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Abstract

In this paper we study a dynamic model of pricing and investment
with heterogeneous firms under imperfect competition. We assume
the existence of two types of firms, a dominant firm and fringe firms.
We introduce several asymmetries between the two types of firms.
The dominant firm is not financially constrained. It has free access to
capital markets although it is subject to increasing adjustment cost of
investment. On the other hand, the fringe firms are credit constrained
and have no access to capital markets so that they are restricted to
internal finance of investment. Furthermore, it is assumed that the
dominant firm acts as a price setter and it controls both prices and
investment while the fringe firms are price takers who can control
only their own investment through internal retention. As in Judd and
Petersen (1986), in our model entry is expressed as the growth of the
investment of the fringe firms but unlike Judd and Petersen (1986), in
our model the trend growth of demand is determined endogenously.
The formal structure of our model is described by a dynamic game.
More particularly, it represents an open loop Stackelberg differential
game of two firms in which the dominant firm acts as a leader and
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fringe firms act passively as followers. We investigate both the steady
state as well as the dynamic behavior of the model analytically and
numerically.



1 Introduction

Recently, a large number of papers have studied the problem of pricing of
firms when there is a threat of entry by other firms. In the literature this
pricing behavior has been called limit pricing. In this paper, following Gask-
ins (1971) and Judd and Petersen (1986) we study an industry where there
are two types of firms. In the industry there exist dominant firms which we
call for short the dominant firm, and fringe firms, henceforth called fringe
firm. We study a dynamic model of pricing, investment and firm valuation
for those heterogeneous types of firms under imperfect competition.

We introduce several asymmetries between the two types of firms. First,
the dominant firm is not financially constrained. It has free access to capital
markets although it is subject to increasing adjustment cost of investment.
On the other hand, the fringe firm is credit constrained and has no access
to capital markets so that it is restricted to internal finance of investment.
Second, it is assumed that the dominant firm acts as a price setter and it
controls both prices and investment while the fringe firm is a price taker
that can control only its own investment through internal retention. As in
Judd and Petersen (1986), in our model entry is expressed as the growth of
the investment of the fringe firm but unlike Judd and Petersen (1986), in
our model the trend growth of demand is determined endogenously. Third,
the formal structure of our model is described by a dynamic game. More
particularly, it represents an open loop Stackelberg differential game of two
firms in which the dominant firm acts as a leader and fringe firms act passively
as followers.

This type of study allows one to explore not only the pricing, investment
and entry dynamics in an industry with heterogeneous firms but also, as in
Mazzucato and Semmler (1999), the firm valuation and asset price dynamics
of heterogeneous firms in an industry the structure of which is evolving over
time due to the industry internal dynamics and entry dynamics. Such a study
provides one with an approach to explore the asset pricing dynamics of firms
as well as an industry from an evolutionary perspective. We investigate both
the steady state as well as the dynamic behavior of the model analytically
and numerically.

The paper is organized as follows. Section 2 sets up the model, section 3
solves the model by using Pontryagin’s maximum principle. Section 4 studies
the implied out-of-steady dynamics and section 5 provides some simulations.
Section 6 concludes the paper.



2 The Model

Let us define the present value of the dominant firm as follows

W= / "B = Dy - 22) — plg) Kot 0
- / P = OBy =) — (g} et

where P;, price of the goods, ¢, average cost of the dominant firm which is
assumed to be fixed (¢ > 0), Dy, real market demand of the goods, x;, real
output of the fringe firm, K, real capital stock of the dominant firm, g,
growth rate of capital stock of the dominant firm (¢, = K,/K;), p, discount
rate of the dominant firm which is assumed to be fixed (p > 0). Moreover,
we presume ¢ (0) =1, ¢ (g;) > 0 and denote F, = D,/K,, and y, = z,/K,,.
We assume that the price of the capital good (P;) is constant, which we
normalize so that P, = 1.

We specify the demand function and adjustment cost function as follows.

