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Abstract

The paper studies the local dynamics of an endogenous growth model with

externalities of investment. It is demonstrated that, in case of sustained per

capita growth, the competitive economy is characterized by a situation with

a unique balanced growth path which is saddle point stable or by a situation

with two balanced growth paths. If there are two balanced growth paths, the

one with the higher growth rate is a saddle point whereas the path with the

lower growth rate is either completely stable, with convergence to a rest point

or limit cycle, or completely unstable. In the social optimum the existence

of a balanced growth path implies that it is unique and that this path is a

saddle point.
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1 Introduction

One strand in endogenous growth theory is concerned with sustained per capita

growth resulting from positive externalities of investment in physical capital. That

idea goes back to Arrow (1962) who asserted that learning by doing is an important

determinant of the stock of knowledge of workers in an economy. A good index

for the stock of knowledge, according to Arrow, is cumulated investment. Levhari

(1966) generalized the model presented by Arrow, who originally used a vintage ap-

proach, and showed that most of Arrow’s results can be extended to any homogenous

production function of the first degree which is not restricted to fixed coefficients.

Sheshinski (1967) and Romer (1986) have integrated that idea in the neoclassical

growth model with optimizing agents and Romer could demonstrate that his model

may generate sustained per capita growth with an endogenously determined growth

rate. However, in contrast to other endogenous growth models, especially models of

the Lucas-Uzawa type,1 the growth model with external effects of investment has

not been anaylzed frequently as to its dynamics. Benhabib and Farmer (1994) for

example have demonstrated that an endogenous growth model with externalities

may generate indeterminacy in the competitive economy if labour supply is elastic.

But, as far as I know, there does not exist a thorough dynamic analysis of the

basic endogenous growth model with inelastic labour supply, which is more general

concerning the formation of knowledge capital as a by-product of investment.

Since empirical studies suggest that investment is associated with positive exter-

nalities (see e.g. DeLong and Summers (1991) or Hamilton and Monteagudo (1998))

it seems necessary to integrate that feature in a growth model and to explicitly study

its dynamics.

In the rest of the paper we proceed as follows. In section 2 we present the growth

model with external effects of investment and derive optimality conditions for the

competitive economy and for the social optimum. Section 3 studies the dynamics of

the model for the two economies and section 4 finally concludes the paper.

1See e.g. the papers by Xie (1994) and Benhabib and Perli (1994).
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2 The model

Our economy is represented by one household whose goal is to maximize its dis-

counted stream of utilities arising from consumption subject to a budget constraint.

Further, there is an externality associated with investment in physical capital which

consists in building up a stock of knowledge capital (learning by doing). We start

with the description of that external effect.

The external effect of investment

We assume that the stock of knowledge capital, A(t), which raises the efficiency

of labour input, is formed as a by-product of gross investment in physical capital

according to A(t) = ϕ
∫ t
−∞ eη(s−t)I(s)ds. The use of the weighting function eη(s−t)

implies that investment further back in time contributes less to the current stock

of knowledge capital than more recent gross investment. As to the use of weighting

functions in economics see e.g. Ryder and Heal (1973), Feichtinger and Sorger (1988)

or Grossman and Helpman (1991), chap. 3.2. Differentiating A(t) with respect to

time2 leads to

Ȧ = ϕI − ηA, A(0) = A0. (1)

That equation shows that ϕ > 0 states how much any unit of investment contributes

to the formation of the stock of knowledge and η ≥ 0 gives the depreciation of

knowledge capital. Depreciation of knowledge can be justified by supposing that

any new capital good requires new knowledge in order to be operated efficiently.

Next, we describe the competitive economy and the social optimum.

The Competitive Economy

As mentioned above, our economy consists of a representative household whose goal

is to maximize the discounted stream of utility over an infinite time horizon:

max
{C(t)}

∫ ∞

0
e−ρtu(C(t))dt, (2)

2In the following we suppress the time argument if no ambiguity results.
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subject to the budget constraint3

K̇ = AαK1−α − C − δK, K(0) = K0, (3)

where u(·) is a strictly concave utility function, u′(·) > 0, u′′(·) < 0. ρ denotes the

constant rate of time preference, K the stock of physical capital, which depreciates

at the rate δ ≥ 0. The labor supply is assumed to be constant and normalized to one

so that all variables denote per capita quantities. α ∈ (0, 1) gives the labour share in

the Cobb-Douglas production function and 1−α is the share of physical capital. It

should be noted that the representative household has rational expectations, which

is equal to perfect foresight in a deterministic setup, and knows the evolution of

{A(t), t ∈ [0,∞)}. But he does not take it into account in solving his optimization

problem. That is, as usual, the external effect of investment is not taken into account

in the competitive economy.

