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Abstract

The objective of this paper is to model short term interest rate data. Three prob-
lems are studied in this paper. First, if we assume that short term interest rates are
discrete-time observations of a diffusion process, which discretization methods are
preferable for parameter estimation and prediction? Second, can we accept the as-
sumption that the short term interest rates are from a discretely observed diffusion
process? Third, if they are not, how can we improve the modeling of the short term
interest rates? We commence by taking the diffusion process model suggested by
Chan et al (1992) as the data generating process. We employ three discretization
methods: the Euler method, the Milstein method and the new local linearization
method to obtain discrete-time approximate models. In our numerical experiment
three approximate models can be accepted as correctly specified and the Euler
model, in contrast to some other results in the literature, is not inferior to the other
two models. Then we apply these discrete-time approximate models to the short
term interest rate data of Germany, the United Kingdom and the U.S. In contrast
to the numerical results, all discrete-time models fail to pass the specification test.
Compared to the numerical results this indicates that the model suggested by Chan
et al.(1992) is very unlikely to be the data generating process for the short term
interest rate. Therefore, we search for suitable models for the short rate. We do not
find an appropriate model of diffusion processes which can reproduce the stylized
facts we are concerned with in this paper. Therefore, we turn to a discrete-time
framework in this search. We employ an ARMA-ARCH model with level-dependent
volatility for the short term interest rates. The new model can provide better level
and volatility forecasts.
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1 Introduction

A diffusion process is the solution of a stochastic differential equation (SDE)
dXt = b(Xt, G)dt + a(Xt, H)th,

where (W,) > is a Brownian motion.® In modern finance theory, diffusion pro-
cesses are often used to model financial time series data, for example the short
term interest rate. The short term interest rate is important in characterizing
the term structure of interest rates, which means the structure of interest rates
with different maturities, and in pricing interest rate contingent-claims. There
is some pioneering work, for example by Vasicek (1997) and Cox, Ingersoll
and Ross (1985). A survey of recent work is given in Chan, Karolyi, Longstaff
and Sanders (1992). Chan et al. (1992) show that a wide variety of well-known
one-factor models for short rates can be nested within the following SDE

The feature of this equation is that it has a mean-reverting drift coefficient *
and a level-dependent diffusion coefficient.

Such continuous-time framework can provide elegant expressions in theory,
but it entails some difficulty in empirical research. The first problem is how
to estimate the parameters of this continuous-time models. Many methods
are developed to implement the estimations, for example, the indirect in-
ference method by Gouriéroux, Monford and Renault (1993), the approxi-
mate likelihood method by Perdersen (1995), the general method of moment
with respect to diffusion generators by Hansen and Scheinkman (1995) and
Duffie and Glynn (2001), the efficient method of moment by Gallant and
Tauchen (1996), the nonparametric method by Ait-Sahalia (1996) and Ait-
Sahalia (1997), the density-approximation method by Dacunha-Castelle and
Florens-Zmirou (1986) and Ait-Sahalia (1999), the Milstein method by Ele-
rian (1998) and in this paper®, the new local linearization (NLL) method
developed by Shoji and Ozaki (1997) and (1998) .

The second problem, coming from the continuous-time modeling — which is
more basic and important for the empirical research — is to judge the speci-
fication of the employed model with respect to the empirical data. Thompson

3 The stochastic integration with respect to dW; is the It6 integration, see Karatzas
and Shreve (1991).

4 If the process deviates from % (the mean), for example, X; > %, then the process
is drifting down and it is pulled up when X; < %

® The application of the Milstein method for approximating diffusion processes is
independently developed by the authors. In the appendix of this paper we present
our application and show that it is equivalent to that of Elerian (1998).



(2002) provides specification tests for diffusion processes.

In this paper we employ three discretization methods so that we can solve
the two problems mentioned above at the same time. The three discretization
methods are the Euler method, the NLL (new local linearization) method and
the Milstein method. These three methods deliver discrete-time approximate
models for discrete-time observed data of a diffusion process. We can imple-
ment the mazimum likelihood estimation (ML estimation) and prediction quite
easily by using these approximate models. For testing the model specification
of the three discrete-time models we pursue the following strategy. By using
the discrete-time approximations, we can easily transform the economical time
series into a white noise process which is independently and identically (i.i.d)
normally distributed. ¢ So we test whether the estimated white noise in each
discrete-time approximate models is i.i.d. normally distributed. The intuition
thus is that, if the discrete-time approximation can represent the data generat-
ing process correctly, then we can remove all deterministic structure correctly.
It is important for data prediction: the more we know about the deterministic
structure, the better we can predict data.

We will compare the performance of the three discrete-time approximations.
The Euler approximation is the easiest and the most used as discrete-time
approximation. Its disadvantage is well-known: the Euler estimator 7 is not
consistent ® . The Milstein and NLL approximations are shown to improve
the Euler approximation, see Elerian (1998:11,Table 1) and Shoji and Ozaki
(1997:494-501). The improvement in their papers is represented by smaller
errors of the parameter estimations in the numerical experiments.

Our paper will discuss the inconsistency of the Euler estimator and investi-
gate those improvements. For evaluating discrete-time approximate models,
besides considering the accuracy of parameter estimation, we still consider
the accuracy of prediction. For the SDE (1) where the drift coefficient is lin-
ear, we find that the Euler and the NLL approximations are equivalent under
reparametrization. Therefore they have the same predictor.® Moreover, we
can derive a functional relation between the estimate of the Euler approxima-
tion and the estimate of the NLL approximation. Using this relation we can
explain why the NLL approximation performs better than the Euler approxi-
mation in Shoji and Ozaki (1997). '© Thus, in the numerical experiment, we
need not to consider the NLL method.

We compare the Euler and the Milstein approximations in our numerical ex-

6 The white noise in the discrete-time models is represented by Brownian incre-
ments AW,

7 It means the ML estimator by using the Euler method.

8 See Lo (1988).

9 See Section 3.

10 We presume this is why Shoji and Ozaki applied the NLL method for the nonlinear
drift case in Shoji and Ozaki (1998).



periment using Monte-Carlo-simulations. Our results, however, in contrast to
Elerian (1998), does not verify the superiority of the Milstein approximation
over the Euler approximation. The parameter estimations and the one-step
ahead predictions of the two models are very similar. The reason is the small
size of our drift parameters. The small size of parameters has a similar effect
as small discretization steps, because the observed variable evolves less for
smaller parameters or during shorter evolution intervals. We know if the dis-
cretization steps are small, then the effect of the discretization is also small.
The reason why we employ such small parameters is because they are sug-
gested by our empirical results of the short rate data!!.