Dt :At(]- —CLPt); (2)
A;>0,a>0,0<P<1/a

0(g91) = g +ag}; a>0 (3)
Eq. (2) represents a linear downward-sloping demand function, and A,
denotes the ‘scale’ of the market. We assume that

We presume that only the investment by the dominant firm contribute to
the expansion of the market.! Substituting eq. (4) into eq. (2), we have

Et :Dt/Kt = B(]_ —CLPt); (5)
B>0,a>0, 0<P <1/a.

'As in Asada and Semmler (1995) we assume that this is achieved through sales strate-
gies, such as advertisement expenditure and built up customer stock.
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We suppose that the dominant firm is not financially constrained. It
freely can access capital market, but it is subject to increasing adjustment
cost, see Uzawa (1969). Eq. (3) is the standard type of adjustment cost
function. Substituting egs. (3) and (5) into eq. (1), we obtain

W= /Ooo[(Pt —o){B(1 —aP) —y:} — g1 — ag; | Kpe " dt (6)

/ f(Pyy g5 yo) Kee *'dt
0
where

f(Pt,gt;yt)E(Pt—c){B(l—aPt)—yt}—gt—agf. (7)

Next, let us consider the behavior of the fringe firm. We assume that the
fringe firm acts as a price taker. It produces output up to full capacity. In
this case, we have

i = Kpm; m >0 (8)

where Ky, is the capital stock of the fringe firm, and m is the output-capital
ratio of the fringe firm in case of full capacity utilization, which is assumed
to be constant, see Judd and Petersen (1986). Following Judd and Petersen
(1986), we assume that the fringe firm has not free access to capital markets
so that the source of finance of the investment of the fringe firm is restricted
to its internal finance. Obviously, this is the most strict form of a financial
constraint. In this case, we have

Kpy =55y = 57(P — cf)ay, (9)

where 57 is the rate of internal retention of the fringe firm (it is assumed that
it is fixed at the level 0 < 57 < 1), ¢f is the average cost of the fringe firm.
We presume that ¢ is constant and ¢; > ¢, and 74 = (P, — )z is the profit
of the fringe firm. Note that it is assumed that P, = 1, where P; is the price
of the capital good. The expression (9) is meaningful only if P, > ¢y which
we will assume henceforth. Substituting eq. (9) into eq. (8), we have

Zi}'t = ﬁ(Pt — Cf)ml't. (10)



Therefore, we obtain

g @ K,
T == - = =5¢P — — 11
Ui T Kt Sf( t Cf)m gt ( )
so that it follows
U = {57(P;, — c¢p)m — g1 }us. (12)

Although it is assumed that the fringe firm acts as a price taker, sy must
be the control variable of the fringe firm. However, in the appendix, we shall
show that the optimal policy of the fringe firm coincides with the policy
which maximizes the growth rate ;/z; so that the optimal retention rate
is fixed at the institutionally given upper bound (i.e., the corner solution)
under certain assumptions. Because of this reason, we treat sy as a constant
through time.

We introduced three asymmetries between the dominant firm and the
competitive fringe firm, namely,

1. the dominant firm is a price setter, while the fringe firm is a price taker

2. solely the investment of the dominant firm creates the market (through
sales and advertisement expenditure)

3. the dominant firm is not financially constrained but has free access
to capital markets, although the investment of the firm is subject to
increasing adjustment cost. On the other hand the fringe firm is finan-
cially constrained, so that its source of finance is restricted to internal
retention of profit

In our model, ’entry’ is expressed as the growth of the investment of
the fringe firm. As Judd and Petersen (1986) noted, ”expansion by the
competitive fringe appears to be an important source of ’entry’, since full-
scale entry by new firms into significant oligopolistic markets appears to be
fairly rare event” (pp. 368-369).