To obtain optimality conditions we formulate the current-value Hamiltonian H =

u(C) + λ(AαK1−α − C − δK). The necessary optimality conditions are given by

u′(C) = λ, (4)

λ̇ = (ρ + δ)λ− λ(1− α)AαK−α, (5)

The necessary optimality conditions are also sufficient if the limiting transversality

condition limt→∞ e−ρtλ(t)K(t) ≥ 0 is fulfilled.

The social optimum

Since there is a positive externality associated with investment in physical capital it

is obvious that the optimization problem of the competitive economy does not yield

the social optimum. The latter is obtained by solving the optimization problem

max
{C(t)}

∫ ∞

0
e−ρtu(C(t))dt, (6)

3The model with household production is equivalent to a decentralized economy where the

household receives labour income and income from its saving, and where the wage and interest

rate are equal to the marginal product of labour and capital respectively.
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subject to

K̇ = AαK1−α − C − δK, K(0) = K0, (7)

Ȧ = ϕ(AαK1−α − C)− ηA, A(0) = A0. (8)

At that point it should also be mentioned that, from a formal point of view, our

framework is equal to the model presented by Romer (1986) if we set ϕ = 1 and δ =

η = 0. Then, knowledge and physical capital evolve at the same pace such that those

two state variables can be merged into one single variable. But it must be underlined

that Romer has increasing returns in the factors which can be accumulated while our

economy is characterized by a constant returns to scale technology. The dynamics

of the Romer model have been studied heuristically in Xie (1991).

To find necessary conditions we formulate the current-value Hamiltonian H =

u(C)+λ1(A
αK1−α−C− δK)+λ2(ϕ(AαK1−α−C)− ηA). Necessary conditions are

then obtained as

u′(C) = λ1 + λ2ϕ, (9)

λ̇1 = (ρ + δ)λ1 − λ1(1− α)K−αAα − λ2ϕ(1− α)K−αAα, (10)

λ̇2 = (ρ + η)λ2 − λ1αAα−1K1−α − λ2ϕαAα−1K1−α. (11)

Again, the necessary conditions are sufficient if the limiting transversality condition

limt→∞ e−ρt(λ1(t)K(t) + λ2(t)A(t)) ≥ 0 is fulfilled.

From (4) and (9) it is immediately seen that in the social optimum the level of

investment is higher. That holds because in the social optimum investment is not

only paid its shadow price λ1 but also an additional weighted shadow price ϕλ2.

Consequently, as usual, the government has to give incentives for investment by, for

example, raising a lump-sum tax which is used to subsidize investment. It should

be noted that the higher ϕ, i.e. the more any unit of investment contributes to the

growth of the stock of knowledge, the higher the subsidy has to be.

In the next section we study the dynamics of that model around a balanced

growth path (BGP) both for the competitive economy and for the social optimum.
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3 The dynamics

To investigate the dynamics of our model we first derive the equations of motions.

For the competitive economy the differential equation system describing our

economy is obtained by differentiating (4) with respect to time and using (5). Taking

into account that the stock of knowledge evolves according to (1) and physical capital

according to (3) leads to

Ċ = AαK−αC
(

1− α

σ

)
− C

(
ρ + δ

σ

)
, (12)

K̇ = AαK1−α − C − δK, (13)

Ȧ = ϕAαK1−α − ϕC − ηA, (14)

with σ ≡ −u′′(C)C/u′(C) the inverse of the intertemporal elasticity of substitution

which is assumed to be constant.

