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Abstract

The objective of this paper is to model short term interest rate data. Three prob-

lems are studied in this paper. First, if we assume that short term interest rates are

discrete-time observations of a di�usion process, which discretization methods are

preferable for parameter estimation and prediction? Second, can we accept the as-

sumption that the short term interest rates are from a discretely observed di�usion

process? Third, if they are not, how can we improve the modeling of the short term

interest rates? We commence by taking the di�usion process model suggested by

Chan et al (1992) as the data generating process. We employ three discretization

methods: the Euler method, the Milstein method and the new local linearization

method to obtain discrete-time approximate models. In our numerical experiment

three approximate models can be accepted as correctly speci�ed and the Euler

model, in contrast to some other results in the literature, is not inferior to the other

two models. Then we apply these discrete-time approximate models to the short

term interest rate data of Germany, the United Kingdom and the U.S. In contrast

to the numerical results, all discrete-time models fail to pass the speci�cation test.

Compared to the numerical results this indicates that the model suggested by Chan

et al.(1992) is very unlikely to be the data generating process for the short term

interest rate. Therefore, we search for suitable models for the short rate. We do not

�nd an appropriate model of di�usion processes which can reproduce the stylized

facts we are concerned with in this paper. Therefore, we turn to a discrete-time

framework in this search. We employ an ARMA-ARCH model with level-dependent

volatility for the short term interest rates. The new model can provide better level

and volatility forecasts.
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1 Introduction

A di�usion process is the solution of a stochastic di�erential equation (SDE)

dXt = b(Xt; �)dt+ a(Xt; �)dWt;

where (Wt)t�0 is a Brownian motion. 3 In modern �nance theory, di�usion pro-

cesses are often used to model �nancial time series data, for example the short

term interest rate. The short term interest rate is important in characterizing

the term structure of interest rates, which means the structure of interest rates

with di�erent maturities, and in pricing interest rate contingent-claims. There

is some pioneering work, for example by Vasicek (1997) and Cox, Ingersoll

and Ross (1985). A survey of recent work is given in Chan, Karolyi, Longsta�

and Sanders (1992). Chan et al. (1992) show that a wide variety of well-known

one-factor models for short rates can be nested within the following SDE

dXt = (c� �Xt)dt+ �X


t dWt: (1)

The feature of this equation is that it has a mean-reverting drift coeÆcient 4

and a level-dependent di�usion coeÆcient.

Such continuous-time framework can provide elegant expressions in theory,
but it entails some diÆculty in empirical research. The �rst problem is how

to estimate the parameters of this continuous-time models. Many methods
are developed to implement the estimations, for example, the indirect in-

ference method by Gouri�eroux, Monford and Renault (1993), the approxi-
mate likelihood method by Perdersen (1995), the general method of moment
with respect to di�usion generators by Hansen and Scheinkman (1995) and

DuÆe and Glynn (2001), the eÆcient method of moment by Gallant and
Tauchen (1996), the nonparametric method by Ait-Sahalia (1996) and Ait-

Sahalia (1997), the density-approximation method by Dacunha-Castelle and
Florens-Zmirou (1986) and Ait-Sahalia (1999), the Milstein method by Ele-

rian (1998) and in this paper 5 , the new local linearization (NLL) method

developed by Shoji and Ozaki (1997) and (1998) .

The second problem, coming from the continuous-time modeling | which is

more basic and important for the empirical research | is to judge the speci-
�cation of the employed model with respect to the empirical data. Thompson

3 The stochastic integration with respect to dWt is the Itô integration, see Karatzas

and Shreve (1991).
4 If the process deviates from c

�
(the mean), for example, Xt >

c
�
, then the process

is drifting down and it is pulled up when Xt <
c
�
.

5 The application of the Milstein method for approximating di�usion processes is

independently developed by the authors. In the appendix of this paper we present

our application and show that it is equivalent to that of Elerian (1998).
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(2002) provides speci�cation tests for di�usion processes.

In this paper we employ three discretization methods so that we can solve
the two problems mentioned above at the same time. The three discretization
methods are the Euler method, the NLL (new local linearization) method and

the Milstein method. These three methods deliver discrete-time approximate

models for discrete-time observed data of a di�usion process. We can imple-

ment themaximum likelihood estimation (ML estimation) and prediction quite

easily by using these approximate models. For testing the model speci�cation

of the three discrete-time models we pursue the following strategy. By using

the discrete-time approximations, we can easily transform the economical time

series into a white noise process which is independently and identically (i.i.d)

normally distributed. 6 So we test whether the estimated white noise in each

discrete-time approximate models is i.i.d. normally distributed. The intuition

thus is that, if the discrete-time approximation can represent the data generat-

ing process correctly, then we can remove all deterministic structure correctly.

It is important for data prediction: the more we know about the deterministic

structure, the better we can predict data.

We will compare the performance of the three discrete-time approximations.
The Euler approximation is the easiest and the most used as discrete-time

approximation. Its disadvantage is well-known: the Euler estimator 7 is not
consistent 8 . The Milstein and NLL approximations are shown to improve

the Euler approximation, see Elerian (1998:11,Table 1) and Shoji and Ozaki
(1997:494-501). The improvement in their papers is represented by smaller
errors of the parameter estimations in the numerical experiments.

Our paper will discuss the inconsistency of the Euler estimator and investi-
gate those improvements. For evaluating discrete-time approximate models,

besides considering the accuracy of parameter estimation, we still consider
the accuracy of prediction. For the SDE (1) where the drift coeÆcient is lin-
ear, we �nd that the Euler and the NLL approximations are equivalent under

reparametrization. Therefore they have the same predictor. 9 Moreover, we

can derive a functional relation between the estimate of the Euler approxima-

tion and the estimate of the NLL approximation. Using this relation we can

explain why the NLL approximation performs better than the Euler approxi-
mation in Shoji and Ozaki (1997). 10 Thus, in the numerical experiment, we

need not to consider the NLL method.

We compare the Euler and the Milstein approximations in our numerical ex-

6 The white noise in the discrete-time models is represented by Brownian incre-

ments �Wt
7 It means the ML estimator by using the Euler method.
8 See Lo (1988).
9 See Section 3.
10We presume this is why Shoji and Ozaki applied the NLL method for the nonlinear

drift case in Shoji and Ozaki (1998).
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periment using Monte-Carlo-simulations. Our results, however, in contrast to

Elerian (1998), does not verify the superiority of the Milstein approximation

over the Euler approximation. The parameter estimations and the one-step

ahead predictions of the two models are very similar. The reason is the small

size of our drift parameters. The small size of parameters has a similar e�ect

as small discretization steps, because the observed variable evolves less for

smaller parameters or during shorter evolution intervals. We know if the dis-

cretization steps are small, then the e�ect of the discretization is also small.

The reason why we employ such small parameters is because they are sug-
gested by our empirical results of the short rate data 11 .

By considering the model speci�cation we diagnose the estimated white noise

of the Euler and the Milstein approximate models. The estimated white noise

of the two approximations pass our speci�cation test for most simulations.