To sum up, the optimal problem of the dominant firm is.

max/ f(Pr.gy;yp) K Ptdt (13)
0

Pi,gt

subject to



Kt = gth, K() > 0 (14)

Y = {W(Pt - Cf)m — G}y, Yo > 0. (15)

At a first glance, this is a dynamic optimization problem of the single
agent, the dominant firm. However, we can interpret this model as an open-
loop Stackelberg differential game between the dominant and fringe firms.
In the appendix, we show that the optimal policy of the fringe firm which
acts as a follower is to keep sy = 57 for all # > 0 under some conditions.
In this case, the solution of the above problem becomes the solution of the
open-loop Stackelberg differential game, in which the dominant firm acts as
a leader and the fringe firm as a follower. As for the theory of differential
game, see Dockner et al, (2000).

3 The Solution of the Model

We can solve the above problem (13)-(15) by using Pontryagin’s maximum
principle?.
The current value Hamiltonain of the above problem (H,;) reads as follows.

Hy = f(P, 95 yo) K + Mg Ky (16)
+ {55 (P —cp)m — i}y
= [(P. = o{B(l —aP) —y} — g — ag;|K,
+ Mgl + {55 (B — cp)m — gitys
where \; and p; are two costate variables which correspond to two dynamic

constraints eq. (14) and eq. (15). A set of the optimal conditions for the
dominant firm reads as follows.

max H, for all ¢>0. (17)
t,9t

- O0H,

A\ = _G_KZ + pX; for all t > 0. (18)

2Chiang (1992)



oH,
fit = ——— 4 ppy for all t > 0.
Oy

lim \je ” =0
t— 00

lim e ” =0
t—o00

We have

OH,

B [B(1 = aly) =y — a(P, — ¢) BIK; + mspmy,
t

= [-2aBP, — y + (1 + ac) B|K; + usrmy;

— = [-1=20g]K; + MKy — puy

= [_(1 + QOzgt) + )\t]Kt — WtYt.

0%H,

o —2aBK, < 0
0%H,
90K, <0
dg? o
O*H, _ OH, _

dg,0P, B 0P, 0g, -
From eqs (24) - (26) we have
Hy; <0, Hy <0,

Hll H12

=H{{Hyy >0
H21 H22 114422

C|Hy 0
~| 0 Hy

_ 9%H; 2 — 9%H _ 9%H;

= O°Hi = 9 H = 0°H; =
where Hiy = 5055, He = 55t Hi = go55, Han = 55,
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(25)

(26)
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Therefore, the first order conditions for the maximization of H,>.

(—2aBP, — y, + (1 + ac) B Ky + puspmy, = 0

[—[1 + 20égt) + )\t]Kt — WY = 0
Solving eq.(28) with respect to P;, we obtain

(=K} + sy m)ys + (1 + ac) BK;,
2aBK;
(=1 + k¢sF m)ys + (1 4+ ac)B
2aB
1

1 c
e _ —1 s i _
QCLB( +l€t8f m)yt+2a+2

Pt —

where ry = /K.
Solving eq. (29) with respect to A;, we have

A = 1+ 209, + Kiys-
On the other hand, eq. (18) and eq. (19) become

).\t = (P, —c){B(-1+aP) + y
+gt 4+ agi} + (p— g0\

fu= (P, —c)Ky +{p+ g —5;(P. — cr)m}iy
From eq. (33) we have

[t K _
el (Pt—c)—t+p+gt—sf(Pt—cf)m
Kt Kt
P —c _
= ——+p+ta—5Fi—chm
t

so that we obtain

3The second order conditions are in fact satisfied because of the inequalities (27)

(30)

(31)

(32)

(33)



L L il A L 35
K ot K, ot gt ( )
P
= "4 5P —cp)m
K
Eq. (35) implies that
ke =P, —c+{p—35;(P, — cs)m}k, (36)

Next, differentiating eq. (31) with respect to time, we have

A =20 + g+ Yok (37)
Substituting equations (31) and (37) into eq. (32), we obtain

1

" 20

(P — ){B((-1+ aP,) + y + g: + g} } (38)
+(p— 1) (L + 20g; + Kyr) — Ko — Yekie

gt

Substituting eq. (30) into equations (15), (36) and (38), we arrive at the
following nonlinear three-dimensional dynamic system

(i)

