips curve from eq. (5) becomes

_� = F�(�; b) := f�[y(�; b) � yo] (18)

that is, the motions of the rate of ination are no longer independent of the evolution of government

debt.

For negative reactions of output to ination as they previously prevailed in eq. (3), it proves

necessary that investment is rather sensitive. In detail, the negative e�ect on investment from an

increase in the interest rate i must dominate the positive e�ect, through higher interest payments,

on consumption:

Assumption 2. jf 0gj > cy (1��) b
o .

De�ning the terms

Ac := 1� cy (1��) + y ; Ag := jf 0gj � cy (1��) b
o (19)

both of which are positive under Assumption 2, the partial derivatives of the IS output-capital

ratio (evaluated at the steady state values) are computed as

y� =
cy(1��)b

o
� ��Ag

Ac + �yAg

; yb =
cy(1��)i

o

Ac + �yAg

(20)

(these and the formulae to follow are again derived in the appendix). A ceteris paribus increase of

the bond ratio b unambiguously raises output, because of the corresponding rise in interest receipts

and thus consumption demand. In contrast, the e�ect of an increasing rate of ination could go

either direction. The function � 7! y(�; b), which is the counterpart of the above function y = y(�)

in eq. (3), is downward-sloping if and only if the ination targeting coeÆcient �� in the Taylor

rule is suÆciently high. Nevertheless, the numerical inspection in the next section demonstrates

that the critical value of �� from when on, with �� increasing, y� < 0 obtains, tends to be

relatively low unless the investment responsiveness jf 0gj is not too small. Hence the observation

that weak reactions of monetary policy to ination might be destabilizing, in that they do not

avert a spiral of rising ination and output, is remarkable, but it is not worrying since the interest
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rate reactions can be reasonably believed to be strong enough. For better reference, we summarize

this discussion in an extra proposition.

Proposition 2. Given that Assumption 2 is ful�lled, so that Ag > 0 in (19), the

monetary policy rule diminishes the IS equilibrium output-capital ratio if, and only if,

the ination targeting coeÆcient �� exceeds a certain critical value �c�. That is,

y� = @y=@� < 0 if, and only if, �� > �c� := cy(1��)b
o =Ag .

When the interest rate function (1) or (16) is restricted to apply to the temporary equilibrium

situations, one gets the reduced-form representation

i = i(�; b) := ro + � + ��(� � �o) + �y [y(�; b)� yo] (21)

whose partial derivatives are given by

i� = 1 + �� + �y y� > 1 ; ib = �y yb � 0 (22)

It is thus seen that, irrespective of the concrete coeÆcients ��, �y, the policy rule always leads to

an increase in the real rate of interest if the ination rate increases, even if y� < 0 and �y is large

(this is veri�ed in the appendix). As has just been shown, however, this property as such is not

suÆcient to cut down economic activity as a whole.

The next step in the analysis is to determine the ratio of high-powered money in its depen-

dency on � and b. Referring to the function fh = fh(i; y; b) in (8), the reduced-form representation

of h is

h = h(�; b) := fh[i(�; b); y(�; b); b] (23)

The procedure is very much the same as in Section 4, eq. (23) being a generalization of (11).

Likewise, the motions of bonds are derived from substituting the time derivative _h = h� _� + hb _b

in the government budget identity (9), solving it for _b, and using (18) for _�:

_b = Fb(�; b) :=
1

1 + hb

n
� h�f�[y(�; b) � yo] + k + yy

o
� (y+�) y(�; b)

+ (1��) i(�; b) b � (h+ b) [� + fg(i(�; b) � �)]
o

(24)

which may be compared with eq. (12) for _b in the previous section. To sum up, eqs (18) and

(24) constitute a two-dimensional di�erential equations system in the ination rate � and the

bond ratio b, whose dynamics are now interrelated. The steady state position (�o; bo), of course,

remains the same.
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To inquire into the local stability of the steady state, the Jacobian matrix of (18), (24) has

to be set up. De�ne to this end,

Ay := �h�f
0

�
� (y+�) + �y [ (1��)b

o + (ho + bo)jf 0
g
j ]

Ab := (1��) io � (1+hb) (�o+g
o) (25)

A� := (1+��) (1��) b
o + (ho + bo) (��jf

0

g
j � 1) � h�(�o+g

o)

The Jacobian J can then be written as

J =

2
664

f 0� y� f 0� yb

Ayy� +A�

1+hb

Ayyb +Ab

1+hb

3
775 (26)

The reaction of the time rate of change of � to an increase in the level of ination continues to

be negative if, as pointed out in Proposition 2, the central bank in its policy rule pays adequate

attention to ination; j11 = @F�=@� = f 0
�
y� < 0 then, which is the same result as in eq. (5) for

the IS{MP{IA model. The response of ination to changes in b indicates a possible source of

destabilization, since higher government debt accelerates ination; j12 = @F�=@b = f 0
�
yb > 0.

The partial derivatives of the function Fb in (24) are apparently more complicated than

those of F�. For the stability analysis it is also necessary to assess the sign of the denominator

of the entries j21 and j21. Actually, the derivative hb turns out to be comparatively small. It

is established in the appendix that 1+hb is positive if the the money demand is not excessively

responsive to the interest rate. In explicit terms, 1+hb > 0 if Assumption 3a is satis�ed, while,

considering more strictly hb itself, hb > 0 if Assumption 3b is ful�lled. In particular, these state-

ments hold regardless of the values chosen for the policy parameters ��, �y. Note also that the

denominator in Assumptions 3a and 3b contains the product of two terms, io and ho+�bo, which

should be quite small. The expressions on the right-hand side will therefore be easily rather high.

Assumption 3a. jfmij <
[1� (1��)fo

m
]Ag

cy (1��) (ho + �bo) io
:

Assumption 3b. jfmij <
�fomAg

cy (1��) (ho + �bo) io
:

As for the second diagonal entry of the Jacobian, j22, it can be concluded that Assumptions

1 and 3b imply Ab < 0. This type of inequality amounted to @ _b=@b < 0 in the IS{MP{IA model.

