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Abstract

In this paper we construct a model of stock market, interest rate and

output interaction which is a generalization of the well known 1981 model

of Blanchard. We allow for imperfect substitutability between stocks and

bonds in the asset market and for lagged portfolio adjustment. The reac-

tion of agents to changes in the stock market is dependent on the state of

the economy. We analyze the dynamics of the model and its local stability

properties. A discretization in terms of observable variables is derived. Some

empirical results for U.S. output, stock price and interest rate data are pre-

sented using nonlinear least square estimates. We perform some stochastic

simulations of the estimated non-linear model, obtaining distributions of the

key economic quantities, their autocorrelation structure and financial statis-

tics which are compared with historical data and RBC models. In addition,

following Mittnik and Zadrozny (1993) a VAR with confidence bands for his-

torical data is estimated and cumulative impulse-response functions compared

to the model’s impulse response functions. We find that the model captures

a number of features of the data.
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ber: A79802872.

2



1 Introduction

The interaction of asset market and output has recently become an important topic

in macroeconomic research. A large number of papers have studied the relationship

between the asset market and real activity. In this new line of research a consider-

able body of economic and financial literature has attempted to explain asset price

changes using proxies for the changes in macroeconomic fundamentals. Taking con-

temporaneous or leads of macroeconomic variables as proxies for news on expected

returns, future cash flows or as proxy for the discount rate such studies have only

been partially successful in explaining asset price movements.

At the same time there are also a large number of papers that study the impact of

financial variables on real activity. Recently, in many studies the impact of asset

prices or Tobin’s Q, interest rate spread and the term structure of the interest

rates on real activity have in particular been studied. This is a new and important

area of research in empirical macroeconomics since, beside real variables, financial

variables appear to be good explanatory variables and predictors of variations in

output (Lettau and Ludvigson 2000, 2001, 2002, Stock and Watson 1989, Estrella

and Hardouvilis 1991, Estrella and Mishkin 1997).

Researchers nowadays often employ stochastic optimal growth models of RBC (Real

Business Cycle) type for studying the relationship of asset market and real activity.

Intertemporal decisions are at the heart of the RBC methodology and it is thus

natural to study the asset market-output interaction in the context of those models.

Some advances have been made by using stochastic growth models to predict asset

prices and returns. The asset market implications of the RBC models are, for

example, studied in Rouwenhorst (1995), Danthine, Donaldson and Mehra (1992),

Lettau (1997), Lettau and Uhlig (1997), Lettau, Gong and Semmler (2001) and

3



Boldrin, Christiano and Fisher (2001). The RBC model with technology shocks as

the driving force for macroeconomic fluctuations attempts to replicate basic stylized

facts of the stock market such as the excess volatility of asset prices and returns,

the spread between asset returns (for example, between equity and risk-free assets)1

and the Sharpe-ratio as a measure of returns relative to risk.

In this paper we pursue an alternative macroeconomic modeling approach to explain

the relationship of stock price, interest rate and aggregate activity. We study a

macrodynamic model whose origin is Blanchard (1981) and was further developed

by Blanchard (1997). This alternative class of models has also been employed as a

baseline model for the study of monetary policy shocks by Mcmillan and Laumas

(1988). The Blanchard variant is, however, a perfect foresight model that exhibits

saddle path stability and only the imposition of a jump to the stable branch makes

the trajectories stable. Here we replace the perfect foresight jump variable technique

by gradual adjustments, in particular gradual expectations adjustments based on

adaptive expectations. The limiting behavior of our model which admits (amongst

other properties) cyclical paths, yields the Blanchard perfect foresight model as a

limiting case 2 when the expectations adjust infinitely fast. The model is solved

through discrete time approximation and empirically estimated for US time series

data.

The remainder of the paper is organized as follows. Section 2 gives a more detailed

overview of macroeconomic literature on the stock market and discusses basic styl-

ized facts. Section 3 reviews and presents our generalized variant of the Blanchard

model. The implied dynamics are studied in section 4. Section 5 sets out the dis-

1For the latter, see Mehra and Prescott (1985).

2Further discussion of this type of treatment of saddlepath stability can be found in Flaschel,

Franke and Semmler (1997).
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cretization of the model that is employed and explains the estimation methodology.

Section 6 sets out some econometric results employing US time series data by em-

ploying nonlinear least squares methodology.3 Section 7 discusses some stochastic

simulations and impulse response analysis of the estimated model. Section 8 pro-

vides some conclusions. The mathematical proofs are collected in the appendices.

2 Stylized facts and macromodels

A large number of macroeconometric studies on the stock market and output are

based on the consumption based capital asset pricing (CCAP) model. Econometric

literature has shown that good predictors of stock prices and returns have proved

to be dividends, earnings and growth rate of real output (Fama and French 1988,

Fama and French 1989, Fama 1990), and to some extent inflation rates (Schwert

1989). Moreover, financial variables such as interest rate spread and term structure

of interest rates have also been significant in predicting stock prices and stock returns

(Fama 1990, Schwert 1990). Other balance sheet variables, such as firms’ leverage

ratio, net worth and liquidity have been successful to a lesser extent (Schwert 1990).

There is another group of macroeconometric studies that departs from the market

efficiency hypothesis and adopts the overreaction hypothesis when employing macro

variables as predictors for stock prices and stock returns (Schiller 1991, Summers

1986, Poterba and Summers 1988). Moreover, in this tradition the role of shocks,

monetary, fiscal and external shocks are seen to be relevant (Cutler, Poterba, Sum-

mers 1989). Although in the long run stock prices may revert to their mean deter-

3Additional estimation results using Smooth Transition Regression (STR) methodology are re-

ported in Chiarella, Semmler and Mittnik (1997).
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mined by maroeconomic proxies of fundamentals, in the short run speculative forces

may be more relevant than prospective yields. This view was, with some success,

tested in the mean reversion hypothesis of Poterba and Summers (1988).4

For the reverse relation, the impact of financial variables on real activity, there is

also a considerable number of recent econometric studies. The early work by Burns

and Mitchel (1943) initiated studies on leading indicators to predict changes in

real activity. In the more recent business cycle literature the emphasis has been on

financial variables. Recent contributions by Stock and Watson (1989), Jaeger (1991)

and Plosser and Rouwenhorst (1994) show that financial variables, in particular

interest rates (interest rate spread and the term structure of interest rates) as well

as stock returns, lead turning points in aggregate activity and are able to capture

future development of real activity. 5

There is also econometric work on the stock market and output interaction in the

tradition of Hamilton’s regime switching models. The idea of Hamilton (Hamilton,

1989) that output follows two different autoregressions depending on whether the

economy is in an expanding or contracting regime is extended to a study of the stock

market (Hamilton and Lin, 1996). Connecting to the above work by Schwert it is

presumed that time periods of high volatility may interchange with periods of low

volatility of stock returns depending on whether the economy is in a recession or

4The overreaction of equity prices in relation to news on fundamentals originates, in this view,

in positive feedback mechanisms operating in financial markets. Important contributions have

been made that study the social interaction of heterogeneous equity traders, for example the

interaction of fundamentalist and chartists (Day and Huang 1990, Chiarella 1992 and Aoki 1997)

or arbitrageurs and noise traders (DeLong, Shleifer, Summers, and Waldmann 1990). These are

however models with short-run asset price dynamics which are not yet well connected to changes

in long-run macro variables.

