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Abstract

There is a long tradition which maintains that liquidity and credit impact aggregate

economic activity. Recent events seem to give fresh support to this line of research.

Economic theory on credit and �nancial markets is in search of mechanisms that might

explain the strong propagation e�ect of real, monetary and �nancial shocks. We employ

a simple macrodynamic model of threshold and regime change type to provide such a

propagation mechanism. We estimate the model by transforming our continuous time

form into an estimable discrete time form using the Euler approximation and a method

proposed by Ozaki. We also approximate the model by employing the discrete time

Smooth Transition Regression (STR) methodology. Our estimation procedures are

applied to U.S. time series data. We �nd essential nonlinearities and regime changes

in the data. The change of the dynamic properties of the estimated model occur as

the variables pass through certain thresholds. Locally unstable but globally bounded

uctuations as well as asymmetric responses to shocks are detected.

Keywords: regime change models, Smooth Transition Regression models, �nancial-

real interaction, thresholds, asymmetry in business cycles.
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Con�dence: "As credit by growing makes itself grow, so when distrust has taken the place of con�dence,

failure and panic breed panic and failure." (Marshall, 1879);

Financial practices: "Success breeds a disregard of the possibility of failures. The absence of serious

�nancial diÆculties over substantial period... leads to a euphoric economy..." (Minsky, 1986);

Perception of bankruptcy risk: "... the economy wide level of bankruptcy risk plays a crucial role in the

propagation of the recession." (Bernanke, 1981)

1 Introduction

There is a long tradition which maintains that liquidity and credit impact economic activity.

Recent events have given fresh support of this line of reasoning. Economic theory attempts

now to study mechanisms that explain how real or �nancial shocks are magni�ed through

the �nancial sector possibly leading to large output losses. In the search for such mechanisms

liquidity of economic agents and the credit channel have been viewed as central. There is,

of course, a long tradition of older economic literature that shows that liquidity and credit

accelerates downswings.1 In recent times various lines of work have embellished this basic

theme.

In the tradition of Keynesian theory the role of liquidity and credit has been studied in

the context of IS-LM models.2 Since in those models credit is diÆculty to consider there,

usually, the link between liquidity and output is stressed. Shinasi (1981), for example, linked

liquidity and output in a nonlinear IS-LM model. Important further recent contributions

along this line of research are made in papers by Day and Shafer (1985) and Day and Lin

(1991).3 A model of a similar type can be found in Foley (1987) and Flaschel, Franke and

Semmler (1997, ch. 12).

In the context of IS-LM models it has been studied how monetary policy has an impact

on liquidity, credit conditions and spending of economic agents; see for example, the work

by Eckstein et al. (1974, 1986). Often with respect to the �nancial history of the U.S it is

shown that there are, for example, certain periods where monetary contractions have led to

a credit crunch and thus have worsened the borrowing conditions for households and �rms.

The propagation e�ect of shocks has also been studied in the recent theory of imperfect

capital markets. Here, from a microeconomic perspective, the link between credit and output

has been considered in explicit models of borrowing and lending. The propagation e�ect in

this recent approach is described by the so called �nancial accelerator.4 Central for this view

are credit dependent agents (�rms, households) where by the ease and tightness of credit as

well as credit cost are linked to net worth of economic agents. In this model variant it is

then described how swings in the balance sheet variables of economic agents, for example

1An excellent survey of earlier theories on credit and output is given in Boyd and Blatt (1988). The work

of Minsky (1975) has continued this threoretical tradition.
2Di�erent variants of this type of models, however, for a growing economy are discussed in Flaschel,

Franke and Semmler (1997), ch 4.
3In these papers transaction and speculative demand for liquidity is endogenous whereas money supply

is exogenously given. An unstable accelerator e�ect destabilizes the system in the vicinity of the equilibrium

and the instability is contained by a countercyclical variation in liquidity or interest rate
4The term �nancial accelerator has �rst been introduced by Bernanke and Gertler (1989).
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net worth, a�ect credit ows and credit cost and thus magnify spending and output when

shocks occur.5

Empirically, the link between liquidity, credit and output has been studied, for example,

in papers by Eckstein et al. (1974, 1986); and also by Friedman (1983) and Blinder (1989).

Empirical studies, from a micro perspective, can be found in Gertler, et al (1991) and from a

macro perspective in Franke and Semmler (1995). Studying the link between liquidity, credit

and output with econometric time series methods has turned out to be rather diÆcult.6

There are complicated lead and lag patterns in the credit output interaction and thus it is

not easily possible to identify this link in the data. There is, however, plenty of indirect

empirical evidence that appears to support the covariation of liquidity and credit with the

business cycle; for example, it is often found that the (marginal) cost of external funds moves

counter-cyclically7 and that availability of funds moves pro-cyclically.8

There are, of course, also numerous studies that consider not the short-run relationship

between liquidity, credit and output but their long-run relationship. In models such as in

Semmler and Sieveking (2000), credit constraints are not binding in the short-run but rather

in the long-run when the intertemporal budget constraint of an agent becomes binding.

Frequently, however, the temporary shortage of liquidity and credit are suÆcient to disrupt

economic activity and to lead to bankruptcy of the economic agents. It is this short-run

relationship that the current study is concerned with.9

A motivation for such a study we employ, a nonlinear model of the interaction between

liquidity, credit and output developed by Semmler and Sieveking (1993). This model gives

some predictions of the behavior of liquidity and credit as output varies over the business

cycle. The model allows for regime changes in the relationship between the variables as the

variables pass through certain thresholds.

In order to undertake an empirical estimation of such a model we suggest some econo-

metric methods that are suitable to empirically study regime changes.10 Since our suggested

model is written in continuous time we will �rst undertake a direct test of the model whereby

5In Townsend (1976) and Gale and Hellwig (1985), for example, costly state veri�cation of a borrower's

investment project results in a greater marginal cost of funds. Costly state veri�cation implies that a smaller

collateral on the borrower's side increases the default risk and thus borrowing cost. Along those lines it is

then posited that credit may set in motion a strong propagation mechanism.
6In earlier times the e�ects of monetary shocks were discussed in VAR type of money-output models with

rather inconclusive results. A recent evaluation of the success and failure of those VAR studies is given in

Bernanke and Blinder (1992).
7Those propositions have been tested, mostly in a linear setting, by Gertler et al. (1991), and Franke

and Semmler (1995) where the cost of funds is measured by the spread between the commercial paper rate

and the interest rate on treasury bonds. They demonstrate that a counter-cyclical spread can indeed be

observed.
8Pro-cyclical credit ows are documented in Friedman (1983), and Blinder (1989). Blinder, by decom-

posing credit market debt, �nds that private credit market debt, in particular trade credit - moves strongly

pro-cyclically.
9This point is often stressed in recent work on the Asian �nancial crisis 1997-1998, see Chang and Velasco

(1999).
10Such type of models have arisen in the literature due to (non-convex) lumpy adjustment costs. Typical

examples are the S-s inventory, holding, money holding and price adjustment models (Blanchard and Fischer

1989, ch. 8), and employment models with lumpy adjustment costs (Caballero et al. 1995). For more details,

see Flaschel, Franke and Semmler (1997).
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the continuous time form is discretized through the Euler procedure and by a method re-

cently proposed by Ozaki (1985, 1994). In both variants the lag structure of the model is

constrained. Then we also employ an indirect method such as the recently developed Smooth

Transition Regression (STR) model11 that is well suited to capture regime changes. In the

latter version, however, the lag structure will be unrestricted.