Now, however, the additional term Ayyb has to be taken into account, where Ay may take on

either sign. In our numerical investigations there was nevertheless a strong tendency for j22 to

be negative. The reason is that high values of �y increase Ay, but simultaneously decrease yb at
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the same order of magnitude; cf. eq. (20). On this basis we may say that normally both auto-

feedbacks, � on _� and b on _b, are negative and thus stabilizing, just as they were in the IS{MP{IA

model.

If we take j22 < 0 for granted and concentrate on �� > �c
�
, which implies y� < 0 and thus

also j11 < 0 and trace J < 0, the sign of the determinant of J becomes the decisive criterion for

stability. Here the term Ay plays no more role since it cancels out:

detJ = f 0
�
(Ab y� � A� yb) = (1+hb) (27)

The sign of h� = fhi i� + fhy y� in the term A� is given by fmi i� + fmy y�. Hence h� < 0 under

the condition on �� just stated. A� itself, which is increasing in ��, is consequently positive if ��

exceeds the value ~�� that renders the sum of the �rst two terms in A� zero. In short, A� > 0 if

�� > maxf�c�; ~��g. Computing ~�� = (ho+�bo) = [(1��)bo+(ho+ bo)jf 0gj], it is furthermore easily

veri�ed that �c
�
> ~�� at least if cy � (ho + �bo)=(1��)bo, an inequality that will be reasonably

satis�ed. It then follows that j11 < 0 as an almost necessary condition for stability leads to A� > 0

in detJ . Thus, on the whole, both products Ab y� and A� yb in (27) are positive.

The determination of the sign of det J , therefore, requires a more detailed investigation of

the single terms Ab, A� and yb, y�. The task is impeded by the fact that y� and A� on the one

hand, and yb and Ab on the other hand, are of a similar order of magnitude and involve rather

lengthy expressions. To handle them it is useful to introduce the terms �o and ��, into which in

turn enter the abbreviations A1, A2:

A1 := �o + go � (1��) io + �fo
m(�

o+go)=(1�fo
m) > 0

A2 := (ho + �bo) (�o+go) jfmij = (1�f
o

m
) > 0

�o := �cy(1��) [A1b
o
� io(ho + �bo �A2) ]

�� := AgA1 � cy(1��) i
o [ (1��) bo + (ho+bo) jf 0

g
j+A2 ]

(28)

where for the positive sign of A1, Assumption 1 has been presupposed. After some tedious

calculations the determinant of J can be decomposed as

det J = f 0
�
(�o + �� ��) = f (1+hb) jEyy j g (29)

It may be observed that the slope f 0
�
of the Phillips curve, a possible responsiveness of money

demand to output (the derivative fmy), and the degree y of countercyclicality in government

expenditure have disappeared from the core expression �o + ���� in (29). Even more important

is the phenomenon that the sign of the determinant is independent of the policy coeÆcient �y, so

only the ination coeÆcient �� has a bearing on it.8 On this basis we arrive at Proposition 3.

8�y has not been made explicit in eq. (27) for the determinant, but it is present in the derivatives h� and hb
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Proposition 3. Suppose Assumptions 1, 2, and 3a are satis�ed. Then the following

holds for the dynamic process (18), (24).

(a) If �� > 0, there exists a benchmark value �s
�
> 0 such that �� < �s

�
implies

instability of the steady state for all values of �y � 0, whereas �� > �s� implies local

asymptotic stability for all values of �y � 0.

(b) If �o < 0, �� < 0, the steady state is unstable for all nonnegative values of ��

and �y.

The main result is that the monetary policy rule (1) can turn out to be completely unable

to stabilize the local dynamics, although the bond dynamics has a negative feedback on itself

(@ _b=@b < 0) and the central bank, by setting �� suÆciently high, achieves a negative feedback of

ination on itself (@ _�=@� < 0). Hence, it is the interaction between the ination dynamics, that

is, the interest rate{ination{output nexus, and the consequences of monetary and �scal policy

in the �nancial sector, that is responsible for the instability of the long-run equilibrium. The

feedbacks here involved are quite complex, which is also reected in the irritating terms de�ned in

(28). While this is an interesting theoretical �nding, one might nevertheless question the practical

relevance of the instability result, in the sense that only special and not too plausible sets of

numerical parameters would actually produce it. This issue is taken up in the next section.

Another property of the model is that only the ination targeting coeÆcient �� can stabilize

the economy, whereas output targeting via the coeÆcient �y has no e�ect in this respect. This

is somewhat surprising, just when he have pointed out the complex interactions in the model. In

addition, there is a general tendency that �o is negative and that the value of �� at which, with

�� > 0, the determinant of J becomes positive exceeds the value �c
�
of Proposition 2. This means

it is not suÆcient for the central bank to accomplish negative reactions of output to an increase

in ination, y� < 0, targeting of ination must be stronger to also take account of the e�ects from

the induced bond dynamics. However, rather than dwell into the troublesome algebraic details

for this result to come about, we leave it to the next section's numerical investigations.

It is furthermore worth mentioning that the sign of det J in (29) remains also una�ected by

�scal policy in the form of the countercyclical expenditure coeÆcient y. On the other hand, the

coeÆcient does have some inuence on the trace of J via the partial derivative y� in j11; see eqs

(19) and (20). Since, however, this e�ect is not very strong, it can be said that the strength of

the government's expenditure policy has practically no bearing on the stability question; certainly

not if both �o and �� are negative.

entering A� and Ab, respectively. It is thus not obvious that �y eventually cancels out in �o + ����.
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Note �nally that if y� < 0 and also traceJ < 0, but �� not high enough to stabilize the

steady state, instability will be of the saddle point type. Nevertheless, as the model is constructed

there is no scope for the rate of ination to jump on the stable branch of the saddle point dynamics.

6 Setting up a baseline scenario

In this section we propose a scenario of numerical parameter values, which can then be used to get

a feel for the algebraic expressions that entered the stability proposition in the previous section,

and to inquire into the system's medium-run dynamics. Beginning with the equilibrium rates of

interest, ination, and real growth, they may be set at

io = 4:5 % �o = 2 % go = 3 % (30)

2 per cent is the usual level for the target rate of ination, while the bond rate is above the

4 per cent equilibrium value of the federal funds rate in Taylor's original formula (Taylor, 1993,

p. 202). With a view to the later results it is, however, only a little bit higher. (30) clearly respects

Assumption 1.