This means that the Euler and Milstein approximate models can recognize

the deterministic structure of the real data correctly. We also �nd that the

Milstein approximation can reduce the continuous-time e�ect better than the

Euler approximation with respect to the distribution of the estimated white

noise. We observe that for a large 
 the rejection frequency of the distribution
test of the Milstein method is smaller than that of the Euler method.

Beside the numerical experiment we also apply the Euler and Milstein ap-
proximate models to the short term interest rate data of Germany, United

Kingdom and the U.S. We take data after the oil crisis, for 1983.01 - 2000.06,
because many researchers have found evidence of regime changes for the crisis
period 1979-1982 . As in the numerical experiment, we implement the ML

estimation, the one-step ahead prediction and test the model speci�cation.
Two approximate models perform quite similarly. The results here indicate a
signi�cant di�erence between the simulated and real data: none of the short

rate data can pass our speci�cation test. The estimated white noise of all the
three countries has high autocorrelation and thick tails. It is not the case for

the simulated data. Therefore, we conclude that the real short rate data are

very unlikely to be generated by the di�usion process of the equation (1).

The next step is to �nd new models which can explain the autocorrelation

and the thick tails of the noise. In the continuous-time framework there is
some work pointing out the shortcomings of the one-factor di�usion process

of the equation (1), see for example Ait-Sahalia (1996) and Andersen and Lund

(1997). However, the data simulated by those continuous-time models still can

not explain the high autocorrelation of the estimated white noise either.

Since we can not �nd a suitable model in the continuous-time framework we

turn to the discrete-time framework. We employ the autoregressive-moving-

average (ARMA) model to �t the high autocorrelations of the estimated white

noise. We will see, in Section 7, that we can model the autocorrelation of the

11 See Section 6.
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estimated noise by taking more lags in the models. To model the thick tails

in the estimated white noise we follow the work of Brenner et al. (1996) and

Koediji et al. (1997). They employ the autoregressive conditional heteroscedas-

tic (ARCH) model suggested by Engle (1982) and Bollerslev (1986) to model

the thick tail. In addition, they keep the dependence of the conditional vari-

ance on the leverage of short term rates as in the di�usion coeÆcient of SDE

model (1). Summarizing the two modeling strategies above we employ the

model with ARMA-ARCH and level-dependent volatility. Our model general-

izes the model of Brenner et al. (1996) by using the ARMA-structure

The remainder of the paper is organized as follows. Section 2 introduces the

three discretization methods. In Section 3 we introduce the prediction brie
y

and show the following two properties. We show an example that the Euler

approximate model provides a consistent predictor although it's parameter

estimator is inconsistent. We show also that the Euler and NLL approximate

models for the SDE (1) have the same predictor, because the two models are

equivalent under reparametrization. In Section 4 we introduce our speci�ca-

tion tests. In Section 5 we carry out a numerical experiment with Monte-

Carlo-simulations. In Section 6 the Euler and the Miltein approximations will
be applied to the real short rate data. There we can �nd the evidence of the

model misspeci�cation. In Section 7 we observe at �rst the misspeci�cation of
the two further continuous-time models. Then we employ the ARMA-ARCH
model with level-dependent volatility to model the short term interest rates.

Section 8 concludes the paper.

2 Discrete-Time Approximation

The diÆculty of the maximum likelihood (ML) estimation based on discrete-

time observation is well-known in the literature, see Lo (1988). In this paper

we employ discrete-time approximate models so that the ML estimation, pre-

diction and the model speci�cation test are feasible. Here we introduce brie
y
the three methods of discrete-time approximation: the Euler, the Milstein and

the new local linearization (NLL) method.

2.1 Euler Method

The idea of the Euler method is to replace dt in the equation (1) by a time

interval Æt and we have a discrete-time approximation for the di�usion process

X

Xti+1 �Xti = b(Xti ; �)�ti + a(Xti ; �)�Wti : (2)
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2.2 Milstein Method

The Milstein method approximates the SDE by the following scheme:

Xti+1 �Xti =b(Xti ; �)�ti + a(Xti ; �)�Wti

+
1

2
a(Xti)a

0(Xti)((�Wti)
2 ��ti)

(3)

where �ti = (ti+1� ti) and �Wti = Wti+1 �Wti .
12 It is Itô-Taylor expansion

of convergence order 1:0. It has one more term then the Euler method of the

equation (2) which is the Itô-Taylor expansion of convergence order 0:5. 13

The application of the Milstein method as a stochastic model can be found in
Elerian(1998) and in the appendix of this paper.

Here we need to make two remarks: (i) As mentioned we can apply the strong

Itô-Taylor expansion of di�erent convergence orders to obtain diverse discrete-

time approximations for the di�usion process. Such models are usually used for
simulation but not for estimation. If we employ such discrete-time models for
the maximum likelihood estimation, their density functions are complicated

and the maximization of the likelihood function is usually unstable. (ii) The

Milstein method is a better simulation method for di�usion processes only
when the size of the simulation step goes to zero. If the time steps are �xed

by the observation times ft0; t1; � � � ; tNg as in our case, then we can not say
anything about the superiority of the Milstein method.

2.3 New Local Linearization Method

The new local linearization (NLL) method is suggested by Shoji and Ozaki(1997),

p.490-491. We introduce their idea brie
y: the Euler method holds constant

the drift and the di�usion coeÆcients for s 2 [ti; ti+1), while the Shoji and

Ozaki approximate the drift coeÆcient b(Xs) up to the second order terms by

using the Itô formula

dXs =
�
b(Xti) + b0(Xti)(Xs �Xti) +

1

2
b00(Xti)a

2(Xti)(s� ti)
�
ds

+ a(Xti)dWs:
(4)

12 See Kloeden and Platen, 1992:345.
13 See Kloeden and Platen, 1992:Chap.10.
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The di�usion coeÆcient is still kept as a constant. The equation (4) can be

solved analytically and the solution at ti+1 is given by

Xti+1 �Xti

=
b(Xti)

b0(Xti)
(eb

0(Xti
)(ti+1�ti) � 1)

+
b00(Xti)

(b0(Xti))
2

a(Xti)
2

2
( eb

0(Xti
)(ti+1�ti) � 1� b0(Xti)(ti+1 � ti) )

+ a(Xti)
Z ti+1

ti

eb
0(Xti

)(ti+1�z)dWz:

(5)

The distribution of the last term can be represented by

a(Xti)
Z ti+1

ti

eb
0(Xti

)(ti+1�z)dWz
dis.� N

�
0; a(Xti)

2
Z ti+1

ti

e2b
0(Xti

)(ti+1�z)dz
�
: (6)

3 Prediction and Related Discussions

We will brie
y introduce the prediction procedure. Then we discuss two as-

pects related to the prediction. First, we give an example where the Euler
predictor is consistent although the Euler estimator is inconsistent. Second,

we show that the NLL predictor is exactly the same as the Euler predictor in
our case of the SDE (1).

3.1 prediction

Let Ft represent the information set before t. Let

E[�jFt]

denote the conditional expectation given Ft. If we only have information up to

the period t, the best possible approach toX�
t+�t is the conditional expectation

E[�jFt]. The expression "best" is in sense of the mean square error criterion.
14 It is to remark that we can achieve this optimum only when we already

know the true parameter. Usually, we have to estimate it.