By considering the model specification we diagnose the estimated white noise
of the Euler and the Milstein approximate models. The estimated white noise
of the two approximations pass our specification test for most simulations.
This means that the Euler and Milstein approximate models can recognize
the deterministic structure of the real data correctly. We also find that the
Milstein approximation can reduce the continuous-time effect better than the
Euler approximation with respect to the distribution of the estimated white
noise. We observe that for a large 7 the rejection frequency of the distribution
test of the Milstein method is smaller than that of the Euler method.

Beside the numerical experiment we also apply the Euler and Milstein ap-
proximate models to the short term interest rate data of Germany, United
Kingdom and the U.S. We take data after the oil crisis, for 1983.01 - 2000.06,
because many researchers have found evidence of regime changes for the crisis
period 1979-1982 . As in the numerical experiment, we implement the ML
estimation, the one-step ahead prediction and test the model specification.
Two approximate models perform quite similarly. The results here indicate a
significant difference between the simulated and real data: none of the short
rate data can pass our specification test. The estimated white noise of all the
three countries has high autocorrelation and thick tails. It is not the case for
the simulated data. Therefore, we conclude that the real short rate data are
very unlikely to be generated by the diffusion process of the equation (1).

The next step is to find new models which can explain the autocorrelation
and the thick tails of the noise. In the continuous-time framework there is
some work pointing out the shortcomings of the one-factor diffusion process
of the equation (1), see for example Ait-Sahalia (1996) and Andersen and Lund
(1997). However, the data simulated by those continuous-time models still can
not explain the high autocorrelation of the estimated white noise either.

Since we can not find a suitable model in the continuous-time framework we
turn to the discrete-time framework. We employ the autoregressive-moving-
average (ARMA) model to fit the high autocorrelations of the estimated white
noise. We will see, in Section 7, that we can model the autocorrelation of the

11 See Section 6.



estimated noise by taking more lags in the models. To model the thick tails
in the estimated white noise we follow the work of Brenner et al. (1996) and
Koediji et al. (1997). They employ the autoregressive conditional heteroscedas-
tic (ARCH) model suggested by Engle (1982) and Bollerslev (1986) to model
the thick tail. In addition, they keep the dependence of the conditional vari-
ance on the leverage of short term rates as in the diffusion coefficient of SDE
model (1). Summarizing the two modeling strategies above we employ the
model with ARMA-ARCH and level-dependent volatility. Our model general-
izes the model of Brenner et al. (1996) by using the ARMA-structure

The remainder of the paper is organized as follows. Section 2 introduces the
three discretization methods. In Section 3 we introduce the prediction briefly
and show the following two properties. We show an example that the Euler
approximate model provides a consistent predictor although it’s parameter
estimator is inconsistent. We show also that the Euler and NLL approximate
models for the SDE (1) have the same predictor, because the two models are
equivalent under reparametrization. In Section 4 we introduce our specifica-
tion tests. In Section 5 we carry out a numerical experiment with Monte-
Carlo-simulations. In Section 6 the Euler and the Miltein approximations will
be applied to the real short rate data. There we can find the evidence of the
model misspecification. In Section 7 we observe at first the misspecification of
the two further continuous-time models. Then we employ the ARMA-ARCH
model with level-dependent volatility to model the short term interest rates.
Section 8 concludes the paper.

2 Discrete-Time Approximation

The difficulty of the maximum likelihood (ML) estimation based on discrete-
time observation is well-known in the literature, see Lo (1988). In this paper
we employ discrete-time approximate models so that the ML estimation, pre-
diction and the model specification test are feasible. Here we introduce briefly
the three methods of discrete-time approximation: the Euler, the Milstein and
the new local linearization (NLL) method.

2.1 FEuler Method

The idea of the Euler method is to replace dt in the equation (1) by a time
interval 6t and we have a discrete-time approximation for the diffusion process
X

Xti+1 - Xti = b(Xtia G)Atz + a(Xti, Q)AWQ . (2)



2.2  Milstein Method

The Milstein method approximates the SDE by the following scheme:

Xt — Xti :b(Xtia H)Atz + G(Xti, Q)AWtZ

+ %a(Xti)a‘,(Xti)((AWti)z - Atz)

i+1

(3)

where At; = (tiy1 —¢;) and AW, = W,,,, —W,, .'? Tt is [t6-Taylor expansion
of convergence order 1.0. It has one more term then the Euler method of the
equation (2) which is the Ito-Taylor expansion of convergence order 0.5.
The application of the Milstein method as a stochastic model can be found in

Elerian(1998) and in the appendix of this paper.

Here we need to make two remarks: (i) As mentioned we can apply the strong
[t6-Taylor expansion of different convergence orders to obtain diverse discrete-
time approximations for the diffusion process. Such models are usually used for
simulation but not for estimation. If we employ such discrete-time models for
the maximum likelihood estimation, their density functions are complicated
and the maximization of the likelihood function is usually unstable. (ii) The
Milstein method is a better simulation method for diffusion processes only
when the size of the simulation step goes to zero. If the time steps are fixed
by the observation times {to,1,--- ,tx} as in our case, then we can not say
anything about the superiority of the Milstein method.

2.8 New Local Linearization Method

The new local linearization (NLL) method is suggested by Shoji and Ozaki(1997),
p.490-491. We introduce their idea briefly: the Euler method holds constant
the drift and the diffusion coefficients for s € [t;,¢;11), while the Shoji and
Ozaki approximate the drift coefficient b(X) up to the second order terms by
using the Ito formula

4, = (B0X0) + B0 (X, = X0) + SH/(X,)a2(X,) (5 — 1)) ds
+ a(Xti)dWs-

(4)

12 See Kloeden and Platen, 1992:345.
13 See Kloeden and Platen, 1992:Chap.10.



The diffusion coefficient is still kept as a constant. The equation (4) can be
solved analytically and the solution at ¢;,; is given by

X, — Xy,

7

i+1
_ b(th) (eb’(Xti)(tH_l—ti) _ 1)
bl(Xti)
b”(Xti) a(Xti)Q
(0'(Xy,))* 2
+a(Xy,) / gy,
£ t

7

. 5)
(=) 1 — B(X,) (b — 1)) ®)

The distribution of the last term can be represented by

t; , : t; ,
a(Xy,) /t i eb (Xti)(tiJrl*Z)dWZ dis. /\/’(07 G(Xti)z/ i e2b (Xti)(tile*Z)dz)‘ (6)

t;

3 Prediction and Related Discussions

We will briefly introduce the prediction procedure. Then we discuss two as-
pects related to the prediction. First, we give an example where the Euler
predictor is consistent although the Euler estimator is inconsistent. Second,

we show that the NLL predictor is exactly the same as the Euler predictor in
our case of the SDE (1).