Next, consider the steady state ratios to output of money, bonds, and government expen-

diture as they result from US data. We choose M=pY = 0:15 (see, for example, the diagram in

Blanchard, 2000, p. 63), B=pY = 0:40 (cf. Blanchard, 2000, p. 524, quoting from OECD Economic

Outlook), G=Y = 0:20 (cf. Table 1 in Alesina, 2000, p. 7). Furthermore, adopting the numbers

for the reserve requirement ratio (0.10) and the proportion in which people hold money in cur-

rency (0.40) that are mentioned in Blanchard (2000, pp. 69, 71), and computing the corresponding

money multiplier (which amounts to 2.17; ibid., p. 73), we work with � = 0:46.

To relate M , B, G to the capital stock rather than output, we also need to have an idea

about the output-capital ratio (though y nowhere shows up in the stability analysis itself). Here

we make use of the capital stock series that can be extracted from the database provided by Ray

Fair on his homepage 9 and set yo = 0:90. Decomposing the ratio of high-powered money as

h = H=pK = � (M=pY ) (pY=pK), and similarly so for the bond ratio b = B=pK and the ratio

k = G=Y when output is on its trend path (Y = Y o = yoK), we so far have:

yo = 0:90 k = 0:18 � = 0:46 ho = 0:0621 bo = 0:360 fo
m

= 0:2727 (31)

The equilibrium proportion of the money holdings in (6) derives, of course, from fm = M=(M+

B) = (M=pY ) = [(M=pY ) + (B=pY )]. The reason for invoking k, although it plays no role either

9The ULR is http://fairmodel.econ.yale.edu.
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in the stability analysis, is that it serves us to compute the tax rate � that, given the steady state

values already determined, is consistent with _b = 0. Equating the right-hand side of (12) to zero

and solving it for � yields (omitting the steady state indication)

� = [ k + ib� (h+b)(�+g) ] = (y + ib) = 19:11% (32)

This �gure is close to the actual share of the government's total revenues to GDP (cf. Alesina,

2000, Table 2 on p. 8, which is quoted from the Congressional Budget OÆce), just as it should be.

We can thus turn to the reaction coeÆcients. The �rst one is the expenditure coeÆcient y

of the `automatic stabilizer' in the government budget restraint. An orientation mark is provided

by the rule of thumb that a 1% decrease in output leads to an increase in the de�cit of 0.5% of

GDP.10 As the direct e�ect of output on the de�cit is given by �(y + �)Y and the tax rate � is

approximately 20%, a reasonable value for y is y = 0:30.

The slope f 0
�
of the accelerationist Phillips curve (4) is determined as follows. Referring

to the countercyclical variations of the price level around a Hodrick-Prescott trend, to capacity

utilization u (which uctuates around unity), and to the empirical standard deviations �u and �p

of these time series, Franke (2001) argues for a ratio �p=�u = 0:50 as a stylized fact of the business

cycle. Countercyclical movements of the price level are generated by a di�erential equation _� =

~��(u � 1). Simulating it under exogenous regular sine wave oscillations of u, the desired ratio of

0.50 is brought about by ~�� = 0:45. Since u = y=yo, the linear speci�cation _� = ��(y� yo) of (4)

is just a rescaling of the former equation, with �� = ~��=y
o. These relationships motivate us to

set f 0� = �� = ~��=y
o = 0:45=0:90 = 0:50.

To infer the derivative fmi of money demand with respect to changes in the rate of interest,

we make reference to the interest elasticity �mi = (@Md=@i) = (M=i). In this way, fmi = �mi f
o

m
= io.

Going back to the material discussed in Goldfeld (1976) and the short compilation in Boorman

(1976, pp. 328{335), we decide on �mi = �0:20, so that fmi = �1:21. As has been noted above

with respect to eq. (29), the reactions of Md to changes in economic activity, fmy, are completely

missing in the determinant of J . Because they only have a minor, almost negligible, bearing on

the trace via the partial derivative hb in entry j22, we may just as well put fmy = 0.

A familiar order of magnitude for the marginal propensity to consume is cy � 0:70. Re-

garding eq. (14), this intuition squares quite well with regressions of trend deviations of C=K on

trend deviations of Y=K. Employing the Hodrick-Prescott �lter, one obtains a slope coeÆcient

�c = 0:542 over the sample period 1961 { 91.11 Since the interest payments are only a small part of

10cf. Blanchard (2000, p. 526). In his regressions, Taylor (2000b, pp. 34�) computes somewhat lower numbers.
11Slightly higher values of �c, however, would allow the time series �c Y=K to better trace out the turning points

of C=K.
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total income, the estimate would not be much a�ected if iB=pK were included in the regression.

We may thus assume cy(1��) = �c and, taking the tax rate � = 19:11% from (32) into account,

settle on cy = 0:67.

A clue to setting the responsiveness of investment f 0
g
to variations of the real interest rate

can be obtained from the literature. For example, Ball (1997, pp. 3 and 5) in his discrete-

time annual model works with the dynamic IS equation xt+1 = 0:80xt � 1:00 (it � �t) + error

term, where x denotes the output gap (and the coeÆcients are justi�ed by reference to further

literature). The corresponding static relationship would be (1 � 0:80)x = �1:00 (i � �), so that

a one-point rise in the interest rate diminishes the output gap by 1.25 per cent. The outcome of

the estimates employed by Rudebusch and Svensson (1999, pp. 207f) in their quarterly model is

similar. They get xt+1 = 1:16xt � 0:25xt�1 � 0:10 (it ��t) + error term (the rates of interest and

ination are measured at annual rates). The multiplier of the real interest rate is here computed

as �0:10=(1 � 1:16 + 0:25) = �1:11.