It is easy to obtain the conditional expectations for our three discrete-time

models. Let F�(xt; �;�t) denote the conditional expectation of Xt+�t given Ft

14 See Hamilton(1994) chap.4, p.129.

7



by using the �-method:

Feu(xt; �;�t) = xt + b(xt; �)�t; (7)

Fms(xt; �;�t) = xt + b(xt; �)�t; (8)

Fnll(xt; �;�t) = xt +
b(xt)

b0(xt)
(eb

0(xt)�t � 1) (9)

+
b00(xt)

b0(Xt)2
a(Xt)

2

2

�
eb
0(xt)�t � 1� b0(xt)�t

�
: (10)

Let �̂�((Xti)i=0;��� ;N) be the ML estimators based on the observations (Xti)i=0;��� ;N

using the �-method. Then the one-step predictor is given by

X̂�;tN+1
jFtN = F�

�
XtN ; �̂�((Xti)i=0;��� ;N);�tN

�
: (11)

3.2 Decomposition of prediction errors

Now we consider the squared error of the one-step prediction. We decompose
the expected prediction errors

E
h
(X̂�;tN+1

jFtN �X�
tN+1

)2
i

= E
h
(X̂�;tN+1

jFt
N
� F (X�

tN
; �;�t) + F (X�

tN
; �;�t)�X�

tN+1
)2
i

=E[
�
X̂�
�;tN+1

jFtN � F (X�
tN
; �;�t)

�2
] + V ar[X�

tN+1
jFtN ]

into two terms: the �rst term is the distance between the predictor of the
discrete-time model and the best Ft-approximator, the second term is the

conditional variance ofX�
tN
. Only the �rst term is related to the approximation

quality of discrete-time models. This error decomposition is based on that the

expectation of the cross product

E[
�
X̂�;tN+1

jFtN � F (X�
tN
; �;�t)

��
F (X�

tN
; �;�t)�X�

tN+1

�
]

is equal to zero. In the numerical experiment we will use the average to repre-
sent the expectation. However, the average cross term is not necessarily equal

to zero. If the �rst term is small, then the average prediction error is disturbed
by the average cross term and we can not judge the quality of the discretization

correctly. Therefore we will take the average of the �rst term as the criterion

to evaluate the prediction in the numerical experiment later.
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3.3 Is the Euler estimator inconsistent?

We know already that the Euler estimator is inconsistent. 15 Here we give

an example where, although the Euler estimator is inconsistent, the Euler

predictor de�ned in (11) is consistent, i.e. the Euler predictor converges to the

best prediction { the conditional expectation.

We take the SDE (1) with 
 = 0 16 . The observation times are equidistant

ti = i�t, for i = 0; � � � ; N; for a �xed �t and N�t = T . We know the solution

of this SDE is 17

X(i+1)�t =
c

�
(1� e���t) + e���tXi�t + �

Z �t

0
e��(�t�s)dWi�t+s; (12)

where the last term is i.i.d. N
�
0; �

2

2�
(1� e�2��t)

�
-distributed. We rewrite this

discrete-time process into the following equation

Zi = a0 + a1Zi�1 + ui;

with Zi = Xi�t, a0 = c

�
(1 � e���t), a1 = e���t and ui has the distribution

speci�ed above. Let â0;N , â1;N be the ML estimators for a0 and a1 We know

these estimators are consistent 18

plim
N!1

â0;N = a0 and plim
N!1

â1;N = a1: (14)

Now we consider the Euler approximation

X(i+1)�t = Xi�t + (ceu � �euXi�t)�t + �eu�Wi�t:

We see that the Euler approximation and the discrete-time observed di�usion

process can be linked with the reparametrization

ceu�t = a0 =
c

�
(1� e���t)

1� �eu�t = a1 = e���t (16)

�2eu�t =
�2

2�
(1� e�2��t):

15 See Lo (1988).
16 It is called the Ornstein-Uhlenbeck process.
17 see Kloeden and Platen(1992:118).
18 See Fuller(1996). Note that the process is stationary because � > 0, then a1 2

(0; 1).
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Let ĉeu;N , �̂eu;N be ML estimators for ceu, �eu. Using the proposition 1 in the

appendix the ML estimators have also the same relation

ĉeu;N�t = â0;N (17)

1� �̂eu;N�t = â1;N :

Because of the consistency (14) and the equity (17), we have the consistency

of the Euler predictor

X̂eu
T+�tjFT = XT + (ĉeu;N � �̂eu;NXT )�t = â0;N + â1;NXT

�!
plim
N!1

a0 + a1XT = E[XT+�tjFT ]:

With exactly the same reasoning we can also see that the Euler estimators are

inconsistent

plim
N!1

ĉeu;N =
a0

�t
= c

�1� e���t

��t

�
6= c

plim
N!1

�̂eu;N =
1� a1

�t
=

1� e���t

�t
6= �:

3.4 Equivalence of the Euler and NLL predictors

Next we show the Euler and NLL predictors of the SDE (1) are equivalent.
The reason is the linearity of the drift coeÆcient in the equation (1). We can

easily see that the Euler approximation

X(i+1)�t �Xi�t = (c� �Xi�t)�t+ �X


i�t�Wi�t (18)

and the NLL approximation

X(i+1)�t �Xi�t =
h1(�)

�
(c� �Xi�t) + �h2(�)X




i�tUi+1 (19)

are equivalent under the reparametrization

�eu�t = h1(�nll) = 1� e��nll�t

ceu�t =
cnll

�nll
h1(�nll)


eu = 
nll

�eu = �nllh2(�nll) =

s
1� e�2�nll�t

2�nll�t
;
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where Ui; i = 1; � � � are i.i.dN (0;�t)-distributed.We rewrite the reparametriza-

tion more compactly. Let � = f�; c; 
; �g and

H(�; c; 
; �) =
�1� e���t

�t
;
ch1(�)

��t
; 
; �h2(�)

�
:

Then it is clearly seen that

H(�nll) = �eu:

Now we will show the equivalence of the predictors. Let peu(x; y; �;�t) be the

conditional density for the Euler approximation (18) with Xt(i+1)�t
= y and

Xi�t = x. Following the de�nition of the predictor (11) we have

X̂eu
T+�tjFT = E[Xeu

T+�tjFT ] =
Z
ypeu(XT ; y; �̂eu;�t)dy:

Let pnll(x; y; �;�t) be the conditional density for the NLL approximation (19).