3.1 prediction

Let F; represent the information set before . Let
E[-|F]

denote the conditional expectation given F;. If we only have information up to
the period £, the best possible approach to Xf+At is the conditional expectation
E[-|F;]. The expression "best” is in sense of the mean square error criterion.
4 Tt is to remark that we can achieve this optimum only when we already
know the true parameter. Usually, we have to estimate it.

It is easy to obtain the conditional expectations for our three discrete-time
models. Let F,(x, 0, At) denote the conditional expectation of XA, given F;

14 See Hamilton(1994) chap.4, p.129.



by using the s-method:

Feu(l‘ta 97 At) =T+ b(xt) H)At) (7)
Fms(flft, 9, At) =x; + b(l‘t, H)At, (8
_ b(z) W (ze) At
Fn”(l‘t, 9, At) =x¢+ b’(:};‘t) (6 1) (9)
b (1) a(Xy)? W (@) At /
S AT (e L—(z)At).  (10)

Let 6, ((Xy,)izo,.. v) be the ML estimators based on the observations (X4, )i—o... v

using the x-method. Then the one-step predictor is given by

~

Xutwirlriy = Fo(Xoy, 0u((Xp )iz, x), Aty ). (11)

3.2 Decomposition of prediction errors

Now we consider the squared error of the one-step prediction. We decompose
the expected prediction errors

E I:(X*;tN+l |ftN - XI?N+1)2:|
= E|[(Xutnnilr, — F(X),,0,At) + F(X],0,At) = X[ )]

tn?
~ 2
=E[(X!, |, — F(X),0,A0)) 1+ Var[X]|F,,]

tno tIN+1

into two terms: the first term is the distance between the predictor of the
discrete-time model and the best JF;-approximator, the second term is the
conditional variance of XfN. Only the first term is related to the approximation
quality of discrete-time models. This error decomposition is based on that the
expectation of the cross product

E[(Xupyirlmy = F(X[,0,A0) (F(X],0,At) = X7 )]

tn?

is equal to zero. In the numerical experiment we will use the average to repre-
sent the expectation. However, the average cross term is not necessarily equal
to zero. If the first term is small, then the average prediction error is disturbed
by the average cross term and we can not judge the quality of the discretization
correctly. Therefore we will take the average of the first term as the criterion
to evaluate the prediction in the numerical experiment later.



3.3 Is the Euler estimator inconsistent?

We know already that the Euler estimator is inconsistent.'® Here we give
an example where, although the Euler estimator is inconsistent, the Euler
predictor defined in (11) is consistent, i.e. the Euler predictor converges to the
best prediction — the conditional expectation.

We take the SDE (1) with v = 0 °. The observation times are equidistant
t; = 1At fort =0,---, N, for a fixed At and NAt = T. We know the solution
of this SDE is 7

c B B At _ s
X(i—‘rl)At = B(l — € BAt) +e BAtX@'At + U/() & plat )dWiAt+87 (12)

where the last term is i.i.d. N(O, %(1 — e‘zﬁm))—distributed. We rewrite this
discrete-time process into the following equation

Zi = Qo + alzi—l + Ug,

with Z; = Xias, a9 = %(1 — e P2 a; = e P2 and wu; has the distribution
specified above. Let ag n, ai;,ny be the ML estimators for ay and a; We know
these estimators are consistent '8

plim Goy =ap and plim a; v = a;. (14)
N—o0 N—oxo

Now we consider the Euler approximation
X(i+1)At = Xia¢ + (Ceu - 5euXiAt)At + OeuAWiAt-

We see that the Euler approximation and the discrete-time observed diffusion
process can be linked with the reparametrization

Ceu At = ag = %(1 — e7PAY

1 — BeuAt = ay = e PA (16)
o2 At = 0—2(1 — e %A
eu 2/6 ‘

15 See Lo (1988).

161t is called the Ornstein-Uhlenbeck process.

17see Kloeden and Platen(1992:118).

18 See Fuller(1996). Note that the process is stationary because 8 > 0, then a; €
(0,1).



Let Cey s Beu,N be ML estimators for ¢, [ey. Using the proposition 1 in the
appendix the ML estimators have also the same relation

éeu,NAt - CALO,N (17)
- Beu,NAt - CALI,N-

Because of the consistency (14) and the equity (17), we have the consistency
of the Euler predictor

X adlmr = Xo + (Coun — Beu nX1) Al = o n + a1, 8 X7
— ap + o X7 = E[XT+At|fT].
plim
N—o00
With exactly the same reasoning we can also see that the Euler estimators are
inconsistent

o ag 1 — e PAl

1 eu - A, — T AL
DI CeuN = Ny d BAL ) #¢

~ 1-— ay 1-— G_BAt
li - - .
plim fe v = — A 7P

3.4  FEquiwvalence of the Euler and NLL predictors

Next we show the Euler and NLL predictors of the SDE (1) are equivalent.
The reason is the linearity of the drift coefficient in the equation (1). We can
easily see that the Euler approximation

Xirnar — Xiae = (¢ = BXia)) At + o X\ AWiny (18)
and the NLL approximation

hi(5)
B

Xiirnar — Xiag = (¢ = BXiar) + 0ha(B) X Uit (19)

are equivalent under the reparametrization

BeuAt == hl(ﬁnll) = 1 — e_ﬂnllAt

Cn
CeuAt - —”hl (Bnll)
511”

Yeu = Vnll

1 — e—26nuAt
Oeu = Unuhz(ﬁnu) = W )
.

10



where U, i =1, - - - arei.i.d N (0, At)-distributed. We rewrite the reparametriza-
tion more compactly. Let 6 = {3, ¢,v,0} and

1—ePA chy(B)
At 7 BAt

H(B,c,7v,0) = ( ,%th(ﬂ))-

Then it is clearly seen that
H(enll) — eeu-

Now we will show the equivalence of the predictors. Let p.,(z,y, 0, At) be the
conditional density for the Euler approximation (18) with X, ., = y and
Xia¢ = . Following the definition of the predictor (11) we have

X8t adlre = BIXE sl Frl = [ ypea(Xr,9, buas A1)y,

Let pou(z,y, 6, At) be the conditional density for the NLL approximation (19).
Recall that 0., and 6, are so chosen that the two equations (18) and (19) are
exactly the same. Thus, we have the equivalence of the conditional densities

Prit(T, Y, Oty At) = peu (2, Y, Ocu, At) = peu(,y, H(Onur), At).
Let 9n” and 9eu be the ML estimators. Using the proposition 1 we obtain
H (0ir) = O
Thus
Patt(@, Y, Ontts A) = peu (@, y, H (Opir) s At) = peu(, 4, eus At).