The remainder of the paper is organized as follows. In Section 2 we briey lay out the

model. Section 3 presents the empirical analysis and Section 4 concludes.

2 A Model with Regime Changes

The model by Semmler and Sieveking (1993) is grounded in an IS-LM version for a growing

economy and links liquidity, credit and output. It assumes that liquidity of economic agents

is enhanced and credit conditions improved when the variables pass through certain thresh-

olds.12 The agents in this model may simply be represented by their balance sheets. When

balance sheets deteriorate (improve) creditworthiness deteriorates (improves). In accordance

with the above cited literature, we presume then that credit conditions (creditworthiness),

and thus spending of economic agents, depends on liquidity and income. As measure for

liquidity we take liquid assets. At high level of economic activity liquidity rises, default risk

falls and creditworthiness rises.13 The reverse may be assumed to happen during a low level

of economic activity. As liquidity shrinks, default risk rises and creditworthiness falls.14 This

in particular is posited to occur after the variables have passed certain thresholds. With re-

spect to spending we may thus assume that spending accelerates (decelerates) when income

and liquidity rises above (falls below) some threshold values.

The main features of a dynamic model in liquidity, credit and output for a growing econ-

omy which gives rise to regime changes through state-dependent reactions can be represented

in a deterministic form as follows.15 In presuming that economic agents respond to both �-

nancial variables (balance sheet variables) and real variables16 the model might be written

11For applications see Tong (1990), Granger and Ter�asvirta (1993) and Granger, Ter�asvirta and Anderson

(1993), Ozaki (1985).
12We also want to note that liquidity and available credit may also have smoothing e�ects on production or

consumption at least for small shocks. Thus, actual economies may exhibit corridor-stability, see Leijonhuvud

(1973) and Semmler and Sieveking (1993). In this view small shocks do not give rise to deviation amplifying

uctuations but large shocks can lead to a di�erent regime of propagation mechanism. Thus, only large

shocks are predicted to result in magni�ed economic activities.
13Ideally, empirically one would like to employ net worth as collateral for borrowing, as referred to by the

recent theory of the �nancial accelerator. Net worth should then be computed in terms of the net present

value of the economic actions where net worth is the present value of the agents income ows reduced by

the current and future debt payment commitments. Economic proxies for this variable are, however, hard to

obtain. Alternatively one could take credit lines that agents obtain from banks as proxy for creditworthiness.

Time series data of suÆcient length also do not exist for this variable. We are therefore left with other balance

sheet variables. Given the above mentioned role of liquidity for economic activity we take liquid assets as

the balance sheet variable.
14It is thus only in this narrow sense that our model resembles the �nancial accelerator.
15For details of the model and its analytical and numerical study the reader is referred to Semmler and

Sieveking (1993).
16Semmler and Ko�ckesen (1996) shows that one can also incorporate a monetary policy reaction function.
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in the following generic form:
_� = �f1(�; �) (1)
:

�= �f2(�; �) (2)

where � = L=K; � = Y=K, with L denoting liquid assets, a balance sheet variable, Y;

income, a real variable, and K the capital stock. Since we want to undertake the empirical

estimate with data on �rms we interpret income, Y; as �rms' income and � as �rms' income

relative to capital stock. Thus, � denotes the current rate of return on capital. A model of

the type(1)-(2) can be derived from an aggregate model assuming that �rms' income is linear

in aggregate income. Roughly speaking, model (1)-(2) then says that swings in liquidity of

�rms is impacted by uctuations in income (and liquidity) and swings in income is impacted

by uctuations in liquidity (and income). The responses of the variables on the left hand

side to the variables on the right hand side are, however, state dependent. The local partial

derivatives about the steady state are thus not necessarily informative.

As shown in the appendix the model can be thought of as being composed of two parts.

First there is a basic part of the model which exhibits no thresholds and regime changes. It

may be represented solely by linear coeÆcients and a sign structure of the coeÆcients such

as follows
_� = �(�� ��� �1�) (3)
:

�= �(� + Æ�� �2�) (4)

A variant such as (3)-(4) can be derived from a conventional IS-LM approach for a growing

economy, although, as pointed out in the appendix, the sign structure of the model may still

be subject to empirical veri�cation. A similar system is discussed in Ozaki (1987), there,

however, for a nonlinear model in interest rate and output.

A second part of our model allows explicitly regime changes due to state-dependent

reactions. Referring to the above discussion we may postulate regime changes to occur

when the variables pass through certain thresholds. We posit that spending may accelerate

(decelerate) when income and liquidity rise above (fall below) some threshold values. On

the other hand, liquidity may also respond positively (negatively) when income or liquidity

rise (fall) above (below) some thresholds. More formally, a model with regime changes in

the cross e�ects between the variables can be written as follows

_� = �(�� ��� �1� + g1(�; �)) (5)

:

�= �(� + Æ�� �2� + g2(�; �)) (6)

where for i = 1; 2

g
i
=

8>>>>>><
>>>>>>:

g
i
(�; �) > 0 for

8<
:

� > �1; �1 > ��

and

� > �1; �1 > ��

g
i
(�; �) < 0 for

8<
:

� < �2; �2 < ��

and

� < �2; �2 < ��

(7)

and g
i
= 0 otherwise. The star, �, denotes equilibrium values.
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Thus, in the upper regime there is a positive perturbation of liquidity and/or spending

whereas in the lower regime there is a negative perturbation of liquidity and/or spending.

Assuming the above sign structure of the model and the perturbation terms we can state

the following propositions.17

Proposition 1 System (3)-(4) is asymptotically stable.

Proposition 2 If the perturbation terms g1(�; �); g2(�; �) 6= 0 are small enough the system

(5), (6) is asymptotically stable.

Proposition 3 For any g1(�; �); g2(�; �) 6= 0 system (5), (6) becomes unstable for �1 =

0; �2 = 0. The trajectories, however, remain in a positively invariant set for any �1; �2 > 0

even for large g1(�; �); g2(�; �).

We also want to note that system (5), (6) may exhibit, when proposition 3 holds, corridor

stability in the sense of Leijonhufvud (1973).

For the purpose of our study we assume the perturbation terms g
i
to be concave in � and

y; for example, g1 = k[min(0; �� �2) �min(0; �� �1)] where k > 0. A sampling of computer

simulations illustrates the e�ects of perturbations of the dynamics in the di�erent regions of

the state space. Parameter employed are given in the appendix. As shown in Semmler und

Sieveking (1993) all perturbations of the basic part of the model lead to bounded uctuations

(limit cycles).18

3 The Empirical Analysis

We will follow two quite di�erent but related methodologies to test for the above proposed

liquidity-output interaction. The �rst method, which we shall refer to as the direct method,

consists of discretizing the model given by (5), (6) and then directly estimating its parame-

ters.19 The second method, which we will call the indirect method, is less model dependent

and based upon approximating the continuous time model by a discrete time state-dependent

dynamics leaving the lag structure to be determined by the data. Therefore, the direct

method is actually a test of the model whereas the indirect method could be thought of as

a test of the presence of nonlinearities in the liquidity-output interaction without imposing

the restrictions implied by the model.