) _ 1 _ 1 c
U = [sf{Qa—B(—l—l—/ﬁtsf m)yt+2—a+§—cf}m—gt]yt
= Fl(yt,/‘étagt)
(ii)
: L s my = & (39)
ky = —(— KiS¢ m — — =
! 2B IR T S T
_ 1 _ 1 c
+ [P—Sf{Qa—B(—l—FHtSfm)yt+2—a+§—0f}m]lit
= F2(yt,/'€t§P)
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(iii)

. 1 1 1 c K¢Sp m
T o
9t 2a[{ P AR AL it S & | Ul e )

5(—1 — B+ caB) —i—gt—l—agt}
+ ((p—g0)(1 + 209; + Kys)
- "ftFl(ytagt-"it) - ?JtFQ(?Jt, K P)]

= F3(yt,/‘€ta9t;9)

Eq. (39) is a system of the fundamental dynamic equations for our model.
Next, let us consider the equilibrium solution (y*, k*, g*) of the system (39)
which satisfies y* # 0. We can obtain such a solution by solving the following
system of the simultaneous equations.

(i)
_ 1 _ 1 c
sf{ﬁ(—lﬂwﬁ; S¢ m)y+%+§ —cf}m—g:()
(ii)

1 1 c
1 — = — 40
2aB( +“Sfm)y+ % 2 (40)
1

(iii)
{L(—I—FKJ Srm)y + % — g}

5(—1 — B+caB)+ g+ agZ}

+(p—9)(1+2ag+ry) =0

The economically meaningful equilibrium solution must satisfy the following
conditions.

(1)
cg <P <1/a
(i)
0 <y* < B(l—aP") (41)

11



(iii)
p>g

where

1 1 c
Pr=—(-1 3 e — 4= 42
2aB( + K" S m)y +2a+2 (42)

Inequality (41)(i) implies that the fringe firm can earn positive profit at
equilibrium. If this inequality is satisfied, we also have the inequality

c<P"<1/a (43)

because of the assumption ¢; > ¢. Inequality (43) means that the dominant
firm’s profit is also positive at equilibrium. Inequality (41) (ii) implies that
the dominant firm and the fringe firm coexist at equilibrium. Inequality (41)
(iii) ensures that the net cash flow of the dominant firm (W) becomes finite
at equilibrium.

In fact, it follows from eq. (6) that

[P, g% y")
pP—9*

at equilibrium if the inequalities (41) (i) ~ (iii) are satisfied.

Moreover, from eq. (15) we obtain

g =35;(P* —cp)m. (45)

Therefore, we get

g->0 (46)

if the inequality (41)(i) is satisfied. Substituting eq. (45) into eq. (36) and
considering k* = 0, we obtain

pP* —
A — (47)
pP—9g
Therefore, we have
K" <0 (48)

if the inequalities (41)(i) and (41)(iii) are satisfied.

12



Remark 1.
It follows from eq. (31) that the quilibrium value of A\; becomes

A = 14 209" + Ky (49)

= constant.

Therefore, eq. (20), the "transversality condition’ with respect to A, is in
fact satisfied at the equilibrium. On the other hand, the equilibrium value
of p; becomes

pi = KK = k" Koe? . (50)
Therefore, we have

lim pfet = k" Kope~ P79t = (51)

t—00

so that the transversality condition with respect to p, is also satisfied at
equilibrium if the inequality (41) (iii) is satisfied.

Next, let us consider how to solve the system of equations (40). We can
rewrite eq. (40) (ii) as follows.

Ai(y)r? + As(y)k + As(y) = 0 (52)
where
Ay (y) = —57 m?y, (53)
Asy) = Iy 4y {—L i+f—c}m (54)
W =5,BY TP TN T 9uBY Tog T2 T U
. 1 1 c
Aly)=-—5 v+, — 5 (55)

Next, we state explicitly the following assumptions.

Assumption 1

c<cr<l/a

13



In fact, it is impossible to satisfy the inequality (41)(i) if ¢; > 1/a. We
have Ay, (y) < 0 for all y > 0, and we have A3(y) > 0 if and only if 0 < y <
aB(1/a — ¢) = B(1 — ac).