We are interested in a BGP on which all variables grow at the same constant

growth rate, i.e. a path on which Ċ/C = K̇/K = Ȧ/A ≡ gc holds. To gain further

insight in such a path we introduce c = C/A and k = K/A. Differentiating those

ratios with respect to time gives ċ/c = Ċ/C − Ȧ/A and k̇/k = K̇/K − Ȧ/A or

explicitly:

k̇

k
= −δ − c

k
+ η + ϕc + (1− ϕk)k−α, (15)

ċ

c
= −ρ + δ

σ
+

1− α

σ
k−α + η + cϕ− ϕk1−α. (16)

A rest point of system (15)-(16) corresponds to a BGP of (12)-(14) with Ȧ/A =

K̇/K = Ċ/C = gc = const.

For the social optimum a BGP is defined as a path on which Ȧ/A = K̇/K =

(−1/σ)(λ̇1/λ1) = (−1/σ)(λ̇2/λ2) = gs = const. holds. It should be noted that

(−1/σ)(λ̇1/λ1) = (−1/σ)(λ̇2/λ2) = gs implies Ċ/C = gs. That can easily be seen if

we differentiate (9) with respect to time giving

Ċ

C
= − 1

σ

(
λ̇1 + ϕλ̇2

λ1 + ϕλ2

)
. (17)
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The system of differential equations describing the dynamics around a BGP is given

by ċ/c = Ċ/C − Ȧ/A and k̇/k = K̇/K − Ȧ/A which is

k̇

k
= −δ − c

k
+ η + ϕc + (1− ϕk)k−α, (18)

ċ

c
= − 1

σ

λ̇1 + ϕλ̇2

λ1 + ϕλ2

+ η + cϕ− ϕk1−α. (19)

It should be noted that we confine our analysis to interior BGPs only, i.e. BGPs

with k̄ 6= 0 and c̄ 6= 0, so that we can consider system (15)-(16) and (18)-(19) in

the rates of growth.4 We do that because k̄ = 0 is not feasible since it is raised to

a negative power in (16) and (19). Further, c̄ = 0 would imply that the level of

consumption is zero which does not make sense from the economic point of view.

Next, we study the dynamics of our growth model for the case of sustained

per-capita growth. First we consider the competitive economy.

The competitive economy

In the competitive economy we can observe either a unique BGP which is a saddle

point or two BGPs where the one giving the higher balanced growth rate is a saddle

point whereas the BGP yielding the lower growth rate cannot be a saddle point.

Proposition 1 gives the result.

Proposition 1 For the competitive economy the following holds:

(i) If δ ≥ η the existence of a BGP implies that it is unique and the BGP is stable

in the saddle point sense.

(ii) If δ < η the following is true: If (ρ + δ)/σ ≤ δ the existence of a BGP implies

that it is unique and that it is a saddle point. If (ρ + δ)/σ > δ there exist two

BGPs in case of sustained per capita growth or a unique BGP which, however, is

not generic. The BGP giving the higher growth rate is a saddle point, the BGP

yielding the lower growth rate cannot be a saddle point.

Proof: See appendix.

4The bar ¯ denotes the values for k and c on the BGP.
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That proposition tells us that the competitive economy may be both globally

and locally indeterminate, around the BGP with the lower growth rate (as to the

economic interpretation of local and global indeterminacy see e.g. Benhabib and

Framer (1994)).

From the technical point of view, local indeterminacy can be observed if the

parameter constellation is such that the trace of the Jacobian matrix is smaller zero

so that both eigenvalues have negative real parts. The calculation of the trace of the

Jacobian in our model is straightforward and we can give conditions which must be

fulfilled so that the trace is negative. However, those conditions are purely technical

and cannot be interpreted from an economic point of view.5

As to the plausibility of the parameters necessary for indeterminacy we can say

the following. First, σ < 1 + ρ/δ means a relatively high intertemporal elasticity of

substitution. Most of the empirical work estimating σ gives values at or above unity

(see e.g. Blanchard and Fischer, 1989, p. 44) although there are even some estimates

which obtain lower values (see e.g. Boskin, 1978, or Amano and Wirjanto, 1998).

Those estimations demonstrate that this necessary condition for indeterminacy is

in line with empirical observations. Second, the requirement δ < η states that the

depreciation of physical capital must be smaller than that of knowledge capital. I do

not know of empirical studies trying to find the depreciation rate of knowledge capi-

tal. However, given the fact that technical change accelerates in Western economies

it is to be expected that existing knowledge becomes more and more rapidly obso-

lete so that this inequality may be fulfilled. In the next subsection we consider the

dynamics of the social optimum.