5See, in particular, Estrella and Mishkin (1997).

6



expansion. On the other hand, an important factor for the output at business cycle

frequency appears to be the state of the stock market. In their version Hamilton and

Lin (1996) show some predictive power of the stock market for output and, using

a regime change model, the state of the economy as predictor for the volatility of

stock returns.

In general, however, it is well recognized that the studies of the interaction of finan-

cial and real variables have difficulties in fully capturing the lead and lag patterns in

financial and real variables when tested econometrically. To overcome this deficiency,

the use of the VAR framework to test for lead and lag patterns has been appealing

but the VAR, as the regime change models, do not reveal important structural re-

lations. Dynamic macromodels are needed to provide some rationale for structural

relationships and to highlight relevant restrictions on empirical tests.

In contrasting stylized facts and macro models we will focus on the above two types

of dynamic macro models which imply some predictions for the asset market-output

interaction. We elaborate on stochastic growth models of RBC type and on a variant

of an IS-LM version with money market and stock market. Both variants imply some

predictions for the interaction of asset market and real activity.

It has been a tradition for the RBC methodology to contrast the historical with the

model’s times series and to demonstrate to what extend the model’s time series can

mimic historical data. Models are required to match statistical regularities of actual

time series in terms of the first and second moments, cross correlation with output

or in terms of impulse-response functions. We thus want to review some stylized

facts on macroeconomic fluctuations and asset market against which models can be

measured.
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In table 1 we present summary statistics of US time series on GNP, consumption,

investment, employment treasury bill rate, equity return and the Sharpe-ratio. The

latter measure of financial market performance has recently become a quite con-

venient measure to match theory and facts, since, as a measure of the risk-return

trade-off, the Sharpe-ratio captures both excess returns and excess volatility6. We

employ quarterly data.

Table 1: Stylized Facts on Real Variables and Asset Markets: US Data 7

V ariable Std. dev. Mean

GNP 0.97

Consumption 0.77

Investment 2.88

Employment 0.46

T-bill 0.86 0.18

Stock-return 7.53 2.17

Equity premium 7.42 1.99

Sharpe-ratio 0.27

The hierarchy of volatility measured by the standard deviation is the usual one

for US data. As known from the excess volatility debate (Shiller 1991) the stock

return exhibits the strongest volatility. The second strongest volatility is exhibited

by investment followed by consumption.

6See Lettau (1997), Lettau and Uhlig (1997) and Lettau, Semmler and Gong (2001) where the

Sharpe-ratio as measure to match theory and facts in the financial market is employed.

7The real variables are measured in growth rates, 1970.1-1993.3. Data are taken from Canova and

Nicola (1995)(the exact time series can be found in Citibase (1995); the notations are GNP82,

GC82, GIN82, Lhours (man hours employed per week)). Asset market data represent real returns

and are from Lettau, Gong and Semmler (2001) and represent 1947.1-1993.3. All data are at

quarterly frequency. Asset market units are per cent per quarter. The T-bill rate is the 3 months

T-bill rate. The Sharpe-ratio is the mean of the equity premium divided by it’s standard deviation.

8



In addition the equity return carries an equity premium as compared to the risk

free interest rate. This excess return was first stated by Mehra and Prescott (1985)

as the equity premium puzzle. As can be observed the market return exceeds by

far the return from the risk-free rate. As shown in a variety of recent papers8

the RBC modeling approach insufficiently explains the equity premium and the

excess volatility of equity return and thus the Sharpe-ratio. The standard RBC

asset market models employ the Solow-residual as technology shocks – as impulse

dynamics. For given variance of the technology shock, however, the standard utility

functions and no adjustment costs asset market facts are hard to match (for details

see Lettau, Gong and Semmler 2001).

In summary, for the actual time series compared to the data from the standard

RBC model we observe a larger equity return and stronger volatility of equity prices

in contrast to the risk free rate. These two facts are measured by the Sharpe-ratio

which basically cannot be matched by standard RBC models.9 Moreover, it is worth

noting that in stochastic growth models there is only a one- sided relationship. Real

shocks affect stock prices and returns but shocks to asset prices – or overreaction of

asset prices relative to changes in fundamentals – have no effects on real activity. The

asset market is always cleared and there are no feedback mechanisms to propagate

financial shocks to the real side.

In this paper, we thus employ an alternative framework, a modified macromodel

8See, for example, Rouwenhorst (1995), Danthine, Donaldson and Mehra (1992), Boldrin, Chris-

tiano and Fisher (2001), Lettau (1997) , Lettau and Uhlig (1997) and Lettau, Semmler and Gong

(2001).

9Danthinee et al. who study the equity return also state:“To the equity premium and risk free

rate puzzles, we add an excess volatility puzzle: the essential inability of the (RBC ) models to

replicate the observation that the market rate of return is fundamentally more volatile than the

national product” (Danthinee et.al. 1992: 531).
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by Blanchard (1981) for studying the stock market-output interaction. Here, there

are, in principle, cross effects between asset prices and real activity. Along the line

of Tobin (1969) it is presumed that output, through consumption and investment

functions, is driven by real activity as well as stock prices. As many studies have

recently shown, there appears to be some correlation of output and stock prices

through consumption and investment behaviors, although a contemporaneous re-

lation of output and the stock price may be weak. When lags are introduced and

Tobin’s Q is measured as marginal Q, as some studies do (Abel and Blanchard 1984),

the relationship appears to improve.

On the other hand, since the Blanchard macromodel is a rational expectations model

shocks to macroeconomic variables cause the stock price to jump whilst keeping the

output fixed (rather than allowing it to adjust gradually). Thus because the stock

price jumps there is no feedback effect on output. Once the stock price is on the

stable branch output also then gradually adjusts. 10 The stock price overshoots

its steady state value during its jump and then decreases thereafter. Blanchard’s

macromodel thus predicts that unless unanticipated shocks occur, the stock price

moves monotonicly toward a point of rest or if it is there it will stay there. Thus,

in fact, only exogenous shocks will move stock prices. This line of research has

been econometrically pursued in papers by Summers (1986), Cutler, Poterba and

Summers (1989) and McMillan and Laumas (1988). As in other rational expecta-

tions models, in its basic version, no feedback mechanisms exist that can lead to an

endogenous propagation of shocks and fluctuations.