Therefore, the equivalence of the predictors follows

X;ZiAt|fT = /ypeu(XTa Y, éeu: At)dy

= /ypnu(XT;y; én”,At)dy = X;l“l—&l—AtL}-T'

4 Specification Test

By modeling empirical data one must demonstrate the suitability of the chosen
model with respect to the data. Once a certain model is chosen the model
will impose constraint on the data. A specification test is a test whether the
constraint can be accepted or must be rejected.

Our idea for test the model specification is to undertake diagnostic checking for
estimated white noise. In our discrete-time models of the equations (2), (3) and

11



(5) it is very easy to transform the data into white noise which is represented
by Brownian increments AW; and therefore is i.i.d. normally distributed . In
other words, this transformation should remove the deterministic structure
specified by the (discrete-time) models.

We employ two simple tests to test whether the estimated white noise is i.i.d
normally distributed. The first one is to test the null hypothesis Hél): the
series of the estimated white noise does not have any autocorrelation, which
is a prerequisite for the independence. The second one is to test HSZ): the
distribution of the estimated white noise is normal.

4.1 Autocorrelation Checking

Let Uy,---,Uy be identically distributed random variables. Assumed that
E[U;] = 0, Var[U;] = 1 and E|U;|* < oo. The problem is to test HV:
(Ui)i=1,.. n is not autocorrelated.

19

Let Ry be the sample autovariance function represented by

~

Rk Z UUZ k-
N k@ k+1

Under the null we have E[Ry] = 0 and
Var[f{k] = =
for £ > 1. We normalized Rk

. R, — E[Ry] .
Ty = —F/—— :\/N—kRk ZUUZIC
\/ Var[Rg] VN =k i=k+1

Consider the sequence (U;U;_g)i=+1,..,n for a fixed k. It is near epoch de-
pendent on (U;)i—1.. n 2°. Using the central limit theorem for near epoch
processes 2!, 7 converges to A'(0, 1) in distribution as N — oco. Applying the

test for our discrete-time approximations, we let U; = W; — W;_.

We remark here that 7, ~ A/(0,1) means Ry ~ N(0, v=). It is similar with
the result Var[Ry] ~ 1/N in Box et al.(1994:32) when N is large enough.

19 R, is also sample autocorrelation function because Var[U;] = 1.

20 See Gallant and White (1988) Def. 3.13, p.27 with Z,; = U;U;_j. One can see
Um = 0 when m > k.

21 See Gallant and White (1988), Theorem 5.3, p.76 . The conditions of the theorem
are satisfied because under null (U;) is independent and v, = n — k.

12



We have to remark that there is a shortcoming in this test. We use a ”theo-
retical noise” to derive the distribution of the sample autocorrelation, but in
reality we have only “estimated noise” available. The work of Durbin(1970),
Box and Pierce(1970) point out that the sample autocorrelations will be under-
estimated for small k. #* Fortunately, this under-estimation does not affect
our finding of misspecification later 3.

4.2 Testing normality

We employ here y?-test for histogram to test whether the distribution of sam-
ples is V'(0, 1)-distribution. ?* The idea is to compare the relative frequency
of samples on intervals I,,

number of{i; U; € I,,,}
Pm = N

and p,, the probability of N'(0, 1)-distribution on the intervals I,,, where {I,,, m
1,--+, M} are disjoint intervals of the real line.

The weighted distance

M N A ,
d= mX::l m(pm — Pm) (20)

measures the distance between the sample and the normal distributions. It
converges to x?(M — 1) in distribution as N — oo.

5 Numerical Experiment with Monte Carlo Simulation Method

Here we will compare the performance of the Euler and Milstein approxima-
tion in a numerical experiment using Monte-Carlo-simulations. The intention
is to find out (i)which discrete-time approximations perform better, and (ii)
whether the discrete-time approximations are correctly specified models for
the discrete-time observations of the diffusion process (1).

The Monte-Carlo-simulation method means that we undertake repeatly simu-
lations. One simulation in our experiment includes: (i) generating data of the
equation (1) with a finer time interval to imitate the dt. Then we observe the

22 The is why the ”Q-statistc” is developed, see Box and Pierce(1970) and Ljung
and Box(1978) .

23 See Section 6.

24 See Breiman(1973:189).
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generated data with a time interval which is much greater than for the gen-
erated data, (ii) applying ML estimation using the discrete-time approximate
models on the observed data, (iii) testing the specification of the models for
the observed data, (iv) forecasting.

The parameter values for the data generating process are given by

¢ =0.06
B =0.01
o =005

v =0.2,0.5,08,1.2.

The values of ¢, 3, o are chosen from the empirical results of the short term in-
terest rate data of the U.S., see Table 7. We vary the value of v to see whether
the discretization effect would be stronger for greater . Recall that if v = 0,
the Euler approximation is exactly the correct model.

The other parameters are:

the generation interval ot =0.01
the observation interval At =
the whole observation time N = 200

each simulation is repeated 1000 times.

The numerical results are reported in Tables 1 — 4. 26

The results of the Euler and the Milstein approximations are in the first and
the second columns. In the last column labeled with ”true model” are the
results using all simulated data. Hence, the estimation model is exactly the
same as the data generation model. The E denotes the arithmetic average
over all simulations. We compare two kinds of prediction errors: one is the
difference between the predictor and the data, the other one is the difference
between the predictor and the conditional expectation, see Section 3.2. We
argued there that the second one is better than the first one. In these tables
we can also find the rejection frequency of the specification tests. Hél) is the

)

autocorrelation test and HSZ is the normality test described in Section 4. We

reject the Hél) if

max_|7| > 2.8.
k=1,-,10

We reject Héz) if the p-value of the y2-test is smaller than 0.05.