The inequalities (41)(ii) and (43) imply that

0<y* < B(l—aP*) < B(1—ac). (56)

This inequality implies that only the region of y which satisfies A3(y) > 0
is economically meaningful. Therefore, we have only to consider the case of
Ai(y) < 0 and A3z(y) > 0. The solutions of eq. (52) with respect to x for
given y € (0, B(1 — ac)) are as follows

—A2(y)—\/{A2(1)}> 441 (y) As(y)

<0
_ 2A1(y)
k= —As(y +\/{A2 )}2—4A1(y) As(y) 0 (57)
2A1(y) >

We already know that only the solution such that x < 0 is economically
meaningful, so that we must select the solution such that

for y € (0, B(1 — ac)), where A;(y) < 0 and A3(y) > 0.
Next, solving eq. (40)(i) with respect to g, we obtain

{1(1+—)+1+C } (59)
=35 KSfm - -~ — Cf M.

Substituting eq. (58)into eq. (59), we have

g—sf{2lB( 1—|—/<c(y)§fm)y+2—1a+§—cf}ng(y). (60)

Substituting eq. (58) and eq. (60) into eq. (40)(iii), we obtain the
following equation with the single unknown, y.

1

B(y) = (5= 1+ KW)5 mby + 5 — & (61)

[{1 + M}y + %(—1 — B+ caB) + g(y) + ag(y)’]
+{p—g(W) H1 +2a9(y) + k(y)y} =0

14



Solving this equation with respect to y, we have the equilibrium solution
y*. Substituting y = y* into equations (57) and (59), we have the equilibrium
values k* = k(y*) and ¢g* = g(y*). There may be the multiple solutions, but
we must neglect the solutions which do not satisfy the inequalities (41)(i) ~

(ii).

4 The Dynamics

Next, let us consider the out of steady state dynamics around the equilibrium
point by assuming that the economically meaningful equilibrium exists. The
Jacobian matrix of the system (39) which is evaluated at the equilibrium
point can be written as

Fyw Fip Fis
J=|Fyn Fypn 0 (62)
Fy5 F3y Fiy

where

OF\* 5 m
) 2aB (Ki)y ’

*2

OF \* 5+m
1) ! >0,

- 2aB

15



Pus (22) = At pmm){(

K*srm 1
+ 2f )y*+§(—1—B+caB)

1

1 c Srm
LGV sm *)
t % 2}( Tt

OF3\* 1 Sgm Srm
= (5) = salsagy {05
32 K 2c 2aBy + 2 (Fi) y
1
+ —(—1—B—caB)+g*+ag*2}

2
1 1 c Srm
1 5~ s 1]
* {2aB( +“fm)y+2 2172 Y
Sfm

+ o R *) *2
(p(+)g )y* 2B )Y

Efm *2(1 — *) * *:|
- = — SrmkK — — s
L yme (p(+)g )y

- 1r( 1 1
U R —
3 20 [ \gp TH A+ 5

c
— 5}{1 + 2ag*} — (1 + 2ag" + (/ﬁ*)y*)

+ (p—g")2a+ n*y*].
(+) )

The characteristic equation of this system becomes

AR) =2l =T |=2°4+by 22+ bz +b3 =0 (63)

where

16



b1 = —traceJ = —FH — F22 — F33 (64)

Fy 0 Fy Fis Fi Fip
Fso  F33 Fs Fis Fy Fy
= [yl + i1 Fs3 — Fi3Fs + Fi1Fay — FiaolFy

b2:

bs

—detJ = —Fy1 FyF33 — Fi3F33Fy; (66)
Fi3FyF31 + FiaFy Fas
biby —bs = (—Fu — Fy — Fy3)(Folss + Fi1 L33

— FigFy + FiiFyy — FiolFy) + FiiFoFag

_|_

+F13F32F21 - F13F22F31 - F12F21F33 (67)

It is expected that under a wide range of parameter sets, the equilibrium
point will become a saddle point. In this case, we must select the convergent
path because the divergent path will not satisfy the transversality conditions
(equations (20) and (21)).