A model with state depending reactions is, for example, the van der Pol equation

�x� �(1� x2) _x + �x = "

where " is a white noise shock and �; � constant coeÆcients. Such second order di�erential

equation in x can be estimated through direct procedures by employing, for example, the

17For details of the following results, see Semmler and Sieveking (1993) and the numerical extensions in

Semmler and Ko�ckesen (1996). Note that the subsequent statements hold when the above sign structure

holds. To what extent this is empirically con�rmed will be studied below.
18The existence of corridor stability which gives rise to two limit cycles, a repelling and an attracting one

is studied in Semmler and Sieveking (1993).
19For a survey and comparison of the numerical accuracy of di�erent discretization methods, see Kloeden,

Platen and Schurz (1991) and for the local linearization procedure, see Ozaki (1985, 1994).
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Euler procedure (see Ozaki 1986, 1987). Although the Euler procedure is a very convenient

method of estimating a continuous time model, it is not the most precise one. In fact, it

is possible that instability can arise in the discretized equation, although the corresponding

di�erential equation is stable (see Kloeden, Platen and Schurz 1991 and Ozaki 1994)

In various papers Ozaki (1986, 1987, 1989, 1994) proposes another method, a local lin-

earization procedure, that overcomes the shortcomings of methods such as the Euler scheme.

He suggests a local linearization of the nonlinear stochastic di�erential equations by comput-

ing the Jacobian at each point in the state space. Given, for example, a nonlinear di�erential

equation

_z = f(zj�) + "

where � is the parameter set and " is a white noise process, one can transform it into a

discrete time model through local linearization using

z
t+�t

= A(z
t
)z

t
+B(z

t
)"

t+�t

where

"
t+�t

: discrete time white noise

A(z
t
) = exp(L(z

t
)�t)

L(z
t
) =

1

�t
log
�
I + J�1

t

�
eJt�t

� I
�
F
t

	

J
t

=

�
@f (z)

@z

�
z=zt

F
t

: derived from F
t
z
t
= f(z

t
)

B(z
t
) : a function of the eigenvalues of L(z

t
)

This local linearization is consistent since as �t ! 0 the original di�erential equation

is obtained. The estimation procedure can be undertaken by nonlinear least squares or

maximum likelihood procedures (see Ozaki 1994).20

On the other hand, following the indirect approach, an equation such as the van der Pol

equation can be approximated by a discrete time locally self-exciting but globally bounded

system of the following type (see Ozaki 1985).

x
t
= (�1 + �e�x

2

t�1)x
t�1 + (�2 + �2e

�x
2

t�1)x
t�2 + "

t

or equivalently by a (piecewise linear or nonlinear) threshold model such as

x
t
=

8<
:

�(�1)xt�1 + "
t

for x
t�1 < �1

�(x
t�1)xt�1 + "

t
for �1 � x

t�1 < �2
�(�2)xt�1 + "

t
for x

t�1 � �2

:

Discrete time threshold autoregressive models have become popular since they o�er a

rich array of dynamic behavior, including regime changes, asymmetries and state-dependent

20The local linearization method of Ozaki subsequently to be used is written in GAUSS and is available

from the authors upon request.
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reactions. Tong (1990), Potter (1994), Mittnik & Niu (1994), DeGooijer & Kumar (1992),

Pesaran & Potter (1993), and Sayers (1994) provide extensive review of the literature on this

framework.

A generalization of this framework, called Smooth Transition Regression (STR) model,

is elaborated by Luukkonen et al.(1988a, 1988b), Granger and Ter�asvirta (1993), Ter�asvirta

(1994). It is based upon the idea that, in contrast to threshold autoregressive models, the

transitions between regimes may take place smoothly.

A single equation STR can be written as

y
t
= � 0x

t
+ (�0x

t
)F (z

t
) + "

t
(8)

x
t
= (1; y

t�1; :::; yt�p
; x1t; :::; xkt)

0

where z
t
is any variable which is postulated to be governing the transition between regimes,

and F some continuous function.

One widely used form of STR model is logistic STR (LSTR) model characterized by a

logistic function F , i.e.,

F (z
t
� c) = [1 + exp(�(z

t
� c))]�1;  > 0 (9)

with F (�1) = 0; F (+1) = 1; F (0) = 1=2:

Another form of is called exponential STR (ESTR) model where function F is exponential,

i.e.,

F (z
t
� c) = 1� exp[�(z

t
� c)2];  > 0 (10)

with F (�1) = 1; F (0) = 0:

Granger and Ter�asvirta (1993), Ter�asvirta (1994), and Eitrheim and Ter�asvirta (1995)

present a full-edge testing, speci�cation, estimation and evaluation procedure for STR

models and show that STR family contains threshold autoregressive and exponential au-

toregressive models as special cases. Ter�asvirta & Anderson (1992), Granger,Ter�asvirta &

Anderson (1993), and Ter�asvirta (1993) applied this procedure to various economic series.

3.1 Estimation of the Continuous Time Regime Change Model

Before we apply the �rst method to identify the model directly using actual data we will �rst

test the method by employing a data set from a simulated model for which the parameter

values are known in advance. We simulate the following stochastic di�erential equation

system, which is the corresponding stochastic version of system (5) and (6) using the Euler

method as discretization procedure. Randomizing (5)-(6) we would have a two dimensional

system with Brownian motions such as:

d� = �(�� ��� �1�)dt+ �1dB
1 (11)

d� = �(� + Æ�� �2�)dt+ �2dB
2 (12)

8



where �; �; �1; �; ; Æ; �2 are parameters and B1 and B2 are independent Brownian motions.

Let (��; ��) be the steady state for the deterministic part of (11)- (12) satisfying

(�� ��� �1�) = 0

(� + Æ�� �2�) = 0

To represent the acceleration term in our model we assume a state dependent reaction g(�; �)

with:

g(�; �) =

�
k((�� �)(�� �)) if 0 < � < � < �� and 0 < � < � < ��

0 otherwise

�

For our experiment it is suÆcient to solely consider a g(�; �) in equ. (11). We thus have

d� = �(�� ��� �1�� g(�; �))dt+ �1dB
1 (110)

d� = �(� + Æ�� �2�)dt+ �2dB
2 (120)

where and k; �; �; are parameters.

For the simulation we choose the parameters

� = 0:1; � = 0:6; �1 = 0:045

 = 0:07; Æ = 0:7; �2 = 0:078

�1 = 0:002; �1 = 0:002

with a steady state at

(��; ��) = (0:082; 0:161)

For g(�; �) we choose � = 0:06(< 0:082); � = 0:08(< 0:161): k = 0:4:

With initial values (�0; �0) = (0:11; 0:16) data were generated for �t = 0:05 and n =

f0; 1; :::; 9999g:

The data generating process with the Euler approximation is obtained from:

�
n+1 � �

n
= �

n
(�� ��

n
� �1�n � g(�

n
; �

n
))�t + �1(B

1
�t(n+1) � B1

�tn
)

�
n+1 � �

n
= �

n
(� + Æ�

n
� �2�n)�t + �2(B

2
�t(n+1) � B2

�tn
)

Figure 1 about here

Trajectories from the stochastic simulations, exhibiting bounded uctuations, are shown in

Figure 1.