Recall that �eu and �nll are so chosen that the two equations (18) and (19) are
exactly the same. Thus, we have the equivalence of the conditional densities

pnll(x; y; �nll;�t) = peu(x; y; �eu;�t) = peu(x; y;H(�nll);�t):

Let �̂nll and �̂eu be the ML estimators. Using the proposition 1 we obtain

H(�̂nll) = �̂eu:

Thus

pnll(x; y; �̂nll;�t) = peu(x; y;H(�̂nll);�t) = peu(x; y; �̂eu;�t):

Therefore, the equivalence of the predictors follows

X̂eu
T+�tjFT =

Z
ypeu(XT ; y; �̂eu;�t)dy

=
Z
ypnll(XT ; y; �̂nll;�t)dy = X̂nll

T+�tjFT :

4 Speci�cation Test

By modeling empirical data one must demonstrate the suitability of the chosen

model with respect to the data. Once a certain model is chosen the model
will impose constraint on the data. A speci�cation test is a test whether the

constraint can be accepted or must be rejected.

Our idea for test the model speci�cation is to undertake diagnostic checking for

estimated white noise. In our discrete-time models of the equations (2), (3) and
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(5) it is very easy to transform the data into white noise which is represented

by Brownian increments �Wt and therefore is i.i.d. normally distributed . In

other words, this transformation should remove the deterministic structure

speci�ed by the (discrete-time) models.

We employ two simple tests to test whether the estimated white noise is i.i.d

normally distributed. The �rst one is to test the null hypothesis H
(1)
0 : the

series of the estimated white noise does not have any autocorrelation, which

is a prerequisite for the independence. The second one is to test H
(2)
0 : the

distribution of the estimated white noise is normal.

4.1 Autocorrelation Checking

Let U1; � � � ; UN be identically distributed random variables. Assumed that

E[Ui] = 0, V ar[Ui] = 1 and EjUijs < 1. The problem is to test H
(1)
0 :

(Ui)i=1;��� ;N is not autocorrelated.

Let R̂k be the sample autovariance function
19 represented by

R̂k =
1

N � k

NX
i=k+1

UiUi�k:

Under the null we have E[R̂k] = 0 and

V ar[R̂k] =
1

N � k
;

for k � 1. We normalized R̂k

r̂k =
R̂k � E[R̂k]q
V ar[R̂k]

=
p
N � k R̂k =

1
p
N � k

NX
i=k+1

UiUi�k:

Consider the sequence (UiUi�k)i=k+1;��� ;N for a �xed k. It is near epoch de-

pendent on (Ui)i=1;��� ;N
20 . Using the central limit theorem for near epoch

processes 21 , r̂k converges to N (0; 1) in distribution as N !1. Applying the

test for our discrete-time approximations, we let Ui =Wi �Wi�1.

We remark here that r̂k � N (0; 1) means R̂k � N (0; 1
N�k

). It is similar with

the result V ar[R̂k] � 1=N in Box et al.(1994:32) when N is large enough.

19 R̂k is also sample autocorrelation function because V ar[Ui] = 1.
20 See Gallant and White (1988) Def. 3.13, p.27 with Zni = UiUi�k. One can see

vm = 0 when m � k.
21 See Gallant and White (1988), Theorem 5.3, p.76 . The conditions of the theorem

are satis�ed because under null (Ui) is independent and vn = n� k.
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We have to remark that there is a shortcoming in this test. We use a "theo-

retical noise" to derive the distribution of the sample autocorrelation, but in

reality we have only \estimated noise" available. The work of Durbin(1970),

Box and Pierce(1970) point out that the sample autocorrelations will be under-

estimated for small k. 22 Fortunately, this under-estimation does not a�ect

our �nding of misspeci�cation later 23 .

4.2 Testing normality

We employ here �2-test for histogram to test whether the distribution of sam-

ples is N (0; 1)-distribution. 24 The idea is to compare the relative frequency

of samples on intervals Im

p̂m =
number offi;Ui 2 Img

N

and pm the probability ofN (0; 1)-distribution on the intervals Im where fIm; m =
1; � � � ;Mg are disjoint intervals of the real line.

The weighted distance

d =
MX

m=1

N

pm(1� pm)
(p̂m � pm)

2 (20)

measures the distance between the sample and the normal distributions. It
converges to �2(M � 1) in distribution as N !1.

5 Numerical Experiment with Monte Carlo Simulation Method

Here we will compare the performance of the Euler and Milstein approxima-
tion in a numerical experiment using Monte-Carlo-simulations. The intention

is to �nd out (i)which discrete-time approximations perform better, and (ii)
whether the discrete-time approximations are correctly speci�ed models for

the discrete-time observations of the di�usion process (1).

The Monte-Carlo-simulation method means that we undertake repeatly simu-

lations. One simulation in our experiment includes: (i) generating data of the

equation (1) with a �ner time interval to imitate the dt. Then we observe the

22 The is why the "Q-statistc" is developed, see Box and Pierce(1970) and Ljung

and Box(1978) .
23 See Section 6.
24 See Breiman(1973:189).
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generated data with a time interval which is much greater than for the gen-

erated data, (ii) applying ML estimation using the discrete-time approximate

models on the observed data, (iii) testing the speci�cation of the models for

the observed data, (iv) forecasting.

The parameter values for the data generating process are given by

c = 0:06

� = 0:01

� = 0:05


 = 0:2; 0:5; 0:8; 1:2:

The values of c; �; � are chosen from the empirical results of the short term in-

terest rate data of the U.S., see Table 7. We vary the value of 
 to see whether

the discretization e�ect would be stronger for greater 
. Recall that if 
 = 0,

the Euler approximation is exactly the correct model. 25

The other parameters are:

the generation interval Æt = 0:01

the observation interval �t = 1

the whole observation time N = 200

each simulation is repeated 1000 times.

The numerical results are reported in Tables 1 { 4. 26

The results of the Euler and the Milstein approximations are in the �rst and

the second columns. In the last column labeled with "true model" are the

results using all simulated data. Hence, the estimation model is exactly the
same as the data generation model. The E denotes the arithmetic average
over all simulations. We compare two kinds of prediction errors: one is the

di�erence between the predictor and the data, the other one is the di�erence

between the predictor and the conditional expectation, see Section 3.2. We

argued there that the second one is better than the �rst one. In these tables
we can also �nd the rejection frequency of the speci�cation tests. H

(1)
0 is the

autocorrelation test and H
(2)
0 is the normality test described in Section 4. We

reject the H
(1)
0 if

max
k=1;��� ;10

jr̂kj � 2:8:

We reject H
(2)
0 if the p-value of the �2-test is smaller than 0:05.