10Blanchard states: “Following a standard if not entirely convincing practice, I shall assume that

q always adjusts so as to leave the economy on the stable path to the equilibrium” (Blanchard

1981:135); see also p. 136 where Blanchard discusses the response of the stock price to shocks, for

example, unanticipated monetary and fiscal shocks. For a detailed discussion on policy shocks in

the context of the Blanchard model, see McMillan and Laumas (1988).
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Based on the Blanchard variant the present paper pursues a modeling strategy for

the relationship of asset market and real activity in order to overcome shortcomings

of both the RBC model and the rational expectations version of a macromodel. In

our model, unlike in the RBC type stochastic growth model, the financial market

will impact the real activity and different from the Blanchard model, stock price

jumps to their stable path are avoided by positing gradual adjustments of stock

prices and output. This, in turn, will give rise to strong endogenous propagation

mechanisms and fluctuations of both stock prices and output.

3 A generalized Blanchard model

We follow more or less the notation of Blanchard (1981). Also we focus in this study

only on the case in which output prices are fixed.11 Thus q is the value of the stock

market, y is income, g the index of fiscal expenditure so that aggregate expenditure

d12 is given by

d = aq + βy + g ( a > 0, 0 ≤ β < 1). (3.1)

Output adjusts to changes in aggregate expenditure with a delay according to

ẏ = κy(d− y) = κy(aq − by + g), (3.2)

where b ≡ 1 − β so that 0 < b ≤ 1 and the speed of output adjustment κy > 0.

11The inclusion of a slowly varying output price, by assuming some sluggish price adjustment as

in Rotemberg and Woodford (1997), would presumably not change the results significantly.

12The impact of the stock market on consumption as well as investment spending has been thor-

oughly studied in recent papers by Lettau and Ludvigson (2000, 2002)
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From the standard assumption of LM equilibrium in the asset market we can write

i = cy − h(m− p) (c > 0, h > 0), (3.3)

where i denotes the short term rate of interest, m and p the logarithms of nominal

money and prices respectively.

Real profit is given by

π = α0 + α1y, (α1 ≥ 0), (3.4)

so that (x + α0 + α1y)/q is the instantaneous expected real rate of return from

holding shares where we use x to denote the instantaneous expected change in the

value of the stock market. Hence the instantaneous differential between returns on

shares and returns on short term bonds (i.e. the instantaneously maturing bond) is

given by

ε =
x+ α0 + α1y

q
− i. (3.5)

A key assumption of Blanchard’s approach is that this differential is always zero13.

This is tantamount to assuming that the two financial assets are regarded as perfect

substitutes and that any differential between them is arbitraged away instanta-

neously. However in our more general treatment we allow for a degree of imperfect

substitutability between the two assets and posit that the excess demand for stocks

(qd) is a monotonically increasing function of the instantaneous differential between

ε and the long run constant equity premium ε̄14. We further assume that the stock

market adjusts to the excess demand with a speed of adjustment that also depends

13Note that ε may be defined as net of a constant risk premium on equity. Since we want to focus

on the equity price and equity premium we subsequently do not consider the term structure of

interest rates.

14The existence of such a long run constant equity premium is another assumption of our model.
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on the differential (ε− ε̄). All of these effects can be captured by writing adjustment

in the stock market as

q̇ = κq(ε− ε̄).(ε− ε̄) (3.6)

where κq(> 0) is the speed of adjustment of the stock market to excess demand

for stocks and is itself assumed to be a function of the excess demand. Blanchard

assumes that κq = ∞ so that from equations (3.5) and (3.6) we recover

x+ α0 + α1y

q
= i+ ε̄ (3.7)

for all time, one of the key assumptions of Blanchard’s original analysis15. However

Beja and Goldman (1980) and Damodaran (1993) advance arguments as to why κq

should not be set to ∞ and we shall focus here on the implications of this assumption.

The final building block of the model is the same rule for the formation of expecta-

tions about the expected change in the value of the stock market. Here we assume

the adaptive expectations scheme

ẋ = κx(q̇ − x), (3.8)

where κx(> 0) is the speed of revision of expectations. The inverse κ−1
x may be

interpreted as the time lag in adjustment of expectations. By assuming this time

lag to be zero (i.e. κx = ∞) equation (3.8) reduces to the perfect foresight case

x = q̇, (3.9)

which is also a key assumption in Blanchard’s model.

Our most radical departure from the original Blanchard framework is our assumption

about the reaction coefficient κq, which changes as a function of market conditions.

15Note that Blanchard’s analysis has ε̄ = 0.
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When market conditions are such that q is close to its steady state q0 (i.e. ε is close

to ε̄), the reaction coefficient κq is rather high so that agents are reacting strongly

to the return differential. However the high κq (coupled with the high κx) causes

the steady state to be locally unstable and hence leads to a rise (or fall) in the

stock market. Agents initially are prepared to go with this general movement in the

stock market, however as it proceeds further and further they are conscious that the

economy is moving ever further from its steady state (of which they are assumed to

have some reasonable idea) and they start to react more cautiously to the return

differential. This cautiousness is reflected in a gradual lowering of the value of the

coefficient κq, which eventually becomes sufficiently low to cause a turn-around in

the dynamics that once again become stable towards the steady state. Eventually κq

returns to former high levels and the possibility of another upward (or downward)

stock market movement is established. The behavior of κq as a function of the

difference in ε from its steady state value ε̄ is illustrated in Figure 1. We have drawn

this function somewhat skewed to the right to indicate greater (less) caution when

the share market is below (above) its steady state value. This relation may also

exhibit both euphoric (the higher graph) and depressed (the lower graph) states

depending on particular news events arriving in the market.
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(ε − ε̄)0

euphoric news events

depressing news events

Figure 1: The Behaviour of the Reaction Coefficient κq

1

Figure 1: The Behaviour of the Reaction Coefficient κq

We thus have fast adaptively formed expectations and a fast adjustment of share

prices to the return differential close to the steady state. However, far from the

steady state we assume that agents are aware that the economy is approaching some

sort of extreme situation and become increasingly cautious and thus only more and

more sluggishly continue to adjust into a direction that they believe cannot continue

for much longer.

Consider more closely the functional form κq(ε − ε̄) · (ε − ε̄) with κq having the

functional form shown in figure 1. Effectively the monotonically increasing function

(ε− ε̄) is being multiplied by a high value for (ε ' ε̄) and low values for ε far from ε̄.