For the estimation we choose data at every 20th-unit then we have 500 points for our

estimation. There are two steps in the estimation: �rst we approximate the "continuous"

time by a discrete time system. The discretization of the continuous time system exhibits a

very small step size in contrast with the discrete time system with larger step size which is

used for the estimation. Second it is to decide the estimation method. For our case we in fact

know that a parametric model with normal distribution and constant variance of the noise

term the nonlinear least square (NLLS) estimation method is equivalent to the maximum

likelihood (ML) method. We undertake NLLS estimations. To approximate and estimate

the continuous time two dimensional system (11')-(12') we use two methods: (1) the Euler

approximation (�rst order approximation of a stochastic di�erential equation) and (2) the

Ozaki local linearization method. The numerical results are as follows whereby we take the

true values as start values and estimate three simulated series, a, b, and c.
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Table 1a: Estimation with the Euler approximation (simulated data)

a b c

� = 0:1 0.109* 0.109* 0.106*

� = 0:6 0.584* 0.6* 0.644*

�1 = 0:045 0.136 0.116* 0.029*

 = 0:07 0.078 0.074 0.070*

Æ = 0:7 0.757 0.763 0.687*

�2 = 0:078 0.067 0.102* 0.073

�1 = 0:002 0.002 0.002 0.002

�1 = 0:002 0.002 0.002 0.002

� = 0:06 0.06 0.06 0.06

� = 0:08 0.08 0.08 0.08

k = 0:4 0.4 0.4 0.4

Table 1b: Estimation with the Ozaki approximation (simulated data)

a b c

� = 0:1 0.113 0.113 0.110

� = 0:6 0.617 0.619 0.664

�1 = 0:045 0.123* 0.124 0.040

 = 0:07 0.073* 0.068* 0.065

Æ = 0:7 0.710* 0.708* 0.646

�2 = 0:078 0.067 0.104 0.074*

�1 = 0:002 0:002 0:002 0:002

�1 = 0:002 0:002 0:002 0:002

� = 0:06 0.06 0.06 0.06

� = 0:08 0.08 0.08 0.08

k = 0:4 0.4 0.4 0.4

* means a smaller bias

As can be observed from Tables 1a and 1b the estimated parameters do not depart

too much from the parameters used for the simulation of the system and moreover, the

parameters from both of our estimation methods seem to be similar. We want to note,

however, that the computation by using the Ozaki method is more cumbersome and needs

much more time than the Euler method.21

Next, we gain undertake simulations with the estimated parameter sets. Simulations for

our estimated parameter sets from the Euler approximation showed similar results, a typical

picture is given in Figure 2.

Figure 2 about here

A typical picture from simulations using the parameters from the local linearization

method of Ozaki is shown in Figure 3.

21The estimation with the Ozaki method often required 48 hours computation time on a PC (and not

always succeeding) whereas the Euler method suceeds in a few minutes.
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Figure 3 about here

Next, we apply the Euler scheme and the Ozaki method to an actual data set.22 The

time period of the analysis is 1960.1-1988.4 using quarterly data of the U.S. economy. The

liquidity variable is the ratio of liquid assets of non-�nancial corporate business sector from

the Flow of Funds Accounts (1994) to the capital stock for the same sector as estimated by

Fair (1992). The resulting series has been seasonally adjusted before the analysis has been

conducted. As real variable we take the rate of return on capital. It is the ow of pro�ts

of non-�nancial corporate business sector from the Flow of Funds Accounts divided by the

capital stock. Although the data were available for 1952.1-1991.4, the test and estimation

period has been chosen as 1960.1{1988.4 for two reasons. First, before 1960.1 the series

contain outliers which has been argued to favor the hypothesis of nonlinearities. Second, the

period between 1988.4-1991.4 will later be used for out-of-sample forecasts.

The estimates using both NLLS and ML gave us the results as reported in Table 2. We

report for the Euler approximation both the estimates for NLLS and ML. For the estimation

we employ a similar acceleration term as used in (11')-(12'). However, for reasons of simplic-

ity, we employ the mean of the variables � and � as thresholds below which the acceleration

term, g(�; �); is activated.

Table 2: Parameter estimates for actual data

Euler (NLLS) Euler (ML) Ozaki

� 0.023 0.023 0.158

� 0.170 0.175 0.577

�1 0.015 0.011 0.325

k 0.05 0.005 0.002

 -0.015 -0.0167 0.156

Æ 0.29 0.279 0.648

�2 0.489 0.472 -0.230

As can be observed from Table 2, overall our theoretical model appears to match closely

what we �nd in the data. The signs of the parameters obtained by the Euler method are as

expected except for : Also, the parameters from NLLS and the ML estimations are similar.

The simulation with the parameters from the Euler NLLS estimates, when the system is

simulated with the di�usion terms as in (11'-(12')generates qualitative the same picture as

in �gure 2 (not included here).

As Table 2 also shows the estimates of the parameters from the Ozaki methods are slightly

di�erent. Using the estimated parameters from the local linearization method of Ozaki we

22Note that for our theoretical model it would be better to use for the liquidity variable a measure of bank

credit potentially available to �rms, for example credit lines. Since, however, time series data on credit lines

are not available for our time period we simply employ liquid assets for �rms as our measure of liquidity.

This is equivalent to positing, as our theoretical exposition suggests, a positive covariation between liquid

assets, creditworthiness and credit ows. We do not take actual credit ows as our �nancial variable as the

actual credit ows are not a good measure for creditworthiness.
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have obtained from a simulation with the di�usion terms as in (11')-(12') similar trajectories

as in Figure 3 (not included here).

Overall, we found that the Ozaki method captures better than the Euler method the

uctuations in the data. Although it might be interesting to further study the forecast

properties of the estimated nonlinear models this is here left aside. A detailed diagnostic

study of the forecast properties of an estimated nonlinear model is pursued in the next

section where we are also able to compare it to an appropriate linear model.

We conclude this subsection by noting that the direct estimation of the continuous time

model seems to be a fruitful strategy. In particular we want to note that there does not seem

to be great di�erences in estimation results using an Euler approximation and more re�ned

methods such as the Ozaki method. Both methods pick up the accelerator term. We also

want to note that a further re�nements of the step size in the Euler procedure does not seem

to improve the estimation results. We have undertaken experiments of such kind and found

not much di�erence in the parameter estimates.23 On the other hand our direct estimations

of the above stochastic di�erential equations restrict the lag structure. This might be a

misspeci�cation of the model driving the actual data. To investigate this further we next

undertake a more data based methodology (Smooth Transition Regression) and let the data

determine the type of nonlinearity (if any exists) and the appropriate lag structure.

3.2 Estimation with the Smooth Transition Regression Method-

ology

The empirical methodology of STR is composed of the following steps �rst specifying a linear

model as the null hypothesis against which the linearity is tested. A test with power against

both LSTR and ESTR involves testing H0 : �1 = �2 = �3 = 0 in the following auxiliary

regression:

y
t
= � 0x

t
+ �01xtzt�d

+ �02xtz
2
t�d

+ �03xtz
3
t�d

+ �
t

The above regression can also be used to select the transition variable z
t
by conducting the

test for di�erent variables. If linearity is rejected for several choices of z
t
, then select the one

with the smallest probability value as the transition variable. Given that the linearity hy-

pothesis is rejected in favor of an STR type of nonlinearity one determines whether an LSTR

or ESTR model is more appropriate by using the following sequence of nested hypotheses:

H03 : �3 = 0

H02 : �2 = 0 j �3 = 0

H01 : �1 = 0 j �3 = �2 = 0

If the test of H02 has the smallest probability value one chooses the ESTR, and otherwise

chooses the LSTR family. Estimation of a speci�ed STR model can then be undertaken by

nonlinear least squares.