However, there may be some parameter set under which the Hopf-Bifurcation
occurs. We can make use of the following useful criterion

Theorem
Hopf-Bifurcation occurs in the system (39) at p = py > ¢* if and only if
a set, of conditions

bi(po) # 0,  ba2(po) >0, (68)
b1(po)b2(po) — bs(po) =0

and

9{b1(p)b2(p) — b3(p)}
o lp=po 7 0 (69)

are satisfied. In this case, three characteristic roots of eq. (62) become

17



iv/b2(po)
z= ¢ —iy/ba(po) (70)
—b1(po)

where ¢ = /—1.
(Proof.)
See Asada (1995) and Asada and Semmler (1995).

If the conditions (68) and (69) are satisfied at p = py > g¢*, there exist
some non-constant periodic solutions at some parameter values p which are
sufficiently close to p;. We selected the discount rate p of the dominant firm
as a bifurcation parameter following the usual procedure of the dynamic op-
timization theory, yet we could also select another parameter as a bifurcation
parameter.

At the closed orbit, y;, k; and ¢, are bounded so that A; is also bounded
from eq. (31). Therefore, at the closed orbit we have lim A\;e ?" = 0, which

t—00
implies that the transversality condition with respect to \; (eq. (20) is sat-
isfied at the closed orbit. Furthermore, we have

My = H)th = /ﬁltngfg grdr (71)
so that we have
: —pt _ 3 — fo(p—gr)dr _
tllglo [e tll)r&(KtKo)e 0 0 (72)

if p > g, for all 7 > 0 at the closed orbit. In fact, the closed orbits which
satisfy p > ¢, for all 7 > 0 exist for the parameter values p which are
sufficiently close to py when p > g* at p = py.

5 Numerical Simulations

For the convenience of the numerical study let us adopt the transformation

Kt = Kte_g*t (73)

where ¢* is the equilibrium growth rate which is endogenously determined
by the condition ¢, = &; = ¢ = 0 in eq. (39). Then the optimization problem

18



which is given by equations (13), (14), and (15) is reduced to the following
equivalent expressions

max/ (Pt,gt;yt)f(te_(p_g*)tdt (74)
Pi,g: )
subject to
Kt = (gt — g*)Kta KO > 0 (75)
U = {5¢(P — cp)m — gi}ye, 4o >0 (76)

Needless to say, at the equilibrium point of the system (15) such that

K, = 0, we have g, = g*. We assume that p > ¢*, which is in fact satisfied
in our numerical examples. We undertake a numerical study of the above
system (74)-(76) by employing a dynamic programming algorithm developed
by Griine (1997).%

Periodic Solutions With 5;=0.3, B=7.3, ¢=1.38, ¢; = 1.40, a=11.50,
m=0.3, a=0.1, p=0.12, we get the economically meaningful equilibrium so-
lution

K* = —0.276,y" = 6.09, ¢" = 0.0012,

which satisfies system (41). With starting values of 3, and K; being 6.0 and
0.2,the simulations are presented in Figure la-1c. From Figures la-1c we can
observe that for the above parameters periodic solutions arise.

“The dynamic programming algorithm of Griine (1997) was programmed in ” Maple”
and is available upon request from the authors.
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Figure la: Value function (Y; and K; on the horizontal axes stand

for y, and K, respectively)

.
ARV
} | |

Figure 1b: Paths of y; (upper part) and I%t (lower part)
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Yt
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Figure 1c: Phase diagram of y, (vertical) and I}t (horizontal)
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Convergent solutions With 5;=0.1, B=0.3, ¢=0.38, ¢; = 0.40, =4.50,
m=0.3, a=0.3, p=0.12, we get the economically meaningful equilibrium so-

lution
k"= —1.65,y" = 0.22, ¢g" = 0.005,

which satisfies system (41). With the starting values of 3, and K; being 0.8
and 2, the simulations are presented in Figure 2a-2c. We can observe that
for this second set of parameters converging solutions arise.