To relate these �ndings to the present framework, it does not suÆce to note the strong

correlation between the output gap and the output-capital ratio, but the uctuations have also to

be compared in size. If both y = Y=K and lnY are detrended by the usual Hodrick-Prescott �lter,

then over the period 1961 { 91 the output gap exhibits a standard deviation of 1.81 percentage

points, while the standard deviation of the output-capital ratio is 1.85. The numerical reactions

of x and y to changes in the interest rate can therefore be directly compared with each other.12

The multipliers yi := @y=@i mentioned above do not yet invoke the Taylor rule. The

same kind of multiplier as it results from the IS equation (17) is given by yi = �Ag=Ac =

�[ jf 0
g
j � cy(1��)b] = [1� cy(1��)+ y]. Adopting for cy; �; b; y the values already determined, we

look for a value f 0
g
such that yi lies between �1:11 and �1:25. This leads us to set f 0

g
= �1:10,

which brings about yi = �1:19. For a better overview, this and the other coeÆcients are collected

in an extra equation:

y = 0:30 fmy = 0:00 fmi = �1:21 (�mi = �0:20)

f 0
�

= 0:50 cy = 0:67 f 0
g

= �1:10
(33)

It is immediately seen that the coeÆcients f 0g and cy satisfy Assumption 2. Furthermore,

with the resulting Ag = 0:905 in (19), the right-hand sides of Assumptions 3a and 3b are as high

as 139 and 20, respectively. That is, the money demand function with its interest coeÆcient fmi

has no trouble at all to pass the required inequalities. It is also clear that Assumptions 2 and 3

12Going into the details of footnote 6 in Rudebusch and Svensson (1999, p. 207), it might be inferred that the

measure of the output gap underlying their regressions displays somewhat wider oscillations. This would mean that

the coeÆcient f 0

g established in a moment may also be taken a bit higher.
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tolerate a great variety of deviations from eqs (31) and (33).

Given that the interest rate variations of the central bank take e�ect via the investment

function, the investment reaction coeÆcient f 0g is of particular importance. Our choice of f 0g =

�1:10 has relied on translating the core of a dynamic IS relationship into a static IS equation. The

consequences when the output solutions to the latter are fed into the accelerationist Phillips curve

with f 0� = 0:50 may thus not be exactly clear. At the end of this section we therefore evaluate

this part of our numerical scenario by �xing the bond ratio, simulating the convergence of the

(linearized) partial system _� = f�[y(�; b
o)�yo], and comparing it to the quantitative adjustments

as they result from another system studied in the literature.

Figure 1: Convergence paths after shock to ination �.

Note: `y-gap' denotes the output gap (in percentage points). Bold lines are the time paths of

system _� = f�[y(�; b
o) � y

o], thin lines are those of the Rudebusch-Svensson model. � = 0:5

(and 2:0) indicates �y = �� = 0:5 (and 2.0, respectively).

To begin with the linear di�erential equation _� = f 0� �[y(�; b
o)�yo], let us �rst adopt Taylor's

(1993, p. 202) common reference values �y = �� = 0:50 in the monetary policy function. With

the above setting of, especially, f 0g and cy one computes y� = �0:2126 in eq. (20). This gives rise

to an eigen-value � = f 0� y� = �0:50 � 0:2126 = �0:1063, which indicates a fairly slow convergence

speed. The bold line in the upper-left panel of Figure 1 illustrates the long adjustment time for

� after a one-point shock to the rate of ination at time t = 0 (time on the horizontal axis is

measured in years). The lower-left panel shows the time path of the corresponding output gap

[y(�; bo)�yo]=yo. In contrast, the thin lines in the two panels are the ination rate and the output

gap that are obtained, after the same shock, from the quarterly model estimated by Rudebusch
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and Svensson (1999) mentioned above, which exhibits four lags of the ination rate in the Phillips

curve and two lags of the output gap in the IS equation (the numerical equations are reproduced

in the appendix). Here convergence of the ination rate is somewhat faster, though it still takes

a veritable lapse of time. On the other hand, after a transitional phase of about three years the

time path of the output gap is remarkably close to that of our model.

One result of the Rudebusch-Svensson paper is that a Taylor-type interest rate reaction

function like eq. (1) performs nearly as well in minimizing a central bank's loss function as more

ambitious rules (cf. ibid., pp. 227�). This, however, requires considerably higher coeÆcients �y

and ��.
13 We thus did a second simulation with both �y and �� raised to a value of 2:00. As is seen

in the two right-hand panels of Figure 1, these coeÆcients speed up convergence. Moreover, apart

from the �rst few years, our di�erential equation and the Rudebusch-Svensson model generate very

similar convergence paths. These sketches may serve to gain more con�dence in the numerical

parameters underlying our IS equation and the Phillips curve.

7 Numerical analysis

On the basis of the numerical scenario (30) { (33), we can now assess the scope for local stability

or instability of system (18), (24) in greater detail. First, the condition for the derivative y� to

become negative is not very restrictive; �c
� from Proposition 2 is given by 0.216. So, in words, the

policy rule induces a decline in output in response to an increase in the rate of ination as soon

as the ination targeting coeÆcient �� exceeds �c
�
= 0:216. By the same token, entry j11 in the

Jacobian will be negative if �� > 0:216.

Turning to the trace of J , consider next the second diagonal entry j22. At the critical value

�� = �c
�
, j22 is already negative | for all nonnegative values of the other policy parameter �y.

For example, j22 increases from �0:0261 to �0:0031 as �y rises from to 0 to 10 (j22 still remains

below zero at �y = 100). The reason for j22 �= Ay yb +Ab < 0 is that though Ay (de�ned in (25))

changes from negative to positive as �y rises, the composite term Ayyb, which thus turns positive,

too (since yb > 0 from (20)), is always dominated by the expression Ab, which is negative (cf. (25)

and the remark on Assumption 3b).14

Since, as we may just claim for brevity, things for j22 are not very di�erent for other values

13Their exact size depends on the particular weights in the loss function for the variability of ination, output,

and changes in the interest rate.
14In �ner detail, Ab increases marginally from �0:0222 for �y = 0 to �0:0218 when �y = 10. At the same time,

the increase of Ay from �0:260 to 7:295 is mainly o�set by the corresponding decrease of yb from 0:0322 to 0:0025,

such that Ayyb increases relatively weakly, from �0:0084 over 0:0024 (at �y = 0:50) to 0:0181.
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of ��, a negative trace of J may be taken for granted for at least all �� � �c
�
= 0:216. So we have

to study the determinant of J , that is, the expression �o + ���� from eq. (29). Numerically, one

here computes �o = �0:0016, �� = 0:0012 (rounded). detJ is therefore an increasing function of

��, which is negative at �� = 0 and becomes positive when �� = ��o=�� = 1:314.