For the following analysis we employ the same data on �rms as described above. Both

the liquidity and the rate of return series have one unit root as indicated by the aug-

23The reason is presumably that there is no independent information added if one employs a �ner step

size.
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mented Dickey-Fuller tests. The data have been detrended and rendered stationary using

the Hodrick-Prescott (HP) �lter (with smoothness parameter 1600).24

3.2.1 The Linear Model:

We use the following linear model as the basis model:

�
t

= a1 +B1(L)�t + C1(L)�t + "1t (13)

�
t

= a2 +B2(L)�t + C2(L)�t + "2t

where B1(L) and C1(L) are polynomials in lag operator L of degree 6 whereas B2(L) and

C2(L) are of degree 8.
25 The estimated linear equation for liquidity equation is26

�
t

= �3� 10�5

(3�10�4)
+ :96

(:10)
�
t�1 � :15

(:13)
�
t�2 � :13

(:12)
�
t�3 + :53

(:12)
�
t�4 (14)

� :53
(:13)

�
t�5 + :18

(:10)
�
t�6 + :02

(:04)
�
t�1 � :06

(:05)
�
t�2 � :001

(:05)
�
t�3

� :06
(:05)

�
t�4 � :04

(:05)
�
t�5 + :01

(:04)
�
t�6

R2 = 0:81 SE = 0:003 LM(7) = 1:64(0:13)

ARCH(1) = 3:66(0:06) BJ = 0:93(0:63) RESET (2) = 1:73(0:18)

For the rate of return equation we obtained:

�
t

= �1� 10�4

(7�10�4)
+ :81

(:24)
�
t�1 � :30

(:32)
�
t�2 + :13

(:32)
�
t�3 � :56

(:29)
�
t�4 (15)

� :06
(:30)

�
t�5 + :27

(:32)
�
t�6 � :30

(:32)
�
t�7 + :60

(:23)
�
t�8 + :72

(:10)
�
t�1

� :12
(:12)

�
t�2 + :12

(:11)
�
t�3 � :05

(:11)
�
t�4 � :001

(:11)
�
t�5 + :06

(:11)
�
t�6

+ :04
(:11)

�
t�7 � :27

(:09)
�
t�8

R2 = 0:73 SE = 0:008 LM(8) = 1:32(0:26)

ARCH(1) = 0:44(0:50) BJ = 2:36(0:31) RESET (2) = 0:64(0:53)

24The model described by equations (5)-(6) are cast in terms of normalized variables, i.e., liquidity and

income normalized by the capital stock. In that sense their steady state values are bounded: actually at the

steady state the growth rate is zero. Thus, the cyclical variations implied by the model are cycles around

a zero (or more generally a constant) growth rate. Clearly, this is not the case in the data. Furthermore,

the theory behind testing for and estimating STR models have been developed for stationary data. Since

the theoretical models which inspired our empirical implementation explicitly refer to business cycles we

considered Hodrick-Prescott �lter as an appropriate detrending technique.
25Appropriate lag lengths were determined by using Akaike Information Criterion and diagnostic tests on

residuals.
26Standard errors are in parantheses. SE stands for standard error of regression; LM is Breusch-Godfrey

LM test for serial correlation (F version); ARCH is the LM test for ARCH e�ects; BJ is Bera-Jaque test

for normality; RESET is Ramsey's RESET test. Numbers in parantheses are the order of the tests and

next to the diagnostic statistics the probability values associated with them.
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The standard diagnostic tests do not indicate any misspeci�cation for any of the equa-

tions. When simulated as a system the linear model generates, as one would expect, conver-

gent cycles and loses its forecasting ability soon after the iterations are started.

3.2.2 Linearity Tests and Model Speci�cation

We postulate the following nonlinear equations as our alternatives to the linear ones above:

�
t
= �1 + �1(L)�t +�1(L)�t + (�1 +	1(L)�t + 
1(L)�t)F1(zi(t�d1); 1; c1) + u1t (16)

�
t
= �2 + �2(L)�t +�2(L)�t + (�2 +	2(L)�t + 
2(L)�t)F2(zi(t�d2); 2; c2) + u2t (17)

which would result in either a logistic smooth transition regression (LSTR) model charac-

terized by a logistic function F ,

F (z
i(t�dj ) � c

j
) = [1 + exp(�

j
(z

i(t�dj ) � c
j
))]�1; 

j
> 0; i = 1; 2; j = 1; 2 (18)

or an exponential smooth transition regression (ESTR) model where function F is given by,

F (z
i(t�dj ) � c

j
) = 1� exp[�

j
(z

i(t�dj ) � c
j
)2]; 

j
> 0; i = 1; 2; j = 1; 2 (19)

The auxiliary equation to test for linearity is the same in both forms of the function

F . We run the tests for each equation and for various lags of both variables as potential

transition variables.

Table 3 gives the results for the cases where the overall linearity tests have probability

values (p) smaller than 0.10. The probability value for H03 is p3, for H02 it is p2, and for H01

it is p1.27

Table 3: Linearity Tests: Liquidity Equation
Equation Variable p p3 p2 p1

Liquidity

�
t�6 0.06 0.43 0.33 0.008

Rate of Return

�
t�7 0.001 0.005 0.31 0.01

�
t�8 0.02 0.10 0.15 0.04

�
t�4 0.08 0.50 0.08 0.06

�
t�8 0.03 0.16 0.10 0.11

The linearity hypothesis is rejected at a 6% level of signi�cance for the liquidity equation

when the transition variable is �
t�6. It is rejected for several transition variables in the case

of the rate of return equation, the most signi�cant one arising when �
t�7 is the transition

variable.28 Also, for both equations LSTR type models are suggested. Hence, we have the

27See section 1.2 for a description of these hypotheses.
28We also explored the possibility of cointegration between the variables and of building an error correction

STR model. Although the long term relationship between the variables would have been forced to be linear,

the existence of an error correction mechanism would constitute an interesting case to study. However, Jo-

hansen cointegration tests, when applied to the whole period (1960.1-1988.4), did not indicate cointegration.

However, there is some indication (particularly for the seasonally adjusted data) of cointegration when the

test period is restricted to that of 1960.1-1979.4. However, in this case, because of numerical problems, we

failed even to implement the linearity tests.
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following general speci�cations,

�
t
= �1 + �1(L)�t +�1(L)�t + (�1 +	1(L)�t + 
1(L)�t)F1(�t�6; 1; c1) + u1t (20)

�
t
= �2 + �2(L)�t +�2(L)�t + (�2 +	2(L)�t + 
2(L)�t)F2(�t�7; 2; c2) + u2t (21)

where F1 and F2 are both logistic functions.29

3.2.3 Estimation and Diagnostics

The STR models can be estimated using nonlinear least squares. Certain lags of both

variables which proved to be insigni�cant were excluded to arrive at more parsimonious

speci�cations. The estimated LSTR equation for liquidity is

�
t

= :0008
(:0004)

+ :75
(:06)

�
t�1 + :55

(:09)
�
t�4 � :36

(:08)
�
t�5 � :22

(:05)
�
t�5 (22)

+ :18
(:05)

�
t�6 +

�
� :56

(:14)
�
t�3 � :18

(:07)
�
t�4 + :36

(:12)
�
t�5 � :39

(:10)
�
t�6

�

�

�
1 + exp

�
�2:85

(1:42)
� 72:59

�
�
t�6 � :005

(:003)

���
�1

R2 = 0:85 SE = 0:0029 LM(7) = 1:81(0:09)

ARCH(1) = 0:06(0:81) BJ = 1:45(0:48)

In terms of static in-sample forecasting the LSTR model for liquidity performs better than

its linear counter-part. The standard diagnostics do not indicate any misspeci�cation. The

test for remaining nonlinearity indicates that the estimated model captures the nonlinearity

well.