21



Figure2a: Value function (Y; and K; on the horizontal axes stand

for y, and K, respectively)

0.5 +

500 1000 1500 2000

Figure 2b: Paths of y; (starting value 0.8) and [zt (starting value
2)

XH
-

Figure 2c: Phase diagram of y, (vertical) and [;'t (horizontal)
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6 Conclusions

In this paper we have studied a model of pricing and investment with het-
erogenous firms. More specifically we study the interaction of a dominant
firm and a fringe firm. The dominant firm that controls the price and its
investment is financially unconstrained. The fringe firm that enters the in-
dustry and adjusts its output is financally constrained. The trend growth
in demand is determined endogenously. The formal structure of the model
is described as a Stuckelberg game between the dominant firm, the leader
and the fringe firm as follower. The model allows to study the dynamics of
market shares and the value function of both types of firms. We can show an-
alytically and numerically by employing a dynamic programming algorithm
that there are periodic as well as converging solutions feasible under certain
parameter constellations. The model thus predicts that considerable fluc-
tuations of market shares as well as the asset prices of firms might arise in
industries with heterogenous firms.
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Appendix

We here consider the dynamic optimization problem of the competitive fringe
firm explicitly.
We can express the net cash flow of the fringe firm as follows

V= /Ooo{(Pt —cp)ui(l = sp)Ye "dt (A1)

where r > 0 is the discount rate of the fringe firm which is assumed to be a
positive constant. It may not be necessarily the same as the discount rate of
the dominant firm, p. The dynamic constraint of the fringe firm is

&y = (P, — ¢p)rpspm, 1o > 0. (A2)

Here it is assumed that the source of the finance of the investment of the
fringe firm is restricted to internal finance and there is no adjustment cost of
investment for the fringe firm. The optimal policy of the fringe firm is given
by

max / (P = ep)an(1 = s ) bedt (43)
sre€[0,5¢] S
subject to
iy = (P, — cp)xpsppm, o > 0. (A4)

The movement of P; is given exogenously to the fringe firm, because P,
is determined by the dominant firm. The only control variable of the fringe
firm is the rate of internal retention (sy), and 5, is the institutionally given
upper bound of s; (it is assumed that 0 <5, < 1).

The current value Hamiltonian of this problem becomes

Hyp = (P —cp)wy(1— sp) + Ap(Pr — cp) s pem
(P —cp)ze{ (1 — sp1) + Appspem}
= (Pt—Cf)l't{(m)\ft— ]-)Sft+]-} (A5)

where Ay, is the co-state variable and a set of the optimal conditions for
the fringe firm is given as follows
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max Hy forall ¢ > 0. (A6)
sfte[oﬂgf}

OH,

Ajp= ==L 4 r)p forall t>0. (A7)
8xt
: —rt __
tllglo Ape " =0. (A8)

Henceforth, we shall only consider the case of P, —c; > 0 for all ¢ > 0.
In this case, we have

= (P, —cp)o(mApy —1) § =0 ifmhy =1 (A9)

OH
ant

Therefore, we obtain

sp ifmAp >1
Sft = {Sf tHmAse (A]_O)

and all of sp; € [0,5/] are indifferent if mAy = 1.
Next, it follows from eq. (A7) that

M = —(Pi—cp)(1—sp)
+ A= (P —cf)spmiAp
for all t>0. (A11)

Now, let us define M (t) and My(t) as follows.

M, (t) =m(1 —3y) /tOO(PT —¢p)e T Ddr (A12)
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M,y (t) = m/ (P, — cp)elProe)sym=ry(r=t) gy (A13)
t

It is obvious that 0 < M;(t) < My(t) if P —c¢; > 0 for all 7 > 0. We can
prove the following proposition under the assumption that P, —cy > 0 for
all 7 > 0.

Proposition A1l

(i) Suppose that M;(t) > 1 for all ¢ € [tg, t1] where 0 < ¢y < ¢;. Then, we
have sp, =5 for all ¢t € [ty,?;] at the optimal path of the fringe firm.