In conclusion, the central bank succeeds in stabilizing the steady state equilibrium, if it sets

�� > 1:314. Notice that �s� = 1:314 > 0:216 = �c�. This means it is not suÆcient for the policy

rule to take care of y� < 0, ination targeting must rather be stronger. In fact, in the present

example the central bank must raise �� above Taylor's reference value of �� = 0:50.

Before proceeding with a sensitivity analysis of this kind of result, we notice that the critical

value �c� = cy(1��)b
o=Ag does not change much, if at all, under a very wide range of parameter

variations. It, moreover, turns out that �o remains negative. Consequently, �� > 0 is required for

the determinant in (29) to become positive, and for the steady state to become locally stable. If

�� > 0, then, except for extremely large deviations of some of the parameters from the scenario

(30) { (33), the above phenomenon is maintained. We may thus point out:

Observation 1. The borderline value �s
�
(if it exists), from when on local stability

prevails, tends to exceed the value �c� from Proposition 2, from when on the output

reactions y� are negative. That is, �� > �c� is a necessary, but not a suÆcient, con-

dition for the stability of the steady state position.

Because of its central role for stability, let us have a closer look at the `slope' coeÆcient �� of

the determinant, which perhaps appears to be somewhat low. By (28), �� is the di�erence between

two positive terms ��g := AgA1 = 0:0201 and ��c := cy(1��)i
o [(1��)bo+(ho+bo) jf 0

g
j+A2] = 0:0189

(rounded). There should be several coeÆcients or steady state values a modest change of which

yields ��g���c < 0. One example is a reduction of the investment reaction intensity. If it happens

to be f 0
g
= �0:90 (instead of �1:10), Ag in (19) decreases and one computes ��g = AgA1 = 0:0157.

��c decreases, too, but less so; ��c = 0:0168. The outcome is �� = ��g���c = �0:0012. Since the

`intercept' term �o is not a�ected by variations of f 0g, det J as determined in (29) is negative for all

�� � 0. Under these circumstances, the central bank is no longer able to accomplish convergence

toward the steady state.

A stronger responsiveness of investment, on the other hand, contributes to a stabilization

of the economy. Thus, consider f 0g = �1:30. Here ��g increases more than ��c: ��g = 0:0250 and

��c = 0:0209, so that the di�erence �� rises from the previous 0:0012 to 0:0036. �o remaining

unchanged, the ratio �s
�
= ��o=�� declines by a factor of almost 3, down to �s

�
= 0:445. This

threshold is now slightly below Taylor's reference value of 0.50.
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Already with the information given, it can be critically asked for the speed of convergence or

divergence. Before we turn to this issue, we investigate the stabilizing or destabilizing implications

of other ceteris paribus parameter variations. A �rst set of reaction coeÆcients is presented in

Figure 2. The upper-left panel extends the selective calculations for the investment responsiveness

f 0
g
. To each value f 0

g
, the bold line indicates the corresponding value of the ination targeting

coeÆcient �s�, if it exists, that ensures local stability for �� > �s�. Hence the dotted area is the set

of all pairs (jf 0gj; ��) that, given the other numerical parameters in (30) { (33), render the steady

state locally stable. As �s
�
decreases with jf 0

g
j rising, a higher responsiveness of investment to

changes in the real interest rate is certainly stabilizing, while at a responsiveness not much less

than the baseline value f 0g = �1:10, the economy is always unstable.

Figure 2: Local stability under variations of jf 0gj, cy, j�mij, �.

Note: Other parameters as set in scenario (30) { (33). Points in dotted area imply stability

(instability otherwise), cross indicates �
s

�
when all parameters are taken from (30) { (33).

Once the possibility of total instability is recognized, the stabilizing potential of a higher

investment responsiveness might seem intuitively clear, because the same change in the interest

rate has a stronger impact on aggregate output (in the �rst round, so to speak) and on the adjust-

ments of the rate of ination (in the second round). However, given the complicated expressions

in eq. (29) for det J , which reect the interaction of the ination and bond dynamics, there are
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additional mechanisms at work that are eventually responsible for the stabilizing e�ects of jf 0
g
j.

Another parameter that directly inuences the reactions of aggregate output in response

to changes in the real interest rate is the marginal propensity to consume, cy. Since a higher

propensity increases the Keynesian multiplier, cy might be expected to have similar e�ects as jf 0
g
j.

The upper-right panel of Figure 2 reveals that this presumption is false: higher values of cy are

destabilizing rather than stabilizing. Furthermore, already at a familiar propensity like cy = 0:70

there are no more realistic coeÆcients �� by which the central bank could bring about stability

(�s
�
= 9:16 in this case).

The lower-left panel of Figure 2 demonstrates that a higher (modulus of the) interest elas-

ticity of money demand, �mi, is destabilizing. In comparison to the former two examples, however,

the e�ect is quite moderate. The reason is that in the Jacobian matrix, the coeÆcient fmi that

corresponds to �mi only shows up in the partial derivatives h� and hb, whose impact on the entries

j21 and j22 (via Ay and A�) proves to be relatively minor.15

According to the fourth panel of Figure 2, the economy is destabilized by a higher money

multiplier, i.e., a lower value of �. This observation could have some signi�cance for a more explicit

modelling of the �nancial sector. Recall that setting the money multiplier at 1=� = 2:17 was based

on the standard formula that includes the reserve requirement ratio and the proportion in which

people hold money in currency. If, for simplicity, the modelling of a banking sector disregards

money holdings in currency, the money multiplier would directly be given by the reciprocal of the

reserve requirement ratio, so that � � 0:10. At least in the present limited framework, this value

would be much too low to possibly give rise to stability.