The transition parameter is 207.21 which indicates a fast transition between what can be

regarded as two regimes. The lower regime corresponds to that part of the state-space where

the rate of return is below 0.0049 (which is slightly greater than the steady-state value of

the rate of return) and the upper regime to the part where the rate of return is above that

level. The dynamic properties of the model at di�erent regions of the state space will be

discussed later once the rate of return equation is also estimated.

The LSTR model for rate of return is given by

�
t

= �:004
(:001)

+ :76
(:14)

�
t�1 � :58

(:20)
�
t�5 + :63

(:06)
�
t�1 � :34

(:11)
�
t�5 (23)

+ :36
(:11)

�
t�6 � :21

(:06)
�
t�8 +

�
:006
(:003)

� 1:02
(:27)

�
t�4 + 1:18

(:38)
�
t�5

� :82
(:39)

�
t�7 + 1:10

(:26)
�
t�8 + :57

(:18)
�
t�5 � :53

(:19)
�
t�6

�

�

�
1 + exp

�
�18:81

(20:38)
� 138:50

�
�
t�7 � :0002

(:0004)

���
�1

29To check the robustness of the test results we conducted the test for di�erent sample periods and for

the �rst and fourth di�erences of the data (both seasonally adjusted and unadjusted). In almost every case

the hypothesis of linearity was rejected though with di�erent suggested models.
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R2 = 0:79 SE = 0:007 LM(9) = 0:93(0:51)

ARCH(1) = 7:17(0:01) BJ = 0:093(0:95) LIN(�
t�8) = 2:26(0:01)

where LIN(�
t�8) denotes the linearity test with �t�8 as the transition variable. With respect

to the static �t the LSTR equation for the rate of return again performs better than the

linear one. Only the ARCH test indicates misspeci�cation in the equation.30 However, the

estimated model still exhibits uncaptured nonlinearity at variable �
t�8 of an ESTR type.

An appropriate strategy would be to reestimate the equation using two transition variables

(�
t�7 and �

t�8) one entering with a logistic and the other as exponential function.31

The transition parameter is much bigger (2605.77) for this equation indicating an even

faster transition between the lower (liquidity less than 0.0002 - a value less than the steady-

state of the liquidity) and upper regimes (liquidity greater than 0.0002). Hence, the transition

between regimes takes place much more quickly as a response to changes in the liquidity (the

�nancial variable) than to the rate of return (the real variable). This could be seen as an

indication of the fact that �rms adjust their behavior very fast as their liquidity gets closer

and crosses over a critical level. The adjustment to the changes in rate of return, however,

takes place more smoothly.

Figure 4 and Figure 5 about here

When simulated as a system, the LSTR model exhibits a periodic motion which captures

the overall motion of the actual data much better than the linear model does (see Figures

4 and 5). Several in-sample and out-of-sample simulation statistics are reported in Table

4. To evaluate dynamic forecast performance we �rst used the model estimated for the

period 1960.1-1988.4 and calculated both the in-sample (1960.1-1988.4) and multi-step ahead

forecasts (1989.1-1991.4). We also repeated this exercise using a Monte-Carlo simulation,

rather than a deterministic one, where we shocked the system each period with a normally

distributed random term (whose standard deviation is taken to be the standard error of the

regression in respective models). We repeated this 1000 times and took the mean of the

resulting simulations as our point forecasts.

Using the deterministic simulation method we found that the nonlinear model does a

better job in simulating the rate of return within the sample whereas the converse is true for

the liquidity variable (see row 1960.1-1988.4 under Deterministic Simulations in Table 4).

However, the nonlinear model fares slightly better when we use the Monte-Carlo simulations

(row 1960.1-1988.4 under Monte-Carlo Simulations). Out-of-sample forecast performance of

the linear model is slightly better using the deterministic simulations. However, when we

used Monte-Carlo simulations nonlinear model performed better in forecasting the rate of

return (row 1989.1-1991.4).

30We have not yet been able to jointly model the nonlinearity in the conditional mean and ARCH e�ects.
31Our attempts to do so run into numerical diÆculties in the estimation procedure.

16



Table 4: Forecast Mean Squared Errors(�1; 000)

Linear Model Nonlinear Model

liquidity rate of return liquidity rate of return

Deterministic Simulations

1960.1-1988.4 7:45 13:82 7:82 13:00

1986.1-1991.4 8:08 11:50 5:99 12:26

1986.1-1988.4 9:85 14:86 6:98 13:23

1989.1-1991.4 4:16 4:52 6:96 4:78

Monte-Carlo Simulations

1960.1-1988.4 7:42 13:76 7:08 13:31

1989.1-1991.4 4:23 4:43 6:94 4:20

We also estimated the equations for the period 1960.1-1985.4 and conducted deterministic

forecasts for the periods 1986.1-1991.4 and 1986.1-1988.4 (see rows 1986.1-1991.4 and 1986.1-

1988.4 in Table 4). In terms of the shorter period we found that the nonlinear model has

signi�cantly better forecasting performance for both variables. However, for the longer period

nonlinear model performs better only for the liquidity variable. Although the overall evidence

seems to be inconclusive, on average we can conclude that the linear model has a slightly

better forecasting performance for the liquidity variable whereas the nonlinear model has a

signi�cantly better forecast performance for the rate of return variable.

3.2.4 Evaluation of the Dynamic Properties

The theoretical model given by equations (5) and (6) implies two thresholds and four regimes

in which three types of dynamics are activated, namely dynamics with g
i
> 0; g

i
< 0; and

g
i
= 0: Note also that g1 and g2 take always the same signs, i.e., when g1 is positive so is

g2 and when g1 is zero so is g2 etc. However, the empirical model has F1 and F2 functions

which in the extreme take values of zero and one but also take potentially many intermediate

values. Due to this fact and due to the existence of many lags in the empirical model it is

very diÆcult to establish a one-to-one correspondence between the regimes which arise in the

theoretical and empirical models. However, we can roughly say that when both F1 and F2

are equal to zero we have the case which corresponds to g1; g2 < 0 in the theoretical model,

and when F1 and F2 are equal to 1 we have the case of g1; g2 > 0: For some intermediate F

values we have the case where g1; g2 = 0: Thus, speci�cation of the empirical model, keeping

in mind the limitations mentioned above, is similar to the theoretical model.