The social optimum

The social optimum is described by (18)-(19). To study the local dynamics of that

system in the neighborhood of a BGP we linearize (18)-(19) at the rest point (k̄, c̄),

where (18)-(19) is a function of the variables k and c, and of constant parameters,

5Using Hopf bifurcation theory it has been demonstrated in Greiner and Semmler (1996) that

convergence to a limit cycles may occur in this model, too.
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alone. It turns out that the social optimum is always characterized by a unique

BGP which is a saddle point. That is the contents of proposition 2.

Proposition 2 For the social optimum the existence of a BGP implies that it is

unique and that it is saddle point stable.

Proof: Analogous to that of proposition 1. It is available on request.

4 Conclusion

This paper has given a characterization of a generalized version of the endogenous

growth model by Romer (1986) with constant returns to scale, without resorting to

numerical simulations. This is of importance because this type of growth models is

of high empirical relevance but there does not yet exist a thorough characterization

of its dynamics. The results demonstrate that the social optimum is always both

globally and locally determinate. This is not too surprising since the social optimum

is the solution of a concave optimization problem. The competitive economy, how-

ever, may give rise to global and local indeterminacy. A necessary condition for that

outcome is a relatively high intertemporal elasticity of substitution which, however,

is also compatible with empirical estimations. Thus, the basic endogenous growth

model with externalities of investment can explain why countries may converge to

different growth paths in the long run.

Another aspect we want to point out is our modellation of the external effect of

investment. So, in the competitive economy the positive externalities do not only

lead to a higher share of (physical) capital in the aggregate production function but

they give rise to an additional differential equation which affects the dynamics to a

great degree. This can also be applied to models with other types of externalities,

like environmental pollution for example, so that such model are likely to have a

more complex dynamic behavior than convergence to a unique rest point.
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Appendix

Proof of proposition 1: Part (i) with δ > η. (15)=0 yields c̄. Inserting c̄ in ċ/c

yields6

f(k, ·) = −ρ + δ

σ
+ η +

1− α

σ
k−α + (η − δ)

ϕk

1− ϕk
.

f(k, ·) is continuous for k ∈ (0, ϕ−1) and limk→0 f(k, ·) = +∞, limk↗ϕ−1 f(k, ·) =

−∞ (↗ means that k approaches ϕ−1 from below). Further,

∂f(k, ·)
∂k

=
ϕ(η − δ)

(1− kϕ)2
− α(1− α)

σ
k−α−1 < 0, for δ > η.

6δ > η requires ϕk < 1 for C < K1−αAα.
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Stability. det J < 0 is necessary and sufficient for saddle point stability. det J is

det J = (1− k̄ϕ)k̄−1

(
ϕ(η − δ)

(1− k̄ϕ)2
− α(1− α)

σ
k̄−α−1

)
.

δ > η, 1− ϕk̄ > 0 implies det J < 0.

If δ = η, k̄ = 1/ϕ. k̄ = 1/ϕ in ċ/c = 0 gives c̄. k̄ and c̄ in the Jacobian gives the

eigenvalues as Ev1 = ϕ and Ev2 = ϕ(−η + (δ + ρ + (α − 1)ϕα)/σ). For c̄ < k̄1−α,

Ev2 is always negative. Thus, part (i) is proved.

Part (ii). A k which solves f(k, ·) = 0 also solves f(k, ·)kα(1−ϕk) ≡ f1(k, ·) = 0,

with kα(1−ϕk) 6= 0, and vice versa. Therefore, we can analyze the function f1(k, ·)
instead of f(k, ·).

Multiplying f(k, ·) with kα(1− ϕk) 6= 0 leads to

f1(k, ·) =

(
(1− α)

σ

)
(1− ϕk) + kα

(
η − ρ + δ

σ

)
+ k1+αϕ

(
−δ +

ρ + δ

σ

)
,

which is continuous for all k ∈ (0,∞). Further, limk→0 f1(k, ·) = (1− α)/σ > 0 and

∂f1(k, ·)
∂k

= −
(

(1− α)

σ

)
ϕ + αkα−1

(
η − ρ + δ

σ

)
+ (α + 1)kαϕ

(
−δ +

ρ + δ

σ

)
.