In a second set of experiments we study ceteris paribus variations of steady state magnitudes.

To begin with the upper-left panel in Figure 3, which considers government debt, it is seen

that higher indebtedness endangers stability. For better comparability, reference is made to the

equilibrium ratio of bonds to nominal output rather than to the bonds-capital ratio bo. It can

thus be said that certainly total instability would prevail if government debt were at a European

scale, with B=pY being at a 50 or 60 per cent level.

Regarding the other �nancial asset, the ratio of money holdings M=pY = 0:15 can perhaps

be deemed to be somewhat low. The second panel in the upper-right corner of Figure 3 shows

that higher ratios would be no problem; they would, mildly, enhance the stability prospects of the

economy.

The equilibrium rate of interest of the baseline scenario was set quite arbitrarily at i = 4:5%.

The lower-left panel makes makes us aware that this choice is not innocent: a few basis points

15For example, reducing the interest elasticity to j�mij = 0:10 only changes j21 from 0.2064 to 0.2187 and j22

from �0:0162 to �0:0186.
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Figure 3: Local stability under variations of (B=pY )o, (M=pY )o, io, �o.

more destabilize the economy completely. Incidentally, the problem is not Assumption 1, which

remains satis�ed for i � 6:2%. Referring to the terms ��g and ��c that were introduced above,

a higher interest rate (io = 4:7%, say) rather decreases ��g (from 0.0201 to 0.0187) and increases

��c (from 0,0189 to 0.0197), such that �� = ��g � ��c quickly becomes negative (the `intercept'

�o raises slightly but stays below zero).

Lastly, the lower-right panel of Figure 3 could be viewed against recent debates on whether

the central bank may have a target rate of ination of less than 2%. The main apprehension is

here the risk of a `liquidity trap', when at low ination or even deation the central bank, owing to

the nonnegativity constraint on i, can no longer suÆciently reduce the real rate of interest. These

problems are, of course, completely absent in the local analysis of the present economy. The panel

shows that targeting for lower ination can also destabilize the economy in very di�erent ways.

The �ndings of this numerical stability analysis may be briey summarized in a second

`observation'.

Observation 2. With respect to the local stability of the steady state position,

the following parameter changes are stabilizing: a higher responsiveness of investment

to interest rate variations, jf 0gj; a lower propensity to consume, cy; a lower interest

22



elasticity (in absolute value) of money demand, j�mij; a lower money multiplier, i.e.,

higher values of �. As for the steady state magnitudes, stabilizing are also: a lower

ratio of government debt bo or (B=pY )o; a higher money-output ratio (M=pY )o; a

lower rate of interest io; a higher target rate of ination �o.

Local stability as well as instability can be brought about by fairly reasonable sets of

parameter values.

The analysis so far was concerned with checking the stability conditions, whether local

stability prevails or not. These results should, however, be complemented by an investigation of the

speed of convergence or divergence. As a matter of fact, it might be suspected that the adjustments

are rather slow. One easily infers from the above numerical examples that detJ �= �o + ���� is

very close to zero, which means that likewise one of the eigen-values of the Jacobian, designate it

�1, is nearly zero. In addition, the second eigen-value �2 always falls short of this one, so that, after

possibly a phase of transition, the speed of convergence or divergence is eventually determined by

�1. To take up the example with the three investment reaction coeÆcients f 0g = �0:90, �1:10,

�1:30, and setting �� as high as �� = 2, the leading eigen-value is computed as �1 = 0:0027,

�0:0004, �0:0023, respectively (while �y discernibly changes the second-eigen-value, it has no

e�ect on the �rst four signi�cant digits of �1). A similar order of magnitude obtains for alternative

values of �� and also for quite di�erent values of the other parameters. It must therefore be

concluded that convergence of � and b toward the equilibrium, as well as divergence from it, takes

place at a speed that is far below any time scale worth thinking of.

We have thus to ask for the economy's dynamic behaviour in the medium-run. Consider to

this end the phase diagram in the (b; �)-plane of the linearized system (18), (24) in the upper-left

corner of Figure 4, which has the baseline scenario with the Taylor coeÆcients �y = �� = 0:50

underlying. As is already known, the steady state is still a saddle point at these values. The

unstable manifold is drawn as the solid thin line with the outward-pointing arrows, the dashed

thin line is the stable manifold given by the (translated) eigen-vector associated with the second

eigen-value �2.

The bold lines depict two trajectories that are initiated by a positive and negative shock

to the rate of ination in the equilibrium position. The trajectories run over 10 years, where the

arrow heads give the state of the economy after 5 years. It is thus seen that it takes more than

ten years to reach the unstable manifold. In the meantime, the trajectories are determined by

the second eigen-value, in the sense that the speed of change is basically given by �2 < 0, i.e. by

a factor e�2t, and (b; �) moves parallel to the corresponding eigen-vector. Consequently, after the

supply shock assumed, the rate of ination adjusts back toward its target level, while the bond
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Figure 4: Phase diagrams of the linearized system (18), (24).

Note: Bold lines are trajectories over 10 years (over 5 years at tip of arrow); solid (dashed)

thin lines are the paths given by the leading eigen-value �1 (by �2, respectively). � = 0:5 (2.0)

stands for �y = �� = 0:5 (2.0).

ratio begins to diverge from the steady state value. Over a reasonable span of time, this is what

characterizes the dynamics.

When, eventually, the system approaches the unstable eigen-vector and the eigen-value �1

takes over, the motions are so slow that hardly any signi�cant change is visible over the next

few decades. So, for all practical reasons, the solid thin line can be regarded as a continuum of

equilibria. Observe that even for larger deviations of b from bo, the corresponding `equilibrium'

rate of ination remains close to �o.

Things are essentially the same if �y and �� are raised to 2.0, which renders the steady

state stable. This situation is represented in the upper-right panel of Figure 4. The eigen-vectors

associated both with �1 and �2 change very little. Though in the long-run all trajectories (except

those starting on the dashed thin line) are attracted by the solid thin line, which then carries

the economy back to (bo; �o), these adjustments are again completed only over an extremely long

period of time. Practically this locus can again be viewed as an equilibrium set. Indeed the main

di�erence to the �rst panel is the more rapid convergence to this set.
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The lower two panels of Figure 4 are based on a higher equilibrium rate of interest, io = 5%,

which implies an unstable steady state for all ��. The dynamic features are nevertheless very

similar. For �y = �� = 2:0 the movements on the eigen-vector associated with �1 now point

outward, but this hardly matters because they are still so slow. Note also that the eigen-vectors

as well as the time paths are almost indistinguishable from those in the upper row of Figure 4.