25Tt needs to be reparametrized. See Section 3.3.
26 In Table 1 for v = 0.2, 5 simulations can not converge by using Milstein approx-
imation.
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Table 1
Numeric results for v = 0.2

v=0.2 Milstein Euler | finer Euler

Elé, — (] 0.1547 | 0.1550 0.1594

ElB. — ] 0.0259 |  0.0260 0.0267

E[fy — ] 0.0151 0.0067 0.0019

El6, — o] 0.7946 |  1.0050 0.0010

Efé. — c? 0.0443 | 0.0444 0.0468

E[B, — B)? 0.0012 |  0.0012 0.0013

Apredimon e 5.230e73 | 5.223e73 |  5.222¢73

E(Y(;\H—I)At - Y(N+1)At)2
estimation errors of
cond. expectation 7.730e7° | 7.848e7° | 7.420e°
E(y&v“)m — F(Ynas, At))2
rejection of H® 3.5% 3.6%
rejection of H(?) 8.2% 8.1%
Table 2
Numeric results for v = 0.5

v=0.5 Milstein Euler | finer Euler

Elé, — (] 0.1612 |  0.1610 0.1666

ElB. — f 0.0268 |  0.0268 0.0277

E[A. — 1] -0.0243 | -0.0293 0.0012

E[6, — 0] 0.0829 0.0705 0.0002

Elé. — c)? 0.0487 |  0.0486 0.0527

E[B, — p)? 0.0013 |  0.0013 0.0015

Aprediction crrons 0.0147 0.0147 0.0147

E(Y(}H)At - Y(N+1)At)2
estimation errors of
cond. expectation 2.446e™* | 2.440e™* | 2.427¢7*
B(Viy1ya0 — F(van A)?

rejection of H) 4% 4%
H® 8.8% 9.5%
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Table 3
Numeric results for v = 0.8

v=0.8 Milstein Euler | finer Euler
Elé, — (] 0.1516 |  0.1517 0.1553
Elf. - f] 0.0256 |  0.0256 0.0262
E[#. —9] -0.0230 | -0.0253 -0.0014
E[6, — o] 0.0171 | 0.0154 0.0002
Efé. — c? 0.0425 | 0.0425 0.0444
E[B, — B)? 0.0012 |  0.0012 0.0013
prediction errors 0.0457 | 0.0457 0.0459
E(Y(;\H—I)At - Y(N+1)At)2
estimation errors of
cond. expectation 7.146e=* | 7.150e™* |  6.916e*
E(y&v“)m — F(Ynas, At))2
rejection of H® 3.8% 3.9%
rejection of H?) 6.7% 8.4%
Table 4
Numierc results for y = 1.2
v=12 Milstein Euler | finer Euler
Elé, — (] 0.1330 | 0.1331 0.1345
E[B, — ] 0.0253 | 0.0252 0.0256
EFy — 1] -0.0505 | -0.0432 -0.0006
E[6, — 0] 0.0074 | 0.0062 0.0001
Elé, — c]? 0.0358 | 0.0359 0.0370
E[B. — B)? 0.0012 | 0.0012 0.0012
Aprediction crrons 0.2610 | 0.2614 0.2607
E(Y(}H)At - Y(N+1)At)2
estimation errors of
cond. expectation 0.0043 | 0.0043 0.0040
B(Vjy e = F (Vs A1)
rejection of H® 3.5% 3.4%
rejection of H®) 7.4% | 15.1%
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Comparing the performance of the Euler and Milstein methods, the results of
drift parameter estimations ¢, 3, are similar. Hence we have also similar results
of the predictions because they are only based on drift parameters. For the
diffusion parameters o,y none of the two approximations is clearly superior.

The rejection quotes of Hél) are about 4% for the both approximations and

for all 4’s. This means for about 96% simulation the maximal normalized
autocorrelation coefficients are smaller than 2.8. The rejection frequency for
HO(Z) would be around 5% if the noise were normally distributed. In the tables
we see all the rejection frequencies of Hé2) are greater than 5%. The rejec-
tion frequencies of the Euler approximation are greater than those of Milstein
approximation for v = 0.5,0.8,1.2. Especially for v = 1.2, the rejection fre-
quency of the Euler approximation is more than double as that of the Milstein
approximation: 15.1% for the Euler and 7.4% for the Milstein approximations.
This means the discretization effect in the estimated noise for a greater v can
be lowered more by the Milstein approximation than by the Euler approxima-
tion.

The estimated drift coefficients ¢, 8 show large estimation errors, for example
for v = 0.5, the error of 5 is 269% (= 0.1611/0.06) relative to the true /5 and
268% (= 0.268/0.01) relative to the true ¢. These errors are not caused by the
discretization because the errors of the true model at the last column are even
larger than those of the Euler and Milstein approximations. It does not coin-
cide some results where the parameter estimations are better by using more
frequent data, for example in Shoji nd Ozaki (1997). We remark here that
the ML estimator is biased, because the correlation between the explanatory
variables and the noises. 27

However, in spite of the larger errors of parameter estimation, the true model
can offer a better prediction. We can see that the true model has smaller errors
of conditional expectation estimations.

6 Empirical Results on Modeling Short Term Interest Rates

We apply the Euler and the Miltein approximations on short rate data in this
section. The short rate data we choose are interest rates with a one-day ma-
turity: the overnight interbank rate of the United Kingdom, the federal funds
rate of the U.S. and the call money rate of Germany. All data are monthly
data.?® We take the time period 1983.1 — 1997.12 (180 observations) for esti-

27 See Frohn (1995).

28 The source is “International Statistical YearBook”. See http://www.ub.uni-
bielefeld.de/english/library /databases/, then choose International Statistical Year-
Book 2000, for ”Datenbank” choosing ”OECD” and ”"main economic indicators”,
for ”Period” choose ”monthly data”, for ”Search” choose ”indicator-search”, then
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mation and 1998.1 — 2000.6 (30 observations) for prediction. The time series
of the rates are plotted in Figures 1, 4 and 7.

In the Tables 5, 6 and 7 the empirical results are reported. In the first two
columns are results of the Euler and Milstein approximations for the CKLS
model (1). The notations of the parameters are changed because we will
consider more general models below?’. Their parameter estimations, their
t-statistics for the estimates®® and their predictions are very similar. The es-
timated white noise from the two approximations is also very similar. We plot
their distributions in Figures 2, 5 and 8.

We also plot the normalized autocorrelations for the Euler approximation in
Figures 3, 6 and 9. We see the first normalized autocorrelation are about 3.5
for Germany and the U.K. and about 5 for the U.S. It indicates strong autocor-
relation between the time series of the estimated white noise. We remarked in
Section 4.1 already that our autocorrelation test under-estimates the sample
autocorrelation for short lags. This under-estimation does not affect the fact
that the estimate noise have strong (even stronger) autocorrelation. For com-
paring this result of our numerical experiment, we take the result of v = 0.8
as a benchmark for the result of the U.S. With 1000 simulations, 96% of the
simulations have the first ten normalized autocorrelations smaller than 2.8.
The maximal value of the autocorrelations in the numerical result is only 4.2.
It indicates that the continuous-time CKLS model (1) can not reproduce the
high autocorrelation of the noise as the empirical data exhibit. In other words,
the CKLS model is misspecified.