25 It needs to be reparametrized. See Section 3.3.
26 In Table 1 for 
 = 0:2, 5 simulations can not converge by using Milstein approx-

imation.
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Table 1

Numeric results for 
 = 0:2


 = 0:2 Milstein Euler �ner Euler

E[ĉ� � c] 0.1547 0.1550 0.1594

E[�̂� � �] 0.0259 0.0260 0.0267

E[
̂� � 
] 0.0151 0.0067 0.0019

E[�̂� � �] 0.7946 1.0050 0.0010

E[ĉ� � c]2 0.0443 0.0444 0.0468

E[�̂� � �]2 0.0012 0.0012 0.0013

prediction errors

E(Ŷ �
(N+1)�t

� Y(N+1)�t)
2

5.230e�3 5.223e�3 5.222e�3

estimation errors of

cond. expectation

E(Ŷ �
(N+1)�t

� F (YN�t;�t))
2

7.730e�5 7.848e�5 7.420e�5

rejection of H(1) 3.5% 3.6%

rejection of H(2) 8.2% 8.1%

Table 2

Numeric results for 
 = 0:5


 = 0:5 Milstein Euler �ner Euler

E[ĉ� � c] 0.1612 0.1610 0.1666

E[�̂� � �] 0.0268 0.0268 0.0277

E[
̂� � 
] -0.0243 -0.0293 0.0012

E[�̂� � �] 0.0829 0.0705 0.0002

E[ĉ� � c]2 0.0487 0.0486 0.0527

E[�̂� � �]2 0.0013 0.0013 0.0015

prediction errors

E(Ŷ �
(N+1)�t

� Y(N+1)�t)
2

0.0147 0.0147 0.0147

estimation errors of

cond. expectation

E(Ŷ �
(N+1)�t

� F (YN�t;�t))
2

2.446e�4 2.440e�4 2.427e�4

rejection of H(1) 4% 4%

H(2) 8.8% 9.5%
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Table 3

Numeric results for 
 = 0:8


 = 0:8 Milstein Euler �ner Euler

E[ĉ� � c] 0.1516 0.1517 0.1553

E[�̂� � �] 0.0256 0.0256 0.0262

E[
̂� � 
] -0.0230 -0.0253 -0.0014

E[�̂� � �] 0.0171 0.0154 0.0002

E[ĉ� � c]2 0.0425 0.0425 0.0444

E[�̂� � �]2 0.0012 0.0012 0.0013

prediction errors

E(Ŷ �
(N+1)�t

� Y(N+1)�t)
2

0.0457 0.0457 0.0459

estimation errors of

cond. expectation

E(Ŷ �
(N+1)�t

� F (YN�t;�t))
2

7.146e�4 7.150e�4 6.916e�4

rejection of H(1) 3.8% 3.9%

rejection of H(2) 6.7% 8.4%

Table 4

Numierc results for 
 = 1:2


 = 1:2 Milstein Euler �ner Euler

E[ĉ� � c] 0.1330 0.1331 0.1345

E[�̂� � �] 0.0253 0.0252 0.0256

E[
̂� � 
] -0.0505 -0.0432 -0.0006

E[�̂� � �] 0.0074 0.0062 0.0001

E[ĉ� � c]2 0.0358 0.0359 0.0370

E[�̂� � �]2 0.0012 0.0012 0.0012

prediction errors

E(Ŷ �
(N+1)�t

� Y(N+1)�t)
2

0.2610 0.2614 0.2607

estimation errors of

cond. expectation

E(Ŷ �
(N+1)�t

� F (YN�t;�t))
2

0.0043 0.0043 0.0040

rejection of H(1) 3.5% 3.4%

rejection of H(2) 7.4% 15.1%
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Comparing the performance of the Euler and Milstein methods, the results of

drift parameter estimations c; �; are similar. Hence we have also similar results

of the predictions because they are only based on drift parameters. For the

di�usion parameters �; 
 none of the two approximations is clearly superior.

The rejection quotes of H
(1)
0 are about 4% for the both approximations and

for all 
's. This means for about 96% simulation the maximal normalized

autocorrelation coeÆcients are smaller than 2:8. The rejection frequency for

H
(2)
0 would be around 5% if the noise were normally distributed. In the tables

we see all the rejection frequencies of H
(2)
0 are greater than 5%. The rejec-

tion frequencies of the Euler approximation are greater than those of Milstein

approximation for 
 = 0:5; 0:8; 1:2. Especially for 
 = 1:2, the rejection fre-
quency of the Euler approximation is more than double as that of the Milstein

approximation: 15.1% for the Euler and 7.4% for the Milstein approximations.

This means the discretization e�ect in the estimated noise for a greater 
 can

be lowered more by the Milstein approximation than by the Euler approxima-
tion.

The estimated drift coeÆcients c; � show large estimation errors, for example

for 
 = 0:5, the error of � is 269% (= 0:1611=0:06) relative to the true � and

268% (= 0:268=0:01) relative to the true c. These errors are not caused by the
discretization because the errors of the true model at the last column are even

larger than those of the Euler and Milstein approximations. It does not coin-
cide some results where the parameter estimations are better by using more

frequent data, for example in Shoji nd Ozaki (1997). We remark here that

the ML estimator is biased, because the correlation between the explanatory
variables and the noises. 27

However, in spite of the larger errors of parameter estimation, the true model
can o�er a better prediction. We can see that the true model has smaller errors
of conditional expectation estimations.

6 Empirical Results on Modeling Short Term Interest Rates

We apply the Euler and the Miltein approximations on short rate data in this

section. The short rate data we choose are interest rates with a one-day ma-

turity: the overnight interbank rate of the United Kingdom, the federal funds

rate of the U.S. and the call money rate of Germany. All data are monthly
data. 28 We take the time period 1983.1 { 1997.12 (180 observations) for esti-

27 See Frohn (1995).
28 The source is \International Statistical YearBook". See http://www.ub.uni-

bielefeld.de/english/library/databases/, then choose International Statistical Year-

Book 2000, for "Datenbank" choosing "OECD" and "main economic indicators",

for "Period" choose "monthly data", for "Search" choose "indicator-search", then
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mation and 1998.1 { 2000.6 (30 observations) for prediction. The time series

of the rates are plotted in Figures 1, 4 and 7.

In the Tables 5, 6 and 7 the empirical results are reported. In the �rst two
columns are results of the Euler and Milstein approximations for the CKLS

model (1). The notations of the parameters are changed because we will

consider more general models below 29 . Their parameter estimations, their

t-statistics for the estimates 30 and their predictions are very similar. The es-

timated white noise from the two approximations is also very similar. We plot

their distributions in Figures 2, 5 and 8.

We also plot the normalized autocorrelations for the Euler approximation in

Figures 3, 6 and 9. We see the �rst normalized autocorrelation are about 3:5

for Germany and the U.K. and about 5 for the U.S. It indicates strong autocor-

relation between the time series of the estimated white noise. We remarked in

Section 4.1 already that our autocorrelation test under-estimates the sample
autocorrelation for short lags. This under-estimation does not a�ect the fact

that the estimate noise have strong (even stronger) autocorrelation. For com-
paring this result of our numerical experiment, we take the result of 
 = 0:8

as a benchmark for the result of the U.S. With 1000 simulations, 96% of the
simulations have the �rst ten normalized autocorrelations smaller than 2:8.
The maximal value of the autocorrelations in the numerical result is only 4:2.

It indicates that the continuous-time CKLS model (1) can not reproduce the
high autocorrelation of the noise as the empirical data exhibit. In other words,

the CKLS model is misspeci�ed.

We can also observe that the estimated white noise is highly concentrated

around zero than standard normal distribution, which means they have thick
tails. 31 This fact can be inferred from in Figures 2, 5 and 8 and the values
of the �2-test and their p-values in Tables 5 - 7. Comparing this result to

the numerical experiment, such large values do not occur. It means again the
model (1) is misspeci�ed.