Hence the combined functional form has the general shape shown in figure 2. It will

be convenient to express the combined functional form in terms of just one function

f , which with slight abuse of notation we define according to

κq(ε− ε̄) · (ε− ε̄) = κqf(ε− ε̄). (3.10)

We stress that κq on the right-hand side is a constant which we have ”pulled out” of

the function f in order to make transparent the speed of adjustment at the steady
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state. The essential features of the function f are its lower slope far from steady

state compared to its slope at steady state. It is also possible, depending on the

function κq, for f to have some turning points and these could lead to a richer

dynamic behavior. However in this study we shall concentrate only on the case

where f ends up having the slope shown in figure 2.

f

ε − ε̄

Figure 1: The Function f

1

Figure 2: The Function f

Our generalized Blanchard model consists of equations (3.2), (3.6) and (3.8) which

we rewrite here as the three-dimensional dynamical system

ẏ = κy(aq − by + g), (3.11)

q̇ = κqf(
x+ α0 + α1y

q
− cy + δ

′

), (3.12)

ẋ = κx(κqf(
x+ α0 + α1y

q
− cy + δ

′

) − x), (3.13)

where we write δ ≡ h(m − p) and δ
′

= δ − ε̄. The equilibrium of the system

(3.11)-(3.13) is given by

x̄ = 0, (3.14)
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and the values (ȳ, q̄) that solve

aq − by + g = 0, (3.15)

α0 + α1y

q
= cy − δ

′

. (3.16)

For the equilibrium of (3.11)-(3.13), two sets (ȳ, q̄) are possible and are given by

ȳ =
ψ ±

√

ψ2 − 4bc(gδ′ − aα0)

2bc
, (3.17)

q̄ =
bȳ − g

a
, (3.18)

where ψ ≡ gc + bδ
′

+ aα1. Provided we assume δ > 0 there will always be at least

one positive pair (ȳ, q̄) which is the equilibrium considered by Blanchard.

The determination of (ȳ, q̄) is illustrated in figure 3. Quite a number of subcases

are possible depending upon what we assume about the sign of α0, the relationship

of h(m − p)/c (≡ yi) to −α0/α1 (≡ yπ), the relationship of b/g to −α0/α1 and

the relationship of g/a to α0/hδ
′

. We assume m − p > 0 as it seems reasonable

that the price level would be less than the nominal stock of money. Note that

this assumption also implies that y will be the positive level of output at which

the nominal interest rate falls to zero. Blanchard’s famous “bad news” and “good

news” scenarios revolve around the relationship between yπ and yi. In figure 3 we

will illustrate the 3 cases (a) yi > yπ (the “bad news” case), (b) yi < yπ (the “good

news” case) and (c) yi = yπ (the “neutral” case). In cases (a) and (b) we show the

second, lower, equilibrium point as being in the positive quadrant though this need

not necessarily be the case. In case (b) we have assumed that g is sufficiently large

that the two equilibria exist. In this paper we shall focus on the dynamics around

the positive equilibria E+
g , E+

b obtained by taking the positive root in (3.17).

17
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(a): A uniquely determined Steady State in Blanchard’s Bad News Case
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q=
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∏
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(b): Two or No Steady States in Blanchard’s Good News Case

Figure 3:

Before proceeding to discuss the dynamics of the system (3.11)-(3.13) we first show

how the original Blanchard model can be recovered from it. First we assume perfect

18



foresight by letting κx → ∞ which by (3.13) yields

q̇ = x. (3.19)

Then we assume instantaneous adjustment to excess demand in the stock market

by letting κq → ∞ in (3.12) and also set ε̄ = 0 . Hence

x+ α0 + α1y

q
= cy − h(m− p). (3.20)

Combining the last two equations yields the differential equation for q, viz

q̇ = q[cy − h(m− p)] − α0 − α1y. (3.21)

The differential equations (3.11) and (3.21) for y and q constitute the dynamical

system studied by Blanchard. In appendix 1 we outline the Jacobian analysis which

indicates that the equilibria E+
b , E+

g in figures 3(a) and 3(b) are saddle points in this

perfect foresight case. It may be worth noting in passing that if the jump-variable

procedure that is used by Blanchard is not adopted then the global dynamics need

to be considered. This means taking into account the second equilibrium points

E−

b , E−

g which can become attractors under certain circumstances, as discussed in

Chiarella, Flaschel and Semmler (2001). However we do not undertake this more

detailed analysis here as our main purpose is to understand and estimate the three

dimensional generalized Blanchard model given by the differential system (3.11)–

(3.13).

4 The dynamics of the model

The differential system (3.11)-(3.13) is nonlinear because of the assumed shape of

the function f and also because of the quotient (x+α0 +α1y)/q. To understand its
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dynamics we first calculate its Jacobian at an equilibrium point, and this turns out

to be

J3 =













−κyb κya 0

λκq

(

α1

q
− c

)

−λκq(cy − δ
′

)/q λκq/q

λκxκq

(

α1

q
− c

)

−λκxκq(cy − δ
′

)/q κx(λκq/q − 1)













. (4.1)

Here we have set λ ≡ f ′(0) and for notational convenience have omitted the bars

indicating equilibrium values. Note also that we have made use of the relation (3.20)

to simplify the expression for the elements J22 and J32. The characteristic equation

of J3 turns out to be

γ3 + A1γ
2 + A2γ + A3 = 0, (4.2)

where

A1 = κyb+
λκq

q̄
(cȳ − δ

′

) − κy

(

λκq

q̄
− 1

)

,

A2 = −
λκyκq

q̄
+ κx

[

λκq

q̄
(cȳ − δ

′

) − κyb

(

λκq

q̄
− 1

)]

,

A3 =
λκyκq

q
[b(cȳ − δ

′

) + a(cq̄ − α1)].

At the equilibrium E+
g , E+

b it turns out that A3 > 0 which indicates that at these

equilibrium points the real parts of the eigenvalues of J3 have the sign distribution

(−,−,−) or (−,+,+). Chiarella, Flaschel and Semmler (2001) show that the pa-

rameter κx can act as a bifurcation parameter and there exists a value κ∗

x such that

the sign distribution is (−,−,−) for κx < κ∗x and (−,+,+) for κx > κ∗x. Further-

more the conditions of the Hopf–bifurcation theorem are satisfied at κ∗

x. Thus the

qualitative behavior around the equilibrium will be as shown in figure 4 under the

assumption that the limit cycle born at κ∗

x is stable. For κx sufficiently large the dy-

namics consists locally of a stable and one unstable manifold as shown in figure 3b.

For a wide range of parameter values the nonlinearity of the function f acts to turn
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the locally unstable motion on the unstable manifold into motion stable to a limit

cycle as shown in figure 3b. Chiarella, Flaschel and Semmler (2001) demonstrate

this result for a stylized form of the function κq(ε− ε̄).

(a): κx < κ∗x. (b):κx > κ∗x.