The steady-state values of the liquidity and the rate of return have been calculated

numerically and found to be equal to 0.0013 for liquidity and 0.0035 for rate of return.32

The system at the steady state has a pair of complex eigenvalues with a maximum

modulus greater than unity indicating local instability. Furthermore, the fact that there

exists one pair of complex eigenvalues whose real part is greater than unity indicate the

possibility of a Hopf bifurcation taking place as some parameters change. If this is the case

then one would expect the emergence of a stable limit cycle.33 The system was simulated

32Mean trend plus steady-state is 0.15 for liquidity and 0.13 for rate of return which are both slightly

above the means of the series before detrending.
33Assuming that further conditions hold [see Guckenheimer and Holmes(1983)].
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over extended periods (up to 15,000 iterations) and it was found that this is indeed the case

(see Figure 6). The simulations with di�erent initial values inside and outside the limit cycle

showed that this periodic motion was stable. The cycles have a period around 26 quarters

(or 6.5 years) which conforms well to the de�nition of the business cycle by NBER34.

Figure 6 about here

Thus we can conclude that the dynamic interaction between liquidity and the rate of

return on capital contains essential nonlinearities which lead to sustained uctuations in

both variables even in the absence of exogenous shocks to the system. However, we could

not detect corridor stability (as apparent from the fact that the steady-state is locally unsta-

ble) which would require a more re�ned methodology, i.e., a model with multiple threshold

variables in equations.

Furthermore, we found that the response of the system to shocks in the variables is asym-

metric. Following Potter (1994) we de�ne a nonlinear impulse response function (NLIRF)

as

NLIRF
n
(v; y

t
) = E[Y

t+n
j Y

t
= y

t
+ v; Y

t�1 = y
t�1; : : :]� E[Y

t+n
j Y

t
= y

t
; Y

t�1 = y
t�1; : : :]

(24)

which is, in practical terms, simply the di�erence between the series at time t + n; when

y
t
is perturbed by v (size of the shock) at time t; and the series without the perturbation.

Similarly, one can de�ne NLIRF
n
(�v; y

t
) to denote the impulse response when the shock is

negative. In a linear system the impulse response function is symmetric and thus

ASY
n
(v; y

t
) = NLIRF

n
(v; y

t
) +NLIRF

n
(�v; y

t
) (25)

will be zero. ASY
n
(v; y

t
) can be regarded as a measure of asymmetry: the extent to which

it deviates from zero indicates the extent of asymmetric response to shocks.

We calculated (by simulation) the nonlinear response functions and the measures of

asymmetry for both variables (for up to 12 periods) when the system is perturbed by a

single shock to one of the variables (where the size of the shock is one standard deviation

of the variable in question). We also calculated the mean asymmetry measures (MASY )

de�ned as:

MASY =
1

T

TX
n=1

ASY
n
(v; y

t
)

�
y

(26)

where �
y
is the standard deviation of the corresponding series. Thus, a negative MASY will

indicate stronger response to negative shocks and vice versa.

The initial states at which the system is perturbed are given by Table 5.

34See however Cogley and Nason (1995) who claim that Hodrick-Prescott �lter implants business cycle

periodicity to the �ltered data even if the original series is a random walk. This also raises the concern that

HP detrended liquidity and rate of return series covary because of this property of the HP �lter. To check

whether this is the case we estimated linear VAR models with both �rst-di�erenced and HP detrended data

and did not detect any spurious cross-correlations as a result of HP detrending.
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Table 5: Impulse Response Analysis Initial States
State I � at max, � #; � #

State II � at min, � #; � "

State III � at min, � "; � "

State IV � at max, � "; � #

If one uses the movements of rate of return as an index of business cycle, then State

I corresponds to the peak, State II to the lower phase of the downswing, State III to the

trough, and State IV to the upper phase of the upswing. Table 6 reports the mean asymmetry

measures at di�erent states.

Table 6: Mean Asymmetry Measures
Shocks to liquidity Shocks to rate of return

Responses of liquidity rate of return liquidity rate of return

State I �0:0002 �0:0026 �0:0001 �0:0001

State II �0:1086 �0:0992 �0:0778 �0:0651

State III �0:2194 �0:4222 �0:1813 �0:0291

State IV �0:0617 �0:0593 0:0044 �0:0242

Although the response is symmetric for initial periods (5 to 7 periods) it ceases to be so

afterwards. In general, the extent of the asymmetric response to shocks to liquidity is bigger.

In every state of the system negative shocks to liquidity generates bigger response by both

liquidity and rate of return. The same is true for shocks to rate of return except in State

IV where the response of liquidity to a positive shock is bigger.35 The largest asymmetry

occurs in State III (trough) whereas the smallest in State I (peak). In other words, although

the agents seem to react more strongly to negative shocks, the extent to which they do so is

larger at the trough as compared to the peak.36

These exercises point out that the pattern of asymmetric response to shocks in a model of

�nancial-real interaction is very rich. In particular one should distinguish between shocks of

di�erent signs, shocks to real and �nancial variables, and shocks during the di�erent phases

of the business cycles.

Due to the high dimensionality of the dynamical system it is impossible to analytically

study its global stability properties. However, if we can imagine that the model has basi-

cally four distinct regimes (other than the neighborhood around the steady-state) which can

be approximated by four linear models, the eigenvalues in those regimes could give some

information.37

The regimes A and D, in Table 5, correspond to the upper and lower regimes, respectively,

which have been discussed before, i.e., the upper regime corresponds to that region of the

state-space where liquidity and rate of return are greater than their steady-state values

and the lower regime corresponds to the region where they are smaller. We can see from

Table 7 that the eigenvalues at these two regimes are complex with moduli smaller than

35Even at State IV, the �rst 8-period negative response is bigger than the positive response.
36Although not reported, we found that the time pattern of impulse responses and asymmetry measures

also di�er among di�erent states and shocks to di�erent variables.
37See Granger and Ter�asvirta (1993) for a similar analysis.
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one indicating convergent cycles. The cycles in the lower regime have a period around 15

quarters whereas those in the upper regime exhibit periods around 24 quarters.

Table 7: Maximum Moduli and Periods at Di�erent States
States Maximum Modulus Periods

A. (F1 = 1; F2 = 1) 0.99 24

B. (F1 = 1; F2 = 0) 0.97 24

C. (F1 = 0; F2 = 1) 1.03 13

D. (F1 = 0; F2 = 0) 0.95 15

If we linearize the system at di�erent states of the system we can obtain more insight

into the nature of interaction between the liquidity and rate of return. Table 8 reports the

long-term multipliers for both equations in �ve di�erent states.

Table 8: Multipliers at Di�erent States of the System
States Liquidity Equation Rate of return Equation

Steady-State �0:433� 1:128��

A. (F1 = 1; F2 = 1) �0:399 1:188

B. (F1 = 1; F2 = 0) �0:399 0:307

C. (F1 = 0; F2 = 1) �0:706 1:188

D. (F1 = 0; F2 = 0) �0:706 0:307
�F1 = 0:424 ��F2 = 0:937

As one would expect, the impact of the rate of return on liquidity is negative whereas

that of liquidity on the rate of return is positive in every state. Furthermore, the e�ect of

rate of return (which is the transition variable in liquidity equation) is larger in the lower

regime (i.e., regime D) than in the upper regime (i.e., regime A), which lends some support

to the idea in Semmler and Sieveking (1993). However, the converse is true for the e�ect of

liquidity on rate of return, i.e., liquidity exerts a stronger impact on rate of return in the

upper regime than in the lower regime. These results which lend support to the model given

in equations (5) and (6) imply that �rms will increase their investment expenditures more

as a response to an increase in their liquidity ratios if the rate of return on capital and the

rate of investment is already higher than their steady-state levels.