We can also observe that the estimated white noise is highly concentrated
around zero than standard normal distribution, which means they have thick
tails.®! This fact can be inferred from in Figures 2, 5 and 8 and the values
of the y?-test and their p-values in Tables 5 - 7. Comparing this result to
the numerical experiment, such large values do not occur. It means again the
model (1) is misspecified.

We also see that the estimated drift coefficients do not significantly differ from
zero. When they are zero, it means that we can not forecast tomorrow’s data
better than just using the data today. In order to see whether there is a re-
duction of the forecasting error by using the models we compare forecasting
errors of the models relative to those of the “naive” forecast, — just using the
data today. The results in the tables show that we do not need such a model.

”interest rates”, then ”immediate rates”.

29 In the parentheses are the old notations.

30 in the parentheses

31 Because the variance is normalized to 1. The concentration of the distribution
around 0 let the variance smaller. In order to keep the variance as 1, there must be
more weight in the tail.
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Fig. 1. Call money rate, Germany
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Fig. 4. Interbank rate, U.K.
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Fig. 7. Federal funds rate of the U.S.
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7 Searching for New Models

Because of the misspecification of the model (1) shown in the last section we
search for new models. They must be able to model the high autocorrelations
and the thick tails in the estimated noise.

7.1 Improvement in the continuous-time framework

In literature, there are further works to improve the model (1) for modeling
the short term rate in the framework of continuous-time models, for example
Ait-Sahalia (1996) suggests an non-linear drift coefficient and Andersen and
Lund (1997) suggests a stochastic volatility model.

We simulate data using the models specified in Ait-Sahalia (1996) and An-
dersen and Lund (1997).%? We plot them in Figures 10 and 11. The model of
Ait-Sahalia can not reproduce a similar time series of the real data. It stays
always in a narrow band around the steady state. The normalized autocorre-
lation functions from these two models are plotted in Figure 12. We observe
that there is no extreme autocorrelation in the estimated noise.

7.2 Modeling autocorrelations in the estimated noise

We employ the autoregressive-moving-average (ARMA) process® to model
the autocorelation of the estimated noise

p q
AW, =D iAW, i+ > i€ . (21)
i=1 j=0

We will transform the ARMA-structure of the noise into the ARMA-structure
of the variable. We illustrate the transformation with an example, where the
noise AW, is an autoregressive process of order 1

AWt = ¢AWt71 + €.
We replace AW, using (18), then we obtain

AXt — (C — Bthl)

5
o X

AXy | — (C - Bthz)

v
o Xi

:QS +€t.

32 We undertake simulation with an interval 0.01 and then pick up the simulated
series with an interval 1.
33 see Box, Jenkins and Reinsel (1994)
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Fig. 10. Simulated data from Ait-Sahalia’s model
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Fig. 11. Simulated data from Andersen-Lund’s model
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Rearranging it we obtain

X1
Xio

.
AXy=(c—BXi1) + () (Xior — (e = BXi0)) + 0X] e (22)
This means, in order to eliminate the first autocorrelation of the noise AW;,
we must introduce the second lag as an explanatory variable.

The equation (22) give us a starting-point. We assume (ii—:;y ~ 1. Rewriting

(22) then we obtain a model with two lags in the drift term
AXt = Qp + 041th1 + Oéth,Q + OXg_lét.

So, for modeling the noise AW, in a general structure we employ the following
equation
p q
AXt = ) + Z aiXt_i + Xg,l ( Z 61'615_@') (23)

=1 1=0

7.8 Modeling thick tails in the estimated noise

For modeling thick tails of the noise we employ the idea of Brenner et al.(1996)
and Koedijk et al.(1997) . The common feature of their constructions is that
they apply the autoregressive conditional heteroscadasticity (ARCH)3* to
model the thick tail. 3 Moreover, the conditional variance (the volatility) of
X, is level-dependent. Brenner et al. (1996) argue that both level- and ARCH-
effects are significant for short-term rates.

We build the ARCH-structure in the model (23)
Et v N(O, ht), (24)

k
_ 2 2
hy=cg+ > ey

i=1

We employ (23) and (24) as our model class to model short rates. For the
unique specification of the parameter we normalize 5y, = 1. We make two re-
marks. First, our model generalizes the model of Brenner et al. (1996) by con-
sidering the ARMA-structure (23). We saw already that the ARMA-structure
is used to model the autocorrelation of the noise which is found in the empir-
ical results. Even in their results we can also find the evidence of autocorre-
lations of the residuals . 3¢ Second, we employ the ARCH-structure instead

34 See Engle (1982).
4
35 There is a thick tail effect if the kurtosis, defined as ( EE‘((:Z)))Z’ is greater than 3 -

the kurtosis of normal distribution.
36 See Brenner et al. (1996) p.95 ” The Ljung-Box Q(e;/o;) statistics indicate that
both models have significant serial correlation in the residuals.”
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of GARCH-structure in Brenner et al. (1996) . The GARCH model is a tech-
nical improvement over the ARCH-struture” when the lags of £ are long.
According to the results of our model identification we do not need to employ
the GARCH-structure.

7.4 Model identification

By model identification we mean the determination of the orders p, ¢ and &
according to the data. We follow the Box-Jenkins-methodology in Box, Jenkins
and Reinsel (1994). The first step is to choose a tentative model according
to the autocorrelation function (ACF) and partial autocorrelation function
(PACF). The second step is to check the tentative model. Then, according the
diagnostic check we decide whether we accept the tentative model or we need
go back to the first step to choose another model.

In our case, the choice of p and ¢ is suggested by the ACF and PACF of
g¢. After that p and ¢ are determined, the order £ is chosen by the ACF
and PACF of 2. By model diagnosic check we have to check three points: (i)
overfitting: whether the estimated parameter differs from zero significantly. (ii)
noise diagnostic checking: whether ¢;, €2 have extremely high autocorrelations.
(iii) whether the chosen model can reproduce a similar time series as the
empirical data. In summary, we choose a most parsimonious model in which
the estimated noise does not have significant autocorrelations and which can
reproduce a similar time series as the empirical data represent.