Figure 4:

The traditional analysis of perfect foresight models as undertaken by Blanchard

(1981) (and many other authors) collapses the two differential equations (3.12)-

(3.13) into the one differential equation (3.21) and therefore from the outset loses

sight of the fact that the two–dimensional perfect foresight system is in fact the lim-

iting case of a three–dimensional adaptive expectations system. A detailed analysis

of how this limiting process works in the case of models of monetary dynamics is

given in Chiarella (1986) and in Flaschel, Franke and Semmler (1997). The limiting

process is of the same qualitative nature in our generalized Blanchard model as is

demonstrated in Chiarella, Flaschel and Semmler (2001). It is also worth noting

that the adoption of the three–dimensional viewpoint obviates the need to impose

the arbitrary jump–variable technique to ensure that the economy arrives on a stable

path from any arbitrary initial conditions. We have cited earlier Blanchard’s own

comment on the inadequacy of that procedure.
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5 Discrete time form for observable variables

In order to estimate the system (3.11)-(3.13) we need to express it as a dynamical

system solely in terms of the observable variables y and q. It is possible to derive

both a bivariate dynamical system in y and q and a univariate dynamical system in

either y or q. We will derive here the discrete time form for a bivariate system in q

and y as this will allow us to use observations on both output and the stock market

in our estimation procedures.

By eliminating the expectational variable x from the system (3.11) –(3.13) we obtain

the bivariate dynamical system in y and q

ẏ = κy(aq − by + g), (5.1)

q̈ = −
φ1

φ3

ẏ +
(κx − φ2)

φ3

q̇ −
κx

φ3

φ(y, q, q̇). (5.2)

After some straight forward manipulations we find that the two dimensional dy-

namical system (5.1)–(5.2) may be reduced to the third order differential equation

(representing a univariate process),

...
y = −κy

[

b+ a
H(1)

H(3)

]

ẏ +
(κx −H(2))

H(3)
[κyby + ÿ] −

aκyκx

H(3)
G(y, ẏ, ÿ). (5.3)

The functions φ, G, H (i) are defined as

φ(y, q, q̇) = −α0 − α1y + q[cy − δ
′

+ f−1(q̇/κq)], (5.4)

G(y, ẏ, ÿ) = φ

(

y,
b

a
y +

1

aκy

ẏ −
g

a
,
b

a
ẏ +

1

aκy

ÿ

)

, (5.5)

H(i)(y, ẏ, ÿ) = φi

(

y,
b

a
y +

1

aκy

ẏ −
g

a
,
b

a
ẏ +

1

aκy

ÿ

)

, (i = 1, 2, 3) (5.6)

where φi denotes the partial derivative of φ with respect to its ith argument.

In our empirical study and in our numerical simulations we take

f(x) = f̄ tanh(λx), (λ > 0, f̄ > 0). (5.7)
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The expressions for φ, G and H i implied by equation (5.7) are given below.

For an empirical estimation we can discretize (5.1)–(5.2) and (5.4)–(5.6) by using

the standard discretizations 16

ż(t) =
z(t) − z(t− ∆t)

∆t
, (5.8)

z̈(t) =
z(t) − 2z(t− ∆t) + z(t− 2∆t)

(∆t)2
, (5.9)

...
z(t) =

z(t) − 3z(t− ∆t) + 3z(t− 2∆t) − z(t− 3∆t)

(∆t)3
. (5.10)

Employing (5.8) the discrete time form of (5.1) can be written as

yt = yt−h + hκy(aqt−h − byt−h + g), (5.11)

where the step size h = ∆t.

The discrete-time form of (5.2) can be derived by using the discretisation (5.9), thus

qt = 2qt−h − qt−2h − h2φ1

φ3

ẏ + h2κx − φ2

φ3

q̇ −
κxh

2φ(yt−h, qt−h, q̇)

φ3

, (5.12)

where again ẏ, q̇ can be approximated by (5.8). Thus we set

ẏ =
yt−h − yt−2h

h
(5.13)

and

q̇ =
qt−h − qt−2h

h
. (5.14)

Using the form (5.7) for f it turns out that

φ(y, q, q̇) = −α0 − α1y + q

[

cy − δ
′

+
1

2λ
ln

(

κqf̄ + q̇

κqf̄ − q̇

)]

, (5.15)

16Since the differential equations(5.2), (5.3)will be estimated with the addition of noise terms we

are in fact dealing with the discretization of stochastic differential equations (see Kloeden and

Platen (1995)).The discretization used here corresponds to the simple Euler-Maruyama scheme.

In a separate study we have used the higher order Milstein scheme, but this does not appear to

alter greatly the results; see Chiarella, Semmler and Zhu (2002)
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and

φ1(y, q, q̇) = −α1 + cq, (5.16)

φ2(y, q, q̇) = cy − δ
′

+
1

2λ
ln

(

κqf̄ + q̇

κqf̄ − q̇
,

)

(5.17)

φ3(y, q, q̇) =
q

λ

κqf̄

(κqf̄ − q̇)(κqf̄ + q̇)
. (5.18)

Use of (5.13)–(5.18) in (5.12) gives us the discrete time form of the stock price

equation. Note that in the bivariate model (5.11), (5.12) the output equation (5.11)

is linear with one lag whereas the stock price equation (5.12) is nonlinear with two

lags. The univariate model (5.3) can be discretized in a similar way using (5.8)–

(5.10) giving then rise to a nonlinear difference equation in y with three lags. A

related nonlinear difference equation for the stock price, q, is more tedious to derive

and will here be left aside.

Since in a univariate representation of our model, as in (5.3), or in a dynamic

equation for stock price, q, some information will be lost, we rather prefer to pursue

an estimation of the bivariate system (5.11)–(5.12) for the observable variables y

and q.

6 Empirical results for US time series data

We estimate the parameters of the nonlinear bivariate system (5.11)–(5.12) by em-

ploying again NLLS estimation. For the US data discussed in Section 2, estimation

results are reported below.17 We employ for our estimations monthly data on real

stock price and real output.

17The above model (5.11)-(5.12), however, constrains the lag structure. There are many frame-

works within which nonlinearities in economic time series can be tested with longer lag structure.

Threshold models may be useful for this purpose, see Tong (1990), and Granger and Teräsvirta
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We directly estimate the parameters of the discrete time nonlinear bivariate system

(5.11)–(5.12) with the number of lags constrained to what arise by using the Euler-

Maruyama scheme. The estimated parameters, obtained from the BP- filtered18

data, are reported in Table 2.