On the basis of these results we can conclude that a model of liquidity-output interac-

tion should take into account the di�erences in the system's response to real and �nancial

disturbances as well as the state (or history) dependent responses.

Before we close this section we should also note that we attempted to apply the same

methodology to household income (both for wage and salary income and for aggregate house-

hold income) and household liquidity series. In this case we detected nonlinearity in income

equation whereas no nonlinearity was detected for the liquidity equation. Analysis of the

dynamic properties of the estimated systems revealed, however, asymptotically convergent

cyclical behavior.38 It seems, therefore, that the theoretical models of liquidity-output inter-

action which imply complex dynamics are most suitable to the �rm sector of the economy.

38Details of the results are available from the authors on request.
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4 Concluding Remarks

Our empirical analysis has shown that state-dependent reactions and regime changes in

cross e�ects between liquidity and output variables can, with some success, be studied by a

continuous time regime change model, the direct method (Euler scheme and Ozaki's local

linearization method), as well as a discrete time version, by the indirect method (STR

methodology). Encouraging are both the application of the Euler method as well as the

local linearization procedure of Ozaki. Although the �rst is easier to apply it may generate

instability. The latter is more diÆcult to employ since for a higher dimensional state space the

number of observations to be used are limited and the computation is very time consuming.

Although the direct method did reveal some expected dynamic behavior, such as regime

change behavior, when estimated, yet lag-e�ects are neglected.

Particularly interesting was the application of the STR model. As shown, a linear model

�ts the data well and exhibits a convergent behavior, indicating a stable steady-state.39 In

other words, if one were to assume that the data had a linear representation, the system

would be regarded as being stable around the steady-state and the cause of uctuations

would have to be attributed to exogenous shocks. However, a regime change model which

we claim is a better representation of the data, reveals that the actual dynamics of the

system is characterized by a locally unstable steady-state which is contained by stable outer

regions.40

Regime change models are capable of asking and answering more interesting questions

which have been prevalent in the theoretical literature but could not �nd a way to be

examined by empirical analysis. The results of this paper lend support to a certain class of

credit and output interaction models characterized by an unstable steady-state, regime shifts,

and asymmetric response to shocks. This encourages further work to examine regime changes

in other macroeconomic relationships, for example, in relations between stock market data

and output [see Chiarella, Semmler and Ko�ckesen (1996)] or exchange rate data and output.

Threshold principle time series models seem to be particularly useful in this endeavor.

39The linear system for �rm data has complex eigenvalues with a maximum modulus of 0.95 and periods

of 25 quarters and the STR variants for the household data show convergence when simulated.
40A similar comparison of linear and nonlinear systems is untertaken in Blatt (1978).
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5 Appendix: Derivation of the Basic Model of Section

2.

The basic part of our model is consistent with a monetary growth model with an explicit

LM schedule (for details, see Flaschel, Franke and Semmler (1997, ch.4.).

We take the ratio � = L=K where L is liquidity and presume that the growth rate of

liquidity in our basic model is equal to the growth rate of money. Then, with K; the capital

stock, we obtain in terms of growth rates

:

�= g
L
� g

k
(i; y) (A1)

where g
L
denotes the exogenous growth of money supply and whereby it is posited that the

growth rate of the capital stock depends on the interest rate, g
ki
< 0; and income, g

ky
> 0;

with y the ratio of income, Y , to capital stock, K. Note that \^" denotes growth rates.

From y = Y=K we can obtain in terms of growth rates

ŷ = g
y
(y; i)� g

k
(i; y)

or, by positing that g
Y
depends linearly on income and the interest rate, with g

Yy
> 0;

g
Yi
< 0; we get

ŷ = �y � �i� g
k
(i; y) (A2)

The money market equilibrium with a linear money demand function can be written as:

M = L (LM � equilibrium)

L = h1Y � h2K(i� i�); divided by K gives

� = h1y � h2(i� i�)

which yields for a �xed long-run natural interest rate i�

i =
h1y � �

h2
+ i�

Substituting the interest rate determination into (A2) gives:

ŷ = �y � �(
h1y � �

h2
+ i�)� g

k
(�; y)

ŷ = ��i� +
(�� �h1)y

h2
+ �

�

h2
� g

k
(�; y) (A3)

Note that now the growth of income depends on income, y, and liquidity, �. The system

(A1), (A3) can be written in compact form as

_� = �(g
L
� g

k
(�; y)) (A4)
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_y = y(g
Y
(�; y)� g

k
(�; y)) (A5)

with g
Ym

> 0: Note that by collecting constant terms in (A2) and (A3) we may, with

appropriate assumptions on the size of the constants, obtain the functional forms as in (A6),

(A7) by additionally presuming linear functions for the growth of capital stock

�̂ = g
L
� (�1 + 1y + 2�) (A6)

ŷ = �2 + �1y + �2�� (�1 + 1y + 2�) (A7)

The linear speci�cation of our functions will give rise to nonlinear di�erential equations

though of the simplest type. In equs. (A6) and (A7) the second term in brackets represents

the growth rate of the capital stock with �1 the growth rate of the autonomous part of capital

investment and 1y; 2� the response of g
k
to income and liquidity (both measured relative

to capital stock).

Eq. (A6) can be simpli�ed by using � = g
L
� �1: We expect a positive sign for �. We

drop unnecessary terms in (A7) by denoting  = �2��1, �2 = �1� 1, and Æ = �2� 2.If we

assume that �2 < �1; �1 < 1 (which presumes a strong accelerator e�ect for investment)

and �2 > 2 we then can write our system of di�erential equations as

�̂ = �� �y � �1� (A8)

ŷ = � + Æ�� �2y (A9)

Equation system (A8), (A9) which we take as our bench mark model, is a nonlinear

system of di�erential equations.41 Note that it does not yet include perturbation terms

arising from thresholds as discussed in Section 2. As there shown those perturbation terms

arise from the creditors' response to liquidity and income | and thus creditworthiness of

the economic agents{ and, possibly, from monetary policy reactions.

As is demonstrated in Semmler and Sieveking (1993) the system (A8), (A9) has three

equilibria (�� = 0; y� = 0); (�� > 0; y� = 0) and (�� > 0; y� > 0). The �rst two are saddle

points and the last one is an attracting point. With the exception of those which start on

one of the axes all of the trajectories converge to the unique attracting point �� > 0; y� > 0.

With linear pro�t function, where the rate of return on capital is � = �=k with �, cash

ows, we have
_� = �(g

L
� g

k
(�; �)) (A10)

_� = �(g
�
(�; �)� g

k
(�; �)) (A11)

with g
�
the growth rate of pro�t ows.

Using the linear form as in (A8), (A9) for the parameters an: � = 0:1;  = 0:07; �1 =

0:045; � = 0:6; Æ = 0:7; �2 = 0:078 create economically relevant equilibrium �� = 0:082; �� =

0:161.

41Note that we here only have assumed a certain sign structure of the coeÆcients. Empirical estimations

as undertaken in Section 3 will be needed to �nd out whether the sign structure is con�rmed.
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