We thus summarize:

Observation 3. The trajectories of system (18), (24) in the (b; �)-plane are attracted

by a set E, which can practically (i.e., over several decades) be regarded as a continuum

of equilibria. The values of the ination rate on this geometric locus are all close to

the target level �o.

The speed at which (b; �) approaches the set E is basically governed by the policy par-

ameter ��, where higher values of �� speed up convergence.

The dynamic features of the baseline scenario may �nally be illustrated by the time series

diagrams in Figure 5, where the bold lines depict the time paths obtained for �y = �� = 2:0. To

put them into perspective, the thin lines are the time series resulting from �y = �� = 0:5. They

show the same qualitative behaviour, though the adjustments are somewhat slower. So let us

consider the bold lines, which correspond to the trajectory in the upper half-plane of the upper-

right panel in Figure 4. They, in particular, demonstrate that all motions have nearly ceased

after 10 years (when the trajectory in Figure 4 has almost reached the quasi-equilibrium set E

given by the eigen-vector of �1). A comparison of the ination time series in Figure 5 with the

upper-right panel in Figure 1 shows that the two adjustment paths of � with the bond dynamics

frozen (in Figure 1) and integrated (in Figure 5) are virtually identical. The same holds true for

the output gaps, [y(�; b) � yo]=yo (not shown) vis-�a-vis [y(�; bo) � yo]=yo in Figure 1, since the

partial derivative yb = @y=@b are really small.

Figure 5 makes it once again clear that after the supply shock to the ination rate that

disturbs the economy from the steady state position, ination is led back to its target level,

whereas bonds persistently diverge. That is, the bond ratio settles on a seemingly new equilibrium

value, which is quite distinct from bo. To which one, it is easily conceivable, depends on the size

of the shock to �. Likewise, if another shock occurs to � in the course of its adjustment toward

�o, the bond ratio will converge to still another quasi-equilibrium level, depending also on the

speci�c value b has attained when the shock occurred. What has thus been briey described is

the phenomenon of hysteresis (\history matters"). Technically, near-hysteresis could have already

been inferred from recognizing the near-zero eigen-values of the Jacobian.
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Figure 5: Time series of baseline scenario simulations.

Note: Bold lines result from adopting �y = �� = 2:0, thin lines from �y = �� = 0:5.

The two panels on the right of Figure 5 demonstrate that what has been said about the bond

ratio similarly applies to the alternative �nancial asset, money, as well as to total wealth (within

our limited setting) M +B, both here related to nominal output.16 Interestingly, the shock to �

�rst diminishes the money-output ratio. In the sequel, M=pY rises and eventually overshoots the

steady state ratio, without returning to it. The same pattern is obtained for the sum of the two

assets, (M +B)=pY .

8 Conclusion

The present paper relates to the burgeoning literature that combines an interest rate reaction

function of the central bank with an IS equation and a Phillips curve relationship. For simplicity,

this approach disregards the dynamics of bonds and high-powered money that are implied by

this type of monetary policy, and possible feedbacks that may emanate from them. By contrast,

taking up the deterministic prototype model of Taylor (2000a, 2001) and Romer (2000) and

supposing in line with their background discussion that the interest rates are enforced by open

market operations, we have made the evolution of these �nancial assets explicit. A channel was

furthermore introduced through which bonds act on aggregate demand, the assumption being that

16The time path of M=pY is obtained from the decomposition M=pY = (H=�pK) (pK=pY ) = h=� y and the

linear approximation z = zo + z�(� � �o) + zb(b� bo), z = y; h.
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consumption depends on disposable income, and that the latter comprises the interest payments

on bonds.

The integration of these concepts into the Taylor-Romer framework gave rise to a two-

dimensional di�erential equations system. A �rst result of the subsequent local stability analysis

was the possibility of total instability. That is, whatever values for the ination and output

coeÆcients in the Taylor rule the central bank may adopt, the steady state position is always

unstable. The outcome is somewhat surprising since the (one-dimensional) Taylor-Romer model is

unambiguously stable, our innovation of the feedback of bonds on the demand side is minimal, and

also the auto-feedback of bonds themselves is a negative one. A careful numerical investigation

established that both stability and instability can be brought about by meaningful parameter

con�gurations.

A second main �nding of the numerical analysis was a near-zero eigen-value of the Jacobian

matrix, which in fact prevailed over all parameter variations considered. It is also the maximal

eigen-value, the other one being distinctly negative. So, in the medium-run, the trajectories are

attracted by a set which can be characterized as continuum of quasi-equilibria, since the motions

have then virtually ceased on it. Consequently, the dynamics can be said to exhibit (near-)

hysteresis.

Speci�cally, if the economy experiences a supply shock in the steady state position, the rate

of ination turns back toward its target level, at a speed roughly comparable with that in the

models alluded to above. Over the same time horizon, however, bonds and money diverge from

their steady state ratios. We take this behaviour as an indication that the neglect of possible

feedbacks of the �nancial assets on the real side of the economy (other than the interest payment

e�ects here considered) may not be fully consistent. Larger variations of the array of �nancial

assets are likely to a�ect other �nancial rates of return, in addition to the bond rate of interest,

and some of them, or wealth variables themselves, should �nally impact on aggregate demand.

Feedbacks from a �nancial sector modelled in greater detail may therefore not just be interesting,

they may also be important in assessing the virtues of (alternative) monetary policy rules.17

In conclusion, we may refer to the \Keynesian macroeconomics without the LM curve"

mentioned in the title of the paper and likewise to the more general (discrete-time and stochastic)

approach based on IS mechanisms, some Phillips curve and an interest rate reaction function.