Table 2: Parameter Estimates, US: 1960.01-1993.10, Detrended Data 19

Economic Structure Speeds of Adjustment Government Policy

a = 0.122 κy = 0.185 g = 0.000

b = 0.370 κq = 0.240 δ = −6.670

α0 = 0.065 κx = 1.120

α1 = 6.620

c = 1.568

λ = 0.036

f̄ = 0.205

It is noticeable from Table 2 that all parameters have the predicted sign, except

δ. Note, however, that this may be due to the fact that δ is taken as a constant.

Also the estimates of the speeds of adjustment have the expected positive sign. One

can observe the hierarchy in the speed of adjustments that also other studies would

(1993). We, therefore have also used a more data based methodology and let the data determine

the type of nonlinearities and the lag structure. In Chiarella, Semmler and Mittnik (1997) we

report for U.S. data the results of a regime change model of Smooth Transition Regression type

with an unconstrained lag structure. Moreover, there are also estimation results reported for the

above model (5.11)-(5.12) for a European data set.

18The Band-Pass filter developed and applied by Baxter and King (1995) has been employed in

order to detrend the data.

19We employ monthly data which are taken from the Hamilton and Lin (1996) data set. As real

stock price we take the Standard & Poor’s Composite index deflated by the consumer price. For

the output variable we take the monthly production index. All variables here are detrended by the

BP-filter. The standard errors for the parameters could not be computed since the Hessian matrix

was not positive definite.
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suggest. In particular the slow output adjustment compared to the speed of stock

price adjustment seems to match empirical facts.

In model (5.11)-(5.12) the term δ = h(m−p) is fixed. Since historically real balances

might substantially vary we also undertake, for the BP-filtered data, estimations by

including real balances as exogenous variable. We use the time series of real balances

to form δt = h(mt −pt) as an exogenous sequence.20 In addition, we can account for

the long run equity premium ε̄. The results with real balances and equity premium

are presented in table 3.

Table 3: Parameter Estimates, US: 1960.01-1993.10, Detrended Data*

Economic Structure Speeds of Adjustment Government Policy

a = 0.122 κy = 0.285 g = 0.000

b = 0.370 κq = 1.998

α0 = 0.397 κx = 1.798

α1 = 0.05

c = 0.400

h = 0.100

f̄ = 0.025

ε = 0.035

∗ In this variant the estimation is undertaken with real balances as a time series and a term for

the equity premium.

In the variant reported in table 3, the effect of the equity premium is picked up

in the parameter ε = 0 .035. The terms for the real balances, h, and the equity

premium now have the correct signs. Note that the parameters (a and b) for the

output equation do not change for the variants of tables 2 and 3.

20The data for the time series of mt − pt are obtained from Citibase (1995).
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In terms of the mean square prediction error (MSPE) for the model reported in

tables 2 and 3 we obtain the results of table 4.

Table 4: MSPE for the two variants

variant 1 variant 2

MSPE for stock price 17.455 15.4

MSPE for output 0.545 0.545

The MSPE improves for the stock price as one moves from the variant 1 to variant 2

where in the variant 2 a time series for the real balances is employed and a term for

the risk premium is implicitly estimated. We want to note, however, that we cannot

measure the size of the risk premium directly from our coefficient ε, since we are

using detrended data.21 Note that the MSPE for output does not change since the

estimated parameters for the output equation is independent of the specification of

the stock price equation.

21We also undertook estimations for first differenced data but when we performed the estimations

by including the real balances as exogenous variable the estimations always became unstable, so we

abandoned this approach. The instability of the estimates is presumably due to the fact that first

differencing of the time series, particularly for the stock price, makes the time series very volatile.
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7 Stochastic simulations and impulse response

functions

In order to evaluate further the model’s match with the data we, first, perform some

simulation experiments with the estimated non-linear model and second, estimate a

VAR and compare the impulse response functions obtained from the data with those

from the model. The main aim of the simulations is to see how well the estimated

model can reproduce the stylized facts on real and financial times series data as

presented in section 2 . We use the estimated parameters reported in Table 3 for

the variant 2 referred to in section 6, namely the estimation that used the historical

time series for real balances. In section 7.1 we use the estimated parameters in a

stochastic version of the original set of differential equations (5..12)- (5..14) for y,

q and x. Here we focus on the correlation and autocorrelation features and the

financial statistics such as the volatility of asset prices and returns, equity premium

and the Sharpe-ratio of the model. In section 7.2 we study the impulse-response

functions from a VAR estimation of the data and compare these with the responses

of the model to similar shocks.

7.1 Stochastic simulations

We suppose that external noise processes are impinging on both the output market

and the stock market. We capture the resulting non-linear stochastic dynamics by
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writing stochastic differential equation versions of (5..12)-(5..14) as

dy = κy(aq − by + g)dt+ sydwy, (7.1)

dq = κqf(ξ)dt+ sqdwq, (7.2)

dx = κx(κqf(ξ) − x)dt+ κxsqdwq, (7.3)

where we set ξ ≡ (x+α0 +α1y)/q− cy+ δ′; dwy, dwq are assumed to be increments

of independent Wiener processes and sy, sq denote the standard deviations per unit

time (here annualised) of the direct changes in y and changes in q over dt due to the

external noise processes.

We have used the estimates in table 3, together with the historical time series for

real balances and generated 1,000,000 paths for dwy and dwq over a period of 35

years taking dt = one month . Along each path we also calculate the interest rate

and equity premium according to equations (3.3) and (3.5) respectively. In our

simulations we have taken the standard deviations of the external noise processes

to be

sy = 0.022 and sq = 0.154. (7.4)

We stress that sy and sq do not correspond to the standard deviation of the y and q

distributions since the external noises feed through equations (7.1)-(7.3) which are

interlinked, here in a nonlinear manner. In fact, from the simulation, we obtained

different values of standard deviation from the q and y distributions with the corre-

sponding annualised values being σy = 0.0473 and σq = 0.150. They are of the same

order and with a similar ratio compared with the annualised values calculated from

the historical time series of y and q respectively namely σy = 0.051 and σq = 0.20.
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Profiles for simulated results
Parameters using table 4 except c = 0.1
Simulation number 1,000,000

q        3.200596       0.887594      -0.005210       0.049420
y        1.055345       0.283314      -0.005814       0.050873

Steady State values for q and y are 3.20043  and 1.05529 respectively  (a): Distribution of q and y at final time

 

(b): Distribution of the premium and interest rate at final time

Figure 5:
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Figure 6: Distribution of q − y correlation q autocorrelation and y autocorrelation
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Figure 7: Distribution of correlation between the changes in q and y, the autocor-

relation for changes in q and changes in y
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From the 1,000,000 simulations we calculated a number of statistics. In figure 5

(a)-(b) we plot the distribution of y, q, i and ε at final time. The distribution of y, q

and ε seem to be centered around reasonable values, however the nominal interest

rate seems to be centered around rather high values, perhaps reflecting the high

interest rates experienced during the 1980s.