We also see that the estimated drift coeÆcients do not signi�cantly di�er from

zero. When they are zero, it means that we can not forecast tomorrow's data
better than just using the data today. In order to see whether there is a re-

duction of the forecasting error by using the models we compare forecasting

errors of the models relative to those of the \naive" forecast, | just using the

data today. The results in the tables show that we do not need such a model.

"interest rates", then "immediate rates".
29 In the parentheses are the old notations.
30 in the parentheses
31 Because the variance is normalized to 1. The concentration of the distribution

around 0 let the variance smaller. In order to keep the variance as 1, there must be

more weight in the tail.
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Fig. 1. Call money rate, Germany

Fig. 2. Distribution of estimated white noise (I), Germany

Fig. 3. Normalized autocorrelation of the estimated noise, Germany
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Fig. 4. Interbank rate, U.K.

Fig. 5. Distribution of estimated white noise (I), U.K.

Fig. 6. Normalized autocorrelation of the estimated noise, U.K.
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Fig. 7. Federal funds rate of the U.S.

Fig. 8. Distribution of estimated white noise (I), U.S.

Fig. 9. Normalized autocorrelation of the estimated noise, the U.S.
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7 Searching for New Models

Because of the misspeci�cation of the model (1) shown in the last section we

search for new models. They must be able to model the high autocorrelations
and the thick tails in the estimated noise.

7.1 Improvement in the continuous-time framework

In literature, there are further works to improve the model (1) for modeling

the short term rate in the framework of continuous-time models, for example

Ait-Sahalia (1996) suggests an non-linear drift coeÆcient and Andersen and

Lund (1997) suggests a stochastic volatility model.

We simulate data using the models speci�ed in Ait-Sahalia (1996) and An-

dersen and Lund (1997). 32 We plot them in Figures 10 and 11. The model of

Ait-Sahalia can not reproduce a similar time series of the real data. It stays
always in a narrow band around the steady state. The normalized autocorre-
lation functions from these two models are plotted in Figure 12. We observe

that there is no extreme autocorrelation in the estimated noise.

7.2 Modeling autocorrelations in the estimated noise

We employ the autoregressive-moving-average (ARMA) process 33 to model
the autocorelation of the estimated noise

�Wt =
pX

i=1

�i�Wt�i +
qX

j=0

 i�t�j: (21)

We will transform the ARMA-structure of the noise into the ARMA-structure

of the variable. We illustrate the transformation with an example, where the

noise �Wt is an autoregressive process of order 1

�Wt = ��Wt�1 + �t:

We replace �Wt using (18), then we obtain

�Xt � (c� �Xt�1)

�X

t�1

= �
�Xt�1 � (c� �Xt�2)

�X

t�2

+ �t :

32We undertake simulation with an interval 0:01 and then pick up the simulated

series with an interval 1.
33 see Box, Jenkins and Reinsel (1994)
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Fig. 10. Simulated data from Ait-Sahalia's model

Fig. 11. Simulated data from Andersen-Lund's model

Fig. 12. Normalized autocorrelation of the estimated noise for the continuouts-time

models
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Rearranging it we obtain

�Xt = (c� �Xt�1) + �
�Xt�1

Xt�2

�
�
Xt�1 � (c� �Xt�2)

�
+ �X



t�1�t: (22)

This means, in order to eliminate the �rst autocorrelation of the noise �Wt,

we must introduce the second lag as an explanatory variable.

The equation (22) give us a starting-point. We assume
�
Xt�1

Xt�2

�

� 1. Rewriting

(22) then we obtain a model with two lags in the drift term

�Xt = �0 + �1Xt�1 + �2Xt�2 + �X


t�1�t:

So, for modeling the noise �Wt in a general structure we employ the following

equation

�Xt = �0 +
pX

i=1

�iXt�i +X

t�1

� qX
i=0

�i"t�i
�

(23)

7.3 Modeling thick tails in the estimated noise

For modeling thick tails of the noise we employ the idea of Brenner et al.(1996)

and Koedijk et al.(1997) . The common feature of their constructions is that
they apply the autoregressive conditional heteroscadasticity (ARCH) 34 to

model the thick tail. 35 Moreover, the conditional variance (the volatility) of
Xt is level-dependent. Brenner et al. (1996) argue that both level- and ARCH-
e�ects are signi�cant for short-term rates.

We build the ARCH-structure in the model (23)

"t � N(0; ht); (24)

ht = c20 +
kX
i=1

ci"
2
t�i:

We employ (23) and (24) as our model class to model short rates. For the

unique speci�cation of the parameter we normalize �0 = 1. We make two re-
marks. First, our model generalizes the model of Brenner et al. (1996) by con-

sidering the ARMA-structure (23). We saw already that the ARMA-structure
is used to model the autocorrelation of the noise which is found in the empir-

ical results. Even in their results we can also �nd the evidence of autocorre-

lations of the residuals . 36 Second, we employ the ARCH-structure instead

34 See Engle (1982).
35 There is a thick tail e�ect if the kurtosis, de�ned as

E(�4)

(E(�2))2
, is greater than 3 -

the kurtosis of normal distribution.
36 See Brenner et al. (1996) p.95 " The Ljung-Box Q(�t=�t) statistics indicate that

both models have signi�cant serial correlation in the residuals."
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of GARCH-structure in Brenner et al. (1996) . The GARCH model is a tech-

nical improvement over the ARCH-struture 37 when the lags of "2t are long.

According to the results of our model identi�cation we do not need to employ

the GARCH-structure.

7.4 Model identi�cation

By model identi�cation we mean the determination of the orders p, q and k

according to the data. We follow the Box-Jenkins-methodology in Box, Jenkins

and Reinsel (1994). The �rst step is to choose a tentative model according

to the autocorrelation function (ACF) and partial autocorrelation function

(PACF). The second step is to check the tentative model. Then, according the

diagnostic check we decide whether we accept the tentative model or we need

go back to the �rst step to choose another model.

In our case, the choice of p and q is suggested by the ACF and PACF of

"t. After that p and q are determined, the order k is chosen by the ACF
and PACF of "2t . By model diagnosic check we have to check three points: (i)
over�tting: whether the estimated parameter di�ers from zero signi�cantly. (ii)

noise diagnostic checking: whether �t, �
2
t have extremely high autocorrelations.

(iii) whether the chosen model can reproduce a similar time series as the
empirical data. In summary, we choose a most parsimonious model in which

the estimated noise does not have signi�cant autocorrelations and which can
reproduce a similar time series as the empirical data represent.