When introducing money and bonds into this framework, the implicit question was for possible

destabilization e�ects. This question can now be answered at three di�erent levels. First, in the

long-run, the economy is not safe from instability, as there are realistic parameter scenarios of even

17Strictly speaking, the present assets are still a short-cut because the concept of the money multiplier usually

presupposes the existence of loans granted to the private sector by commercial banks.
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total instability. This long-run was, however, found to be unduly long. Second, with respect to the

medium-run and the usual key variables, convergence of output back toward normal and ination

back toward its target value is not essentially endangered by the present feedbacks from the bond

dynamics. Third, these adjustments imply larger deviations of bonds and money. From this

feature it can be suspected that also models with a richer �nancial sector will generate signi�cant

variations of the �nancial assets, which eventually should a�ect the rest of the economy. This

third level provides a �eld for future research concerning the eÆciency of monetary policy rules.

Appendix

To show y� = dy=d� < 0 in eq. (3), write j(y; �) for the right-hand side of (1) and de�ne the

function Fy = Fy(y; �) := y�fy[j(y; �)��], which has partial derivatives @Fy=@y = 1��yf
0

y
> 0,

@Fy=@� = ���f
0

y
> 0. Applying the Implicit Function Theorem to the equation Fy(y; �) = 0

yields dy=d� = � (@Fy=@�) = (@Fy=@y) < 0.

The formulae for the partial derivatives in (8) are most easily derived by applying the

Implicit Function Theorem to eq. (7). Omitting here and in the following the superscript `o' that

indicates the steady state values, this yields,

fhi =
(h+ �b) fmi

1� fm
fhy =

(h+ �b) fmy

1� fm
fhb =

�fm

1� fm

To obtain the partial derivatives of the IS output-capital ratio y = y(�; b) from eq. (17), compute

the partial derivatives of the excess demand function Ey,

Eyy = �Ac � �yAg Ey� = cy (1��) b� ��Ag Eyb = cy (1��) i

and get y� = �Ey�=Eyy, yb = �Eyb=Eyy from, again, the Implicit Function Theorem. To verify

that i� = 1 + �� + �yy� > 1 in (22), observe that �� + �y y� > �� + �y��Ag=(Ac + �yAg) >

�� � �� = 0.

The partial derivatives of the function h = h(�; b) in (23) are

h� = fhi i� + fhy y�

= (h+ �b) [(1+��)fmi + (fmy + �yfmi)y�] = (1�fm)

hb = fhi ib + fhy yb + fhb

= [(h+ �b) (fmy + �yfmi)yb + �fm] = (1�fm)

To determine the sign of hb and 1+hb, abbreviate Ai := cy(1��)i and consider the expression

a = a(�y) := �yyb = �yAi = (Ac+�yAg). The function a(�) is increasing with an upper limit Ai=Ag

as �y !1. With fmy � 0 we then have 1+hb � [1� fm+ (h+�b)a(�y)fmi+�fm] = (1�fm), and
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the term is square brackets is positive if jfmij < [1� (1��)fm] = (h+�b)a(�y). The right-hand side

of this inequality is decreasing in �y, and for �y � 0 is larger than [1� (1��)fm]Ag = (h+�b)Ai.

This proves 1+hb > 0 if Assumption 3a is ful�lled.

Similarly, hb > 0 if (h+�b)a(�y)fmi + �fm > 0, or jfmij < �fm = (h+�b)a(�y), which is

satis�ed if jfmij < �fmAg = (h+�b)Ai, the expression in Assumption 3b.

To verify (29) for detJ , we take up eq. (27) and prove that jEyy j (y�Ab�ybA�) = �o+����.

De�ne to this end Ai� := (1��)i� (�+g) and Acg := cy(1��)b���Ag. Then, with eqs (20), (25)

and Eyy as determined above,

jEyyj y� Ab = Acg [Ai� � hb(�+g)]

= Acg Ai� � Acg �fm (�+g) = (1�fm)

� Acg (h+�b) (fmy + �yfmi) cy(1��)i (�+g) = (1�fm)jEyy j

= Acg [Ai� � �fm (�+g) = (1�fm) ]

�

Acg (h+�b) (fmy + �yfmi) cy(1��)i (�+g)

(1�fm) jEyyj

� jEyyj y� Ab = � cy(1��)i [ (1+��)(1��)b + (h+b)(�� jf
0

g
j � 1)

+ (h+�b)(1+��)jfmij(�+g) = (1�fm)

� (h+�b) (fmy + �yfmi)Acg (�+g) = (1�fm) jEyy j ]

= � cy(1��)i f��b� h+ �� [(1��)b + (h+b)jf 0gj ]

+ (h+�b)(�+g)jfmij = (1�fm) + �� (h+�b)(�+g)jfmij = (1�fm) g

+
cy(1��)i (h+�b) (fmy + �yfmi)Acg (�+g)

(1�fm) jEyyj

The two fractions cancel out. Then, referring to (26), note that Ai� ��fm(�+g)=(1�fm) = �A1.

We thus remain with

jEyyj (y� Ab � ybA�) = � cy(1��)bA1 + �� AgA1 + cy(1��)i (h + �b�A2)

� �� cy(1��)i [(1��)b + (h+b)jf 0
g
j+A2]

= � cy(1��) [A1b � i (h+ �b�A2)]

+ �� fAgA1 � cy(1��)i [(1��)b + (h+b)jf 0gj+A2] g

= �o + �� ��

Finally, to turn to the Rudebusch-Svensson (1999) model mentioned at the end of Section

6, its quarterly equations for the ination rate and the output gap read, in their deterministic

part (ibid, p. 208):

�t+1 = 0:70�t � 0:10�t�1 + 0:28�t�2 + 0:12�t�3 + 0:14 yt

yt+1 = 1:16 yt � 0:25 yt�1 � 0:10 (�it � ��t)
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where the bar over i and � indicates backward-looking four-quarter averages, �it = (1=4)
P

3
k=0 it�k

(i and � are measured at annual rates). The coeÆcients result from an estimation over the sample

period 1961:1 { 96:2 (the standard errors are reported as 1.009 for � and 0.819 for y, the Durbin-

Watson statistic is in both cases close to 2).
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