Figure 6 displays the distribution of the q− y correlation as well as the y autocorre-

lation and q autocorrelation, calculated along the 1,000,000 simulated paths. Figure

7 displays the correlation between the changes in q and y, and the auto-correlation

of changes in q and changes in y.

Table 5 gives some comparative statistics on the performance of our estimated non-

linear model, the baseline RBC model and a modified RBC model by Boldrin, Chris-

tiano and Fisher (2001).

Table 5 : Financial statistics of the different models∗

Statistic Data SSMM BLRBC BCFRBC

σy(%p.a.) 5.20 4.73 2.11 1.97

σq(%p.a.) 20.04 15.0 0.40 18.40

EP (%p.a.) 6.63 3.50 0.001 6.63

SR 0.34 0.45 0.002 0.36

ρ(y, q) 0.002 0.95 – 0.16

ρ(y) 0.834 0.99 – –

ρ(q) 0.877 0.99 – –

ρ(∆y,∆q) -0.019 0.00 – –

ρ(∆y) 0.182 0.02 0.02 0.36

ρ(∆q) 0.208 0.00 – –

∗ σx denotes the standard deviation of the variable x, annualized, in percent; EP the equity

premium; SR the Sharpe-ratio, in percent; ρ(x, y) the correlation between x and y (both variables

detrended) and ρ(x) as well ρ(∆x) denote autocorrelations. The sign ”– ” means not available or

applicable.
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In the Data column of the table 5, σy and σq as well as ρ(x) and ρ(∆x) are computed

from monthly data, using the Hamilton and Lin (1996) data set; EP and SR are

taken from Boldrin, Christiano and Fisher (2001);22 ρ(∆x) means autocorrelation of

first differences of the detrended data. The column SSMM represents results from

the stochastic simulations of the macro model (7..1)-(7..3). The simulated results

are obtained from 1,000,000 replications of an Euler-Maruyama discretisation of

(7.1)-(7.3). For the simulations a ratio of sy/sq was chosen as input such that the

resulting output of the ratio σy/σq corresponded roughly to the σy/σq as obtained

for the actual time series, reported in column 2. Based on the σq as obtained from

the simulated series, the quarterly σq is roughly 0.075 or 7.5 % . This was used for

computing the Sharpe-ratio, SR, of our simulations. The computed SR turns out

to be 0.45 and seems a bit too high when compared to that for the data. Yet, we

note that SR =0.45 can only be used as an indicator of the Sharpe-ratio, since our

indicator of the equity premium of 3.5% is not an actual equity premium from non-

stationary actual time series, but rather obtained from the estimated and simulated

time series which were both detrended. Since, however, the standard deviation

σq =15% and the EP=3.5% are obtained from the 1,000,000 simulations, the value

of SR obtained can be interpreted as a reasonably good indicator of the SR.

The column BLRBC represents results for the baseline RBC model. We use here

the statistics for the baseline RBC model as reported by Boldrin, Christiano and

Fisher (2001). As can be observed the basic statistics for the asset price — the

standard deviation of the equity price is only σq = 0.40 percent in column 4 —

cannot be matched at all even if a technology shock with standard deviation of

σy = 2.11 percent is used as input in the computation of asset prices in the context

22To what extent the Sharpe-ratio, SR, may be time varying, i.e. vary over the business cycle, is

explored in Woehrmann, Semmler and Lettau (2001). For our purpose it suffices to presume a

constant Sharpe-ratio.
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of the baseline RBC model. Therefore , also the EP and the SR come out much

too small.

The column BCFRBC reports the statistics from an modified RBC model which

takes into account habit formation in the utility function, adjustment cost of capital

and a two sector model. The statistics are also annualized and in percentages. The

modified model is more successful as far as the financial statistics, EP and the SR,

are concerned but as the results in Boldrin, Christiano and Fisher (2001) show, the

simulated improved model fails along some real dimensions. Note that their ρ(∆y)

are computations from growth rates and therefore have an interpretation different

from those in the SSMM column. Note also that their results on the standard

deviations of the actual time series σy and σq are different from those for SSMM ,

since they employ a different time period and they use growth rates. Their simulated

results are obtained from 500 replications, whereas as stated above we have used

1,000,000 replications.

7.2 VAR and Impulse-Response functions

Another way to study how the model matches the data is to compare impulse-

response functions from historical data and from our nonlinear model. First, we un-

dertake the VAR estimation with first differenced data and then study the impulse-

response functions for the impact effect of shocks as well as the cumulative impulse-

response functions, which give us the level effects.

In our model the interest rate is determined implicitly when the money supply – in

our case real balance – is given. In the subsequent VAR we will, however, directly
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employ the interest rate.23 Thus, the variables included in the VAR model are

monthly industrial production (PR), monthly T-bills (TB) and stock prices (ST),

with PR and ST entering in first differences (DPR and DST).24 For the sample period

from 1961:01 to 1993:06 the Akaike information criterion suggests a lag length of

two. We employ Cholesky decomposition to orthogonalize the residuals with the

order of the variables being as listed above. By doing so, we assume that stock

prices respond immediately to all shocks to the system; T-bills respond immediately

to own shocks and shocks to production, but only with delay to shock in stock prices;

and only own shocks have simultaneous effects on production.

23It appears to us a better procedure to employ the interest rate instead of the money supply, since

the latter may, as has been shown in many papers, empirically exhibit a very unstable relationship

to the interest rate.

24The source of the data is the same as employed for the estimations reported in tables 2 and 3.

The monthly T-Bill rate is also from the Hamilton and Lin (1996) data set.
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Figure 8: Impulse-response for first differences

Figure 8 shows the nine unit-impulse-response functions (solid lines) implied by

the estimated VAR model. To judge the significance of these responses we com-

puted asymptotic two-standard-deviation confidence bands (dashed lines) following

Mittnik and Zadrozny (1993). The estimated impulse responses are as follows. A

positive shock to DPR has only short-run effects on DPR, which become signifi-

cantly negative after two periods and then die out; the short-run reaction of TB is

significantly positive but vanishes after three periods; the simultaneous response to

DST is negative, while lagged responses are insignificant. A shock to TB affects TB

itself positively for one lag, but the effect disappears beyond the second period. The

initial response of DST to the interest rate shock is, as one would expect, negative.
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It is (marginally) significant, but then practically disappears after lag one. There

are responses of DPR to the interest rate shock but they appear as not significant.25

Finally, a positive shock to the stock returns (DST) is followed by a significantly

negative return in the following period which is about a quarter of the size of the

shock, whereas higher-order responses are practically zero. The responses of DPR

and DTB to DST are also not significant.
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Figure 9: Cumulative impulse-responses

25It is well known in the empirical literature on the impact of the interest rate on output that the

output reacts to interest rate changes only with a delay. Therefore, the number of lags underlying

our VAR model may not sufficiently represent a lag structure that is needed to see an impact of

the interest rate on output.
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Figure 9 displays the cumulative impulse-responses or so-called step responses. For

the differenced variables DPR and DST the step responses indicate the effects in

terms of their levels, PR and ST. The results suggest that a one-time shock to pro-

duction has a significant positive long-run effect on production, which is about 55%

of the original shock. The response in stock prices is negative, but only marginally

significant. A shock to TB does not appear to affect production significantly. The

stock prices, again, as one would expect, react negatively to the shock in the TB.