7.5 Results

In the Tables 5, 6 and 7 we report the empirical results for the short rate of

Germany, the United Kingdom and the U.S. The �rst and second columns

are already discussed in Section 6. In the third and fourth columns are results

of the chosen ARMA model and the ARMA-ARCH model. The abbreviation

"LARMA" denotes "level + ARMA" { ARMA with level e�ect. In the lowest
box of the three tables we can �nd the forecast errors of the models, where

"in" and "out" represent "in sample" and "out of sample". The predictor of

Xt+1
38 in the LARMA and the LARMA-ARCH model is given by

X̂t+1 = Et[Xt+1](�̂) = Xt + �̂0 +
pX

i=1

�̂iXt�i+1 +X 
̂
t

�
�̂1"t + � � �+ �̂q"t�q+1

�
:

37 see Bollerslev (1986).
38 Recall the de�nition(11) in this paper.
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Thus the forecast error of level is the di�erence

Xt+1 � X̂t+1 = X

̂
t "t+1

and the forecast error of volatility is given by

(Xt+1 � X̂t+1)
2 � Et

h
(Xt+1 � X̂t+1)

2
i
= (X


̂
t "t+1)

2 �X
2
̂
t ĥt:

The percentage rates in the "% to naive" record the (squared) forecast errors

in proportion to the naive forecast. Recall that the naive forecast means fore-

cast just using the data in the last period.

We observe the following (i) the drift parameters become more signi�cantly

di�erent from zero (except the drift parameter in the U.K.) by introducing

the new structures. In contrast to the CKLS model where the t-statistics are

quite small, our new models have a better explanatory power than the naive

forecast, (ii) the forecasts both of level and volatility are improved, (except the

level forecast for U.K.) The improvement is between 10% and 43%. We can

see that the major improvement of the forecast is due to the introduction of
the ARMA-structure. This is because the ARCH-structure is not considered
for improving level forecast. And for volatility forecast, if we can improve level

forecast, then the squared errors become smaller, hence the squared errors of
volatility also become smaller. For the data of Germany and the U.S., the
volatility forecast is further improved by introduction of the ARCH-structure,

(iii) the parameter 
 is signi�cantly di�erent from zero. This corresponds to
the existence of the level-e�ect in Brenner et al. (1996). For the data of Ger-

many and the U.K., the parameter 
 is not signi�cantly di�erent from 0:5. 39

The normalized autocorrelations with respect to lags are plotted in Figures 3,

6, 9. The normalized autocorrelations for the chosen LARMA and LARMA-
ARCH models are controlled within [�2;+2]. The distributions of the noise
can be found in Figures 13, 14, 15 and the �2-statistics for the normality test

are reported in Tables 5 { 7. Although we already have reduced concentration

of the distributions a lot by introducing the ARCH-structure, all of them are
still signi�cant di�erent from the normal distribution at the level 5%. The

distance is greatest for the short rate in the United Kingdom.

Now we reconstruct time series for the short rates using the speci�ed models
and the estimated parameters. The simulated data are plotted in Figures 16,

17 and 18.

Comparing all three countries we can observe that the modeling for the short

rate of the U.K. is less successful. The t-statistics of the estimated parameters

are not signi�cantly di�erent from zero and the distance between the distri-

39 This value has been proposed by the CIR model, see Cox, Ingersoll and Ross

(1985).
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bution of the estimated noise and the normal distribution is still sizeable even

after the introduction of the ARCH-structure.

Fig. 13. Distribution of estimated white noise (II), Germany

Fig. 14. Distribution of estimated white noise (II), U.K.

Fig. 15. Distribution of estimated white noise (II), U.S.
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Fig. 16. Simulated rate of Germany

Fig. 17. Simulated rate of the U.K.

Fig. 18. Simulated rate of the U.S.
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8 Conclusions

The objective of the paper is to empirically model short term interest rates.
We begin with the contintuous-time CKLS model (1) and we apply the Euler,

Milstein and NLL approximations. For evaluating the quality of the discrete-

time approximations, we compare the errors of parameter estimations and the

one step ahead predictions. Our results do not show an improvement of the

NLL and Milstein approximations over the Euler approximation frequently

found in the literature. The NLL approximation is equivalent to the Euler

approximation due to the linearity of the drift coeÆcient. In our numerical

experiment we do not �nd any superiority of the Milstein approximation over

the Euler approximation.

We suggest two simple tests to test the model speci�cation by checking whether

there is still recognizable structure in the estimated white noise of models. We

�nd that both approximations can be accepted as correctly speci�ed. The

superiority of the Milstein approximation is that the rejection frequency of

the normality test of the Euler approximation is higher than that of the Mil-
stein approximation. It means that the Milstein approximation can reduce the
discretization e�ect on the noise distribution better than the Euler approxi-

mation.

We also apply the Euler and the Milstein approximations to the short term

interest rates of Germany, the U.K. and the U.S.. In contrast to the numerical
experiment we �nd strong evidence of model misspeci�cation. The estimated
white noise from the empirical data has high autocorrelation and thick tails.

Since they do not occur in the numerical experiment where the data were sim-
ulated from the di�usion process (1), this indicates that the continuous-time

model (1) of Chan et al. (1992) is not a suitable model for the short rate data.

We show that two further continuous-time models of Ait-Sahalia (1996) and
Andersen and Lund(1997) can not model the autocorrelation of the estimated
white noise either. Therefore, we decide to model short rates in a discrete-time

framework. Our model is the ARMA-ARCH model class with level-dependent

volatility. We choose the most parsimonious model without signi�cant auto-

correlation of the noise. The new model improvs the forecast from 10% to

43% for the short rate data of Germany and the U.S. The improvement of the
forecast holds not only for the data in sample but also for the out of sample

forecast. However, there is one exception, the out of sample forecast for U.K.

is not improved.

This empirical result of the new model givse us an important message. It shows
the necessity to check the estimated white noise. We can indeed improve the

forecasts of the model by removing noticeable structure in the estimated noise.
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Yet, there are still problems left. The modeling of the interest rate data of

U.K. is less satisfactory and the normality test of the noise is rejected for all

three countries. This might suggest to consider other distributions, like gamma

distribution or stable distribution in the next step of the research.

A Appendix

A.1 The likelihood function of the Milstein approximation

Here we show the derivation of the likelihood function when using the Milstein
method. Following (3), the dynamic of the SDE (1) is approximated by

Xti+1 �Xti = (c� �Xti)�ti + �X

ti
�Wti +

1

2
�2
X2
�1

ti
(�W 2

ti
��ti); (A.1)

where �ti = ti+1 � ti, �Wti = Wti+1 �Wti .

Let

Yti+1 = Xti+1 �Xti � (c� �Xti)�ti +
1

2
�2
X2
�1

ti
�ti:

Then (A.1) becomes

1

2
�2
X2
�1

ti
(�Wti)

2 + �X

ti
�Wti = Yti+1 : (A.2)

Let xi 2 R still be the realizations of Xti and yi be the realizations of Yti
for i = 0; � � � ; N correspondingly. We solve the equation (A.2) to obtain the
realizations of �Wti = u+i+1; u

�
i+1, where

u+i+1 =
�1 +

q
1 + 2
yi+1

xi

�
x
�1i

u�i+1 =
�1�

q
1 + 2
yi+1

xi

�
x
�1i

:

(A.3)

Then the conditional density is given by

p
�
Xti+1 = xi+1

���Xti = xi
�
=
dP
�
f�Wti = du+i+1g [ f�Wti = du�i+1g

�
dyi+1

=
dP
�
�Wti = du+i+1

�
du+i+1

�����du
+
i+1

dyi+1

�����+
dP
�
�Wti = du�i+1

�
du�i+1

�����du
�
i+1

dyi+1

�����
=

1
p
2��ti

 
exp

�
�
(u+i+1)