7.5 Results

In the Tables 5, 6 and 7 we report the empirical results for the short rate of
Germany, the United Kingdom and the U.S. The first and second columns
are already discussed in Section 6. In the third and fourth columns are results
of the chosen ARMA model and the ARMA-ARCH model. The abbreviation
"LARMA” denotes "level + ARMA” — ARMA with level effect. In the lowest
box of the three tables we can find the forecast errors of the models, where

”in” and ”out” represent ”in sample” and ”out of sample”. The predictor of
X1 38 in the LARMA and the LARMA-ARCH model is given by

~ ~ p ~ ~ ~
X1 = B[ Xi](0) = Xy + o + Z @i Xi—iv1 + X/ (51& e 5q5t—q+1)-

1=1

37 see Bollerslev (1986).
38 Recall the definition(11) in this paper.
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Thus the forecast error of level is the difference
Xip1 — Xt-i—l = X?5t+1
and the forecast error of volatility is given by
(Xep1 — Xip1)? — Et[(Xt+1 - Xt+1)2:| = (X{er1)? — X[y

The percentage rates in the ”% to naive” record the (squared) forecast errors
in proportion to the naive forecast. Recall that the naive forecast means fore-
cast just using the data in the last period.

We observe the following (i) the drift parameters become more significantly
different from zero (except the drift parameter in the U.K.) by introducing
the new structures. In contrast to the CKLS model where the ¢-statistics are
quite small, our new models have a better explanatory power than the naive
forecast, (ii) the forecasts both of level and volatility are improved, (except the
level forecast for U.K.) The improvement is between 10% and 43%. We can
see that the major improvement of the forecast is due to the introduction of
the ARMA-structure. This is because the ARCH-structure is not considered
for improving level forecast. And for volatility forecast, if we can improve level
forecast, then the squared errors become smaller, hence the squared errors of
volatility also become smaller. For the data of Germany and the U.S., the
volatility forecast is further improved by introduction of the ARCH-structure,
(iii) the parameter v is significantly different from zero. This corresponds to
the existence of the level-effect in Brenner et al. (1996). For the data of Ger-
many and the U.K., the parameter v is not significantly different from 0.5. 3°

The normalized autocorrelations with respect to lags are plotted in Figures 3,
6, 9. The normalized autocorrelations for the chosen LARMA and LARMA-
ARCH models are controlled within [—2, +2]. The distributions of the noise
can be found in Figures 13, 14, 15 and the x?-statistics for the normality test
are reported in Tables 5 — 7. Although we already have reduced concentration
of the distributions a lot by introducing the ARCH-structure, all of them are
still significant different from the normal distribution at the level 5%. The
distance is greatest for the short rate in the United Kingdom.

Now we reconstruct time series for the short rates using the specified models
and the estimated parameters. The simulated data are plotted in Figures 16,
17 and 18.

Comparing all three countries we can observe that the modeling for the short
rate of the U.K. is less successful. The t-statistics of the estimated parameters
are not significantly different from zero and the distance between the distri-

39 This value has been proposed by the CIR model, see Cox, Ingersoll and Ross
(1985).
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bution of the estimated noise and the normal distribution is still sizeable even
after the introduction of the ARCH-structure.

Fig. 13. Distribution of estimated white noise (II), Germany
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8 Conclusions

The objective of the paper is to empirically model short term interest rates.
We begin with the contintuous-time CKLS model (1) and we apply the Euler,
Milstein and NLL approximations. For evaluating the quality of the discrete-
time approximations, we compare the errors of parameter estimations and the
one step ahead predictions. Our results do not show an improvement of the
NLL and Milstein approximations over the Euler approximation frequently
found in the literature. The NLL approximation is equivalent to the Euler
approximation due to the linearity of the drift coefficient. In our numerical
experiment we do not find any superiority of the Milstein approximation over
the Euler approximation.

We suggest two simple tests to test the model specification by checking whether
there is still recognizable structure in the estimated white noise of models. We
find that both approximations can be accepted as correctly specified. The
superiority of the Milstein approximation is that the rejection frequency of
the normality test of the Euler approximation is higher than that of the Mil-
stein approximation. It means that the Milstein approximation can reduce the
discretization effect on the noise distribution better than the Euler approxi-
mation.

We also apply the Euler and the Milstein approximations to the short term
interest rates of Germany, the U.K. and the U.S.. In contrast to the numerical
experiment we find strong evidence of model misspecification. The estimated
white noise from the empirical data has high autocorrelation and thick tails.
Since they do not occur in the numerical experiment where the data were sim-
ulated from the diffusion process (1), this indicates that the continuous-time
model (1) of Chan et al. (1992) is not a suitable model for the short rate data.

We show that two further continuous-time models of Ait-Sahalia (1996) and
Andersen and Lund(1997) can not model the autocorrelation of the estimated
white noise either. Therefore, we decide to model short rates in a discrete-time
framework. Our model is the ARMA-ARCH model class with level-dependent
volatility. We choose the most parsimonious model without significant auto-
correlation of the noise. The new model improvs the forecast from 10% to
43% for the short rate data of Germany and the U.S. The improvement of the
forecast holds not only for the data in sample but also for the out of sample
forecast. However, there is one exception, the out of sample forecast for U.K.
is not improved.

This empirical result of the new model givse us an important message. It shows
the necessity to check the estimated white noise. We can indeed improve the
forecasts of the model by removing noticeable structure in the estimated noise.
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Yet, there are still problems left. The modeling of the interest rate data of
U.K. is less satisfactory and the normality test of the noise is rejected for all
three countries. This might suggest to consider other distributions, like gamma
distribution or stable distribution in the next step of the research.

A Appendix
A.1 The likelihood function of the Milstein approximation

Here we show the derivation of the likelihood function when using the Milstein
method. Following (3), the dynamic of the SDE (1) is approximated by

Xy

1
o — Xp = (e — BXy) At + o X AW, + 50—27X§7*1(AW,§ — Aty), (A1)
where Atz == ti+1 - ti; Ath = Wti+1 - Wti-
Let ]
)/ti+1 = Xt¢+1 - Xti — (C — ﬁth)Atz + 5027X27_1Ati.