(ii)Suppose that Ms(t) < 1 for all ¢t € [to,t3] where 0 < t5, < t3. Then we
have sp; = 0 for all ¢ € [ty, t3] at the optimal path of the fringe firm.

(Proof)

We can rewrite eq. (All) as

Mot (gpe =)A= —(Pr—cs)(1 = sp1) (A14)
where
gre = (Py —cf)spm > 0. (A15)

Eq. (14) is equivalent to

SO o) = (P, — )1 spelilan (a16)

Integrating this equation, we have

lim (Apyefo toromrdary _\ e Js{fro=rdvy

T—00

=~ [ e speltan ivar (g
0
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The costate variable Ay, must be positive, since Ay, is the shadow price of
xy, and the increase of z; contributes to the increase V' (see Chiang (1992)).
In this case, it follows from eq. (A11) that

G = Ao (Pe—cep)(L—sp)
t=1— = -
"=\ Aft

< r— grt (A18)

+r =g

for all s¢; € [0,5f]. Therefore, we have

lim  (\gpelo lororhdvy

T—00

= lim (\poels (rsetare=ridry — g (A19)

T—00

It follows from equations (A17) and (A19) that

M= [P e = syl ooy (420)
0
It is clear from (A12), (A13) amd (A20) that

Mi(t) < mhg < Ma(t) (A21)

for all sp; € [0,5¢], because

0<gp =(P,—cs)spym < (P, —cp)Spm (A22)

and P; — ¢y > 0 by assumption. From the inequalities (A21) we have
mAp > 1 whenever M;(t) < 1, and we have mAy, < 1 whenever M,(t) < 1.
From these results and eq. (A10) we obtain the results of Proposition Al.

(Q.ED.)

Proposition A1l characterizes a typical bang-bang solution in which
the opposite types of corner solutions switch discontinuously. The following
result is a simple corollary of Proposition A1l.

Corollary of Proposition A1l
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(i) We have sy, = 57 for all t > 0 at the optimal path of the fringe firm if
M;(t) > 1 for all t > 0.
(ii) We have sy, = 0 for all £ > 0 at the optimal path of the fringe firm if
My(t) < 1 for all t > 0.

Above we implicitly assumed the case of M;(t) > 1 for all ¢ > 0. It is
more likely that M;(t) > 1 is satisfied the greater are (P; — ¢f) and m and
the smaller are r and 5;. In other words, if the profitability of the fringe firm
is relatively high compared with the discount rate of the fringe firm and the
institutionally given upper limit of the retention rate is relatively small, the
financially constrained fringe firm will try to accumulate the capital up to
the limit which is given by the limit of its internal finance, This conclusion
is quite reasonable from the economic point of view.

Moreover, for the special case of P, = P for all 7 > 0, the conditions
M (t) > 1 is reduced to the following simple condition.

m(l—35;)(P—cy) >r (A23)
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Remark A1l

For the inequality (A18) we have gy, < r so that we obtain
lim Ape™"™ = lim )\foeft)t{”fT_r}dT =0 (A24)
t—o0 t—o0

In other words, the transversality condition (A8) is in fact satisfied in this
case.

Remark A2
Substituting the relationship
Ty = zpelt 9 for v > ¢ (A25)

into eq. (A20), we have the following expression.

Apxy = / (Pr—cp)(1— sz)xTe”"(T’t)dT
0
=V (A26)

where V; is the 'value’ of the fringe firm at the period ¢. Therefore, we have

Vi Vi
mAp = = =q A27
ft (xt/m) Kft ft ( )
where V;/ K = qg is the "Tobin’s q’ of the fringe firm. Hence, we can
interpret eq. (A10) in terms of the Tobin’s q theory even of it is assumed
that the fringe firm has no free access to the capital market. Namely, we
have the relationship

o — Sy iqurt>1,
70 ifgu <1 (A28)

By applying essentially the same reasoning we can show that the above
co-state variable \; in fact becomes to be Tobin’s q of the dominant firm (see
Asada (1999).
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