For lags zero and one we have (marginal) significance. A positive shock to stock

prices has lasting positive and significant affects on stock prices with about 60%

of the original shock persisting in the long-run; the responses of production are

insignificant.

Altogether, we see that shocks in differences and levels exhibit strong autoregressive

effects. Although the cross-effects from output to the other variables as well as a

cross-effect of the interest rate to stock price and output appears to be observable,

the cross-effects from stock price to the other variables are weak or insignificant. As

in other empirical studies have shown, the shock to the stock price do not appear

to effect output significantly.26 A similar result of no lasting effect of asset price

volatility on output is also shown in Lettau and Ludvigson (2000).27

26Note, however, that in the context of linear impulse-response functions we cannot distinguish

between the possibly different effects of large and small shocks, for example, of the stock price

on output. To properly study such effects, nonlinear impulse-response functions would have to be

employed. In our context we think of the above employed impulse -response functions as tools to

study the linearized behavior of our model about an equilibrium. There may exist a transmission

mechanism, for example, exerted through the credit market as suggested by the work on the

financial accelerator, that may generate a strong effect of asset price shocks on output, if the asset

price shocks are large, but which cannot be captured in linear impulse -response studies.

27Lettau and Ludvigson (2000) use an VECM to estimate the stock price effect on consumption

and find no lasting effect of stock prices on consumption but only a transitional effect.
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An impulse-response study can also be undertaken by employing our dynamic model

(3.11-(3.13). We report results from the model’s impulse-responses when the esti-

mated parameters of table 3 are employed.

Figure 10: Stock price response to interest rate shocks, nonlinear model, US

Figure 11: Output response to interest rate shocks, nonlinear model

In Figures 10 and 11 the response of the stock price and output are depicted for

shocks to the equity market. In the context of our model the shock to the equity
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price is set up in such a way that it reflects a shock to the interest rate which, in

our set-up gradually affects the equity price. In the model simulation we employ

persistent shocks for a number of periods.28 As can be observed the features of

the impulse - response functions obtained from the above VAR for first differences,

Figures 8 and, in particular, the cumulative impulse-response functions representing

level effects, Figure 9, are matched by the system simulation employing estimated

parameters in our nonlinear model. In particular, the positive interest rate shock

moves the stock price down but also the output falls.

8 Conclusions

In the paper we have generalized a well-known model of the real and stock market

interaction originating in the work by Blanchard (1981). In contrast to the perfect

foresight-jump-variable model by Blanchard we allow for imperfect asset substitution

between stocks and bonds in the asset market and for gradual portfolio adjustment.

We model expectations as adaptive with perfect foresight being a limiting case and

analyze the type of dynamics that can arise in the full three-dimensional system,

and contrast that with the Blanchard (1981) limit case of perfect foresight. The

model we have studied can also be viewed as an alternative to RBC models with

an asset market. In order to empirically apply our continuous time model we use

the Euler-Maruyama scheme to obtain a discrete time approximation of the solution

path as well as for the estimation of the discretized continuous time model. A dis-

cretization in terms of observable variables is proposed and an estimation procedure

for a nonlinear bivariate system in stock price and output suggested. A direct esti-

28Given our small step size, we have chosen persistent shocks of 100 periods’ duration in order to

make the effect on the stock price visible.
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mation of our proposed bivariate model is undertaken using nonlinear least squares.

The results of the latter procedure suggest the existence of nonlinearities in the real

and stock market interaction. In the context of our model we can also make some

inference on the equity premium and the Sharpe-ratio. We have performed some

simulation experiments on a stochastic version of our estimated nonlinear model

and compared the resulting statistics with those obtained from the RBC model. In

addition, following Mittnik and Zadrozny (1993) a VAR with confidence bands for

historical data is estimated and cumulative impulse-response functions compared

to the model’s impulse response functions. Overall the stochastic version of our

estimated nonlinear model performs reasonably well on most of the measures we

have discussed. Finally, we want to note that our approach could be further devel-

oped to study the effects of shocks, for example, monetary policy or exchange rate

shocks on the interest rate, stock price and output in the context of the more fully

developed nonlinear dynamic macromodels of the type discussed in Chiarella and

Flaschel (2000) and Chiarella, Flaschel, Groh and Semmmler (2000).
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Appendix

A Stability Analysis of the Blanchard Model

The Jacobian of the differential equation system (3.11) and (3.21) at an equilibrium

point (ȳ, q̄) is easily calculated to be

J2 =





−κyb κya

cq̄ − α1 cȳ − hδ
′



 .

Thus the determinant of the Jacobian is given by

|J2| = −κy[b(cȳ − hδ
′

) + a(cq̄ − α1)].

In the cases considered in figure 2 it is always the case that cȳ − hδ > 0. At the

equilibrium E+
b in figure 2(a) we have cq̄−α1 > 0 hence |J2| < 0 at this equilibrium

which is thus a saddle point.

At the equilibrium E+
g in figure 2(b) the fact that the slope of ẏ = 0 is less than the

slope of q̇ = 0 can be expressed algebraically as

b

a
>
α1 − cq̄

cȳ − hδ
.

This latter condition implies that |J2| < 0 at the equilibrium E+
g which is also a

saddle point.
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B The Characteristic Equation of the General-

ized Blanchard Model

Consider first of all the calculation of |J3|, where J3 is defined in equation (4.1) of

the main text. By an elementary row operation we find that

|J3| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−κyb κya 0

λκq

(

α1

q
− c

)

−λκq(cy − δ
′

)/q λκq/q

0 0 −κx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −κx[λκyκqb(cy − δ
′

)/q − λκyκqa(α1/q − c)]

= −λκyκqκx[b(cy − δ
′

)/q − a(α1/q − c)]

=
−λ

q
κqκxκy[b(cy − δ

′

) + a(cq − α1)]

= −λκqκq|J2|/q,

where |J2| is given in appendix 1.

Using the analysis of the equilibrium points E+
g , E+

b given in appendix 1, we can

assert that at these equilibrium points

|J3| > 0,

which indicates that the real parts of the eigenvalues of J3 have the sign distribution

(−,−,−) or (−,+,+).
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