Then (A.1) becomes

15 oy 2 5 _

50 vXy, T (AWL)T + o X AW, =Y. (A.2)
Let z; € R still be the realizations of X;, and y; be the realizations of Y},

for i = 0,---, N correspondingly. We solve the equation (A.2) to obtain the
realizations of AW,, = uf, |, u;,,, where

—1+4 /14 s

Uiy = oyx) !
fu— (A.3)
~ —1— /1 =
Uipr = va_yq .
1

Then the conditional density is given by

dP({AW,, = dufy,} U {AW,, = du,,,})

p(Xti+1 = xi—l—l‘Xti = le) =

dyit1
dP(AW, = dul ) |duf,, | AP(AW, = du) |dug,,
duy, dyit1 du iy dyiq1

1

2 .
O’JIZ 1 + YYi+1
V T

Y

1 (uit)? (uis1)”
i/ﬂ(exP(_ oan) ter (-5, )>
(A.4)
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Table 5

Results of estimation and forecast for Germany

Germany Milstein Euler Euler Euler
CKLS CKLS LARMA LARMA-ARCH
Estimation *°

P 1 {1, 6} {1, 6}
q 0 0 0
k 0 0 {1, 7}
ap (c) 0.020 0.017 0.068 0.065
(t-stat.) ( 0.37) ( 0.34) ( 1.38) ( 1.74)
a1 (—=p) —0.007 —0.007 0.095 0.079
(—0.73) (—0.71) ( 3.89) ( 3.54)
6 —0.107 —0.091
(—4.28) (—4.01)
0% 0.417 0.378 0.186 0.485
(2.21) ( 2.01) ( 1.00) ( 2.14)
co (o) 0.113 0.122 0.153 0.062
( 3.11) ( 3.11) ( 3.16) ( 2.48)
c1 0.297
( 2.43)
cr 0.272
(2.47)
log-lik 0.0054 0.0054 0.0061 0.0067
x2-test 161 160 95 31
(p-value) (1.78¢725)  (2.91e72%) (6.39¢713) (0.02)

av. forecast error
level (in) 0.0540 0.0541 0.0439 0.0441
% to naive 99% 99% 90% 90%
level (out) 0.0192 0.0193 0.0153 0.0156
% to naive 100% 100% 79% 81%
volatility (in) 0.0144 0.0144 0.0090 0.0082
volatility (out) 0.0017 0.0017 0.0015 0.0013

31



Table 6
Results of estimation and forecast for United Kingdom

United Kingdom | Milstein Euler Euler Euler
CKLS CKLS LARMA LARMA-ARCH
Estimation

p 1 1 {1
g 0 {1} {1}
k 0 0 {1}
ap () 0.153 0.155 0.289 0.210
(t-stat.) ( 1.30) ( 1.23) ( 1.63) ( 1.71)
a1 (—=p) —0.018 —0.019 —0.034 —0.025
(—1.25) (—1.26) (—1.67) (—1.71)
b1 0.431 0.313
( 5.38) ( 2.18)
0% 0.974 0.742 0.574 0.527
(4.97) ( 3.45) (2.91) (2.21)
¢y (o) 0.067 0.115 0.157 0.136
(231) ( 2.11) (2.29) ( 1.86)
c1 0.498
( 2.31)
log-lik 0.00038 0.00019 0.00052 0.00091
x2-test(p-value) 1639 1675 349 235
(0.00)  (0.00) (9.59e7%%) (2.22¢719)

av. forecast error
level (in) 0.3668  0.3668 0.3155 0.3212
% to naive 99% 99% 85% 87%
level (out) 0.0701  0.0701 0.0777 0.0714
% to naive 105% 105% 116% 107%
volatility (in) 1.1705  1.1503 0.6469 0.8050
volatility (out) 0.0218  0.0306 0.0298 0.0277
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Table 7

Results of estimation and forecast for United States

USA Milstein Euler Euler Euler
CKLS CKLS LARMA LARMA-ARCH
Estimation

p 1y {2 1, 2)
q 0 0 0
k 0 0 {1, 6}
ap () 0.048 0.047 0.055 0.028
(t-stat.) ( 1.03) ( 1.01) ( 1.23) ( 0.64)
ay (—pP) —0.010 —0.010 0.361 0.456
(—1.22) (—1.20) (5.219) ( 6.11)
%) —0.371 —0.461
(—5.39) (—6.29)
07 0.827 0.839 0.767 0.808
( 5.70) ( 5.74) ( 5.25) ( 3.57)
¢y (o) 0.055 0.054 0.057 0.037
( 3.70) ( 3.68) ( 3.68) (2.23)
c1 0.225
( 1.26)
C6 0.330
( 2.07)
log-lik 0.0050 0.0050 0.0054 0.0057
x2-test 65 63 76 36
(p-value) (1.32¢77)  (3.43¢77) (2.33¢7?) (0.0053)

av. forecast error
level (in) 0.0732 0.0732 0.0614 0.0618
% to naive 99% 99% 82% 83%
level (out) 0.0252 0.0252 0.0190 0.0187
% to naive 102% 102% 7% 76%
volatility (in) 0.0256 0.0256 0.0183 0.0178
volatility (out) 0.0020 0.0020 0.0017 0.0014
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as 1 + 27‘1’”1 > 0. If 1+ 2%+ < 0, then the density above is infinity. If

1+ 27?“ < 0, which means there is no real solution of AW;, in (A.2) for such
Yit1, therefore the density is equal to zero

p(Xtm = dxi—&-l‘Xti = !Ez) = 0.

Comparing the density function (A.4) and the density function in (2.5) p.7 in
Elerian (1998), it is not difficult to show the identity of these two functions
by some calculation.

By numerical operations of the ML estimations we must modify the density
function, because when 1 + Zm“ = 0, the value of the density function is
infinity. Therefore we apply the followmg density function for the ML estima-
tions:

dP Xti _= dxi+1 Xti — ,’L‘i
Imit(Ti, Tig1, 0, At;) = ( +1 p ‘ )
Tit1
= # (exp ( _ (U::s-l)z) L exp ( B (ui_+1)2)> 1
V21 AL 2At, 206 7 ) gy 1 + 22|

2

fOr 1 4 2 YYi+1 > 10_10
xZ

= 10*10
otherwise.

A.2 ML estimators in equivalent models

Here we give a simple proof about equivalent models. Let [1(6;, z), l2(6s, x)
be two log-likelihood functions of two models. We say these two model are
equivalent under reparametrization, if there exists a bijective mapping H so
that for every observations x € R” we have

ll (01, .I') = lz(H(el), .I')
and symmetrically

lo(0y, 1) = [, (H *(0y), 2).

Also we can represent this equivalence in a shorter form with respect to their
parameters:

0, = H(0,).

Proposition 1 We have two equivalent models. Let él, 0y be the ML estima-
tors. If the two ML estimators exist uniquely, and if the differential H'(6) # 0,
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for all 0, then these ML estimators satisfy also the following equivalence

Proof
Because 6 is the ML estimator, then we have

0 0

0= 8—9111(‘7;’01) 6, - %ZQ(JI,H(QI)) 01
0 1"p
= a—gzlz(l',eQ)‘H(él)H (01)

Because H'(f) # 0, it follows

0
8—9252(%92)‘[{(@1) = 0.

Therefore H(f;) be the ML estimator for [.

Because the ML estimator exists uniquely, we have

~

H(Gl) - ég.
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