2

2�ti

�
+ exp

�
�
(u�i+1)

2

2�ti

�!����� 1

�x
i

q
1 + 2
yi+1

xi

�����;
(A.4)
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Table 5

Results of estimation and forecast for Germany

Germany Milstein Euler Euler Euler

CKLS CKLS LARMA LARMA-ARCH

Estimation 40

p 1 f1; 6g f1; 6g

q 0 0 0

k 0 0 f1; 7g

�0 (c) 0:020 0:017 0:068 0:065

(t-stat.) ( 0:37) ( 0:34) ( 1:38) ( 1:74)

�1 (��) �0:007 �0:007 0:095 0:079

(�0:73) (�0:71) ( 3:89) ( 3:54)

�6 �0:107 �0:091

(�4:28) (�4:01)


 0:417 0:378 0:186 0:485

( 2:21) ( 2:01) ( 1:00) ( 2:14)

c0 (�) 0:113 0:122 0:153 0:062

( 3:11) ( 3:11) ( 3:16) ( 2:48)

c1 0:297

( 2:43)

c7 0:272

( 2:47)

log-lik 0:0054 0:0054 0:0061 0:0067

�2-test 161 160 95 31

(p-value) (1:78e�25) (2:91e�25) (6:39e�13) (0:02)

av. forecast error

level (in) 0:0540 0:0541 0:0439 0:0441

% to naive 99% 99% 90% 90%

level (out) 0:0192 0:0193 0:0153 0:0156

% to naive 100% 100% 79% 81%

volatility (in) 0:0144 0:0144 0:0090 0:0082

volatility (out) 0:0017 0:0017 0:0015 0:0013
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Table 6

Results of estimation and forecast for United Kingdom

United Kingdom Milstein Euler Euler Euler

CKLS CKLS LARMA LARMA-ARCH

Estimation

p f1g f1g f1g

q 0 f1g f1g

k 0 0 f1g

�0 (c) 0:153 0:155 0:289 0:210

(t-stat.) ( 1:30) ( 1:23) ( 1:63) ( 1:71)

�1 (��) �0:018 �0:019 �0:034 �0:025

(�1:25) (�1:26) (�1:67) (�1:71)

�1 0:431 0:313

( 5:38) ( 2:18)


 0:974 0:742 0:574 0:527

( 4:97) ( 3:45) ( 2:91) ( 2:21)

c0 (�) 0:067 0:115 0:157 0:136

( 2:31) ( 2:11) ( 2:29) ( 1:86)

c1 0:498

( 2:31)

log-lik 0:00038 0:00019 0:00052 0:00091

�2-test(p-value) 1639 1675 349 235

(0:00) (0:00) (9:59e�64) (2:22e�40)

av. forecast error

level (in) 0:3668 0:3668 0:3155 0:3212

% to naive 99% 99% 85% 87%

level (out) 0:0701 0:0701 0:0777 0:0714

% to naive 105% 105% 116% 107%

volatility (in) 1:1705 1:1503 0:6469 0:8050

volatility (out) 0:0218 0:0306 0:0298 0:0277
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Table 7

Results of estimation and forecast for United States

USA Milstein Euler Euler Euler

CKLS CKLS LARMA LARMA-ARCH

Estimation

p f1g f1; 2g f1; 2g

q 0 0 0

k 0 0 f1; 6g

�0 (c) 0:048 0:047 0:055 0:028

(t-stat.) ( 1:03) ( 1:01) ( 1:23) ( 0:64)

�1 (��) �0:010 �0:010 0:361 0:456

(�1:22) (�1:20) (5:219) ( 6:11)

�2 �0:371 �0:461

(�5:39) (�6:29)


 0:827 0:839 0:767 0:808

( 5:70) ( 5:74) ( 5:25) ( 3:57)

c0 (�) 0:055 0:054 0:057 0:037

( 3:70) ( 3:68) ( 3:68) ( 2:23)

c1 0:225

( 1:26)

c6 0:330

( 2:07)

log-lik 0:0050 0:0050 0:0054 0:0057

�2-test 65 63 76 36

(p-value) (1:32e�7) (3:43e�7) (2:33e�9) (0:0053)

av. forecast error

level (in) 0:0732 0:0732 0:0614 0:0618

% to naive 99% 99% 82% 83%

level (out) 0:0252 0:0252 0:0190 0:0187

% to naive 102% 102% 77% 76%

volatility (in) 0:0256 0:0256 0:0183 0:0178

volatility (out) 0:0020 0:0020 0:0017 0:0014
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as 1 + 2
yi+1
xi

> 0. If 1 + 2
yi+1
xi

< 0, then the density above is in�nity. If

1+ 2
yi+1
xi

< 0, which means there is no real solution of �Wti in (A.2) for such

yi+1, therefore the density is equal to zero

p
�
Xti+1 = dxi+1

���Xti = xi
�
= 0:

Comparing the density function (A.4) and the density function in (2.5) p.7 in

Elerian (1998), it is not diÆcult to show the identity of these two functions

by some calculation.

By numerical operations of the ML estimations we must modify the density

function, because when 1 + 2
yi+1
xi

= 0, the value of the density function is
in�nity. Therefore we apply the following density function for the ML estima-

tions:

gmil(xi; xi+1; �;�ti) =
dP
�
Xti+1 = dxi+1

���Xti = xi
�

dxi+1

=
1

p
2��ti

 
exp

�
�

(u+i+1)
2

2�ti

�
+ exp

�
�

(u�i+1)
2

2�ti

�!����� 1

�x
i

q
1 + 2
yi+1

xi

����� ;
for 1 +

2
yi+1

xi
> 10�10

= 10�10;

otherwise:

A.2 ML estimators in equivalent models

Here we give a simple proof about equivalent models. Let l1(�1; x), l2(�2; x)

be two log-likelihood functions of two models. We say these two model are
equivalent under reparametrization, if there exists a bijective mapping H so

that for every observations x 2 R
n we have

l1(�1; x) = l2(H(�1); x)

and symmetrically
l2(�2; x) = l1(H

�1(�2); x):

Also we can represent this equivalence in a shorter form with respect to their
parameters:

�2 = H(�1):

Proposition 1 We have two equivalent models. Let �̂1, �̂2 be the ML estima-

tors. If the two ML estimators exist uniquely, and if the di�erential H 0(�) 6= 0,
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for all �, then these ML estimators satisfy also the following equivalence

�̂2 = H(�̂1)

Proof

Because �̂1 is the ML estimator, then we have

0 =
@

@�1
l1(x; �1)

���
�̂1
=

@

@�
l2(x;H(�1))

���
�̂1

=
@

@�2
l2(x; �2)

���
H(�̂1)

H 0(�̂1):

Because H 0(�̂2) 6= 0, it follows

@

@�2
l2(x; �2)

���
H(�̂1)

= 0:

Therefore H(�̂1) be the ML estimator for l2.

Because the ML estimator exists uniquely, we have

H(�̂1) = �̂2:
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