4 cases must be distinguished:

1. (δ+ρ)/σ ≤ δ, η ≤ (δ+ρ)/σ implies limk→∞ f1(k, ·) = −∞ and ∂f1(k, ·)/∂k < 0

for all k > 0 so that for this case uniqueness is immediately seen.

2. (δ + ρ)/σ ≤ δ, η > (δ + ρ)/σ. Existence of a BGP implies ∂f1(k, ·)/∂k < 0 at

least locally. Since ∂2f1(k, ·)/∂k2 < 0 holds for all k > 0, ∂f1(k, ·)/∂k > 0 is not

feasible once ∂f1(k, ·)/∂k has become negative and, consequently, no second BGP.

3. (δ + ρ)/σ > δ, η ≤ (δ + ρ)/σ. At the first BGP ∂f1(k, ·)/∂k < 0 must hold.

At the second BGP ∂f1(k, ·)/∂k > 0 must hold. Since limk→∞(∂f1(k, ·)/∂k) =

limk→∞ f1(k, ·) = ∞ and ∂2f1(k, ·)/∂k2 > 0 holds for all k > 0, there exists a finite

k such that f1(k, ·) = 0 holds and a second BGP exists. No third BGP exists since

∂2f1(k, ·)/∂k2 > 0.

4. (δ + ρ)/σ > δ, η > (δ + ρ)/σ. limk→0(∂f1(k, ·)/∂k) = ∞ and limk→∞ f1(k, ·) =

limk→∞(∂f1(k, ·)/∂k) = ∞. Since there is a unique inflection point of f1(k, ·) given
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by kw = (1− α)(η− (ρ + δ)/σ)/(ϕ(1 + α)(−δ + (ρ + δ)/σ)) > 0 only two BGPs can

exist. k such that f1(k, ·) = 0, ∂f1(k, ·)/∂k = 0 implies a unique BGP, but the set

{k : f1(k, ·) = 0, ∂f1(k, ·)/∂k = 0} has Lebesgue measure zero.

Saddle point stability of the BGP if it is unique in case (ii). Note that sign det J =

sign (∂f(k, ·)/∂k)(1− ϕk̄) holds. η > δ, δ − (ρ + δ)/σ ≥ 0 and k̄ ∈ (ϕ−1,∞) give

lim
k↘ϕ−1

f(k, ·) = −∞ and lim
k→∞

f(k, ·) = δ − (ρ + δ)/σ ≥ 0, (20)

lim
k↘ϕ−1

∂f(k, ·)
∂k

= +∞ and lim
k→∞

∂f(k, ·)
∂k

= 0 (21)

(↘ means that k approaches ϕ−1 from above). (20)-(21) show that ∂f(k, ·)/∂k > 0

at the intersection point, and this point is in the range k ∈ (ϕ−1,∞). Consequently,

det J < 0. If δ− (ρ + δ)/σ = 0, f(k, ·) must intersect the horizontal axis from below

and then converge to zero. Since there may exist an inflection point for f(k, ·) for

η − δ > 0 and k > ϕ−1 this possibility is given.

Two BGPs. η − δ > 0, δ − (ρ + δ)/σ < 0 and k̄ ∈ (ϕ−1,∞) hold. For η − δ > 0,

now f(k, ·) has the following properties:

lim
k↘ϕ−1

f(k, ·) = −∞ and lim
k→∞

f(k, ·) = δ − (ρ + δ)/σ < 0, (22)

lim
k↘ϕ−1

∂f(k, ·)
∂k

= +∞ and lim
k→∞

∂f(k, ·)
∂k

= 0, (23)

Since k̄ ∈ (ϕ−1,∞), 1 − ϕk̄ < 0 and ∂f(k, ·)/∂k > 0 at the first (lower) k̄ and

∂f(k, ·)/∂k < 0 at the second (larger) k̄. Consequently, det J < 0 for the BGP with

the lower k̄ (higher growth rate), and det J > 0 for the BGP with the higher value

of k̄ (lower growth rate). Thus, the proof is completed.
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