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Abstract

Using standard preferences for asset pricing has not been very suc-
cessful to match asset price characteristics such as the risk-free interest
rate, equity premium and the Sharpe ratio to time series data. Be-
havioral finance has recently proposed more realistic preferences such
as preferences with loss aversion to model asset pricing. Research has
now started to explore the implications of behaviorally founded pref-
erences for asset price characteristics. Encouraged by some studies
of Benartzki and Thaler (1995) and Barberis et al. (2001) we study
asset pricing with loss aversion in a production economy. We here
employ a stochastic growth model and use a stochastic version of a
dynamic programming method with adaptive grid scheme to compute
the above mentioned asset price characteristics of a model with loss
aversion in preferences. As our results show, a model with loss aver-
sion performs considerably better than pure consumption based asset
pricing models.
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1 Introduction

Consumption based asset pricing models with time separable preferences,
such as power utility or log utility have been shown to have serious difficul-
ties to match financial market characteristics such as the risk-free interest
rate, the equity premium and the Sharpe ratio to time series data. In those
models, even if the coefficient of relative risk aversion in the power utility is
significantly raised, neither the risk free rate nor the mean equity premium
and Sharpe ratio fit the observed data. In particular, the latter two are much
too low in the model as compared to the data.

One important concern has been that asset pricing models have often used
models with exogenous dividend stream1 and the difficulties to match stylized
financial statistics may have come from the fact that consumption is not
endogenized. There is a tradition of asset pricing models that is based on the
stochastic growth model with production originating in Brock and Mirman
(1972) and Brock (1979, 1982) which endogenizes consumption. The Brock
approach extends the asset pricing strategy beyond endowment economies to
economies that have endogenous state variables including capital stocks that
are used in production. Authors, building on this tradition,2 have argued that
it is crucial how consumption is endogenized. In stochastic growth models
the randomness occurs to the production function of firms and consumption
and dividends are derived endogenously. Yet, models with production have
turned out to be even less successful. Given a production shock, consumption
can be smoothed through savings and thus asset market features are even
harder to match.3

Recent development of asset pricing studies has turned to extensions of
intertemporal models conjecturing that the difficulties to match real and fi-
nancial time series characteristics may be related to the simple structure of
the basic model. In order to match better asset price characteristics of the
model to the data, economic research has extended the baseline stochastic
growth model to include different utility functions, such as non-separable
preferences represented for example by habit formation. Moreover, adjust-
ment costs of investment have also been built into the model.4

1Those models originate in Lucas (1978) and Breeden (1979) for example.
2See Rouwenhorst (1995, Akdeniz and Dechert (1997), Jerman (1998), Boldrin, Chris-

tiano and Fisher (2001), Lettau and Uhlig (1999) and Hansen and Sargent (2002), the
latter in a linear-quadratic economy. The Brock model has also been used to evaluate the
effect of corporate income tax on asset prices, see McGrattan and Prescott (2001).

3For a recent account of the gap between such models and facts, see Boldrin, Christiano
and Fisher (2001), Cochrane (2001, ch. 21), Lettau, Gong and Semmler (2001) and
Semmler (2003, chs. 9-10).

4For further detailed studies of those extensions see, for example, Campbell and
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An enormous effort has been invested into models with time non-separable
preferences, such as habit formation models, which allow for adjacent com-
plementarity in consumption. This type of habit specification gives rise to
time non-separable preferences where risk aversion and intertemporal elas-
ticity substitution are separated and a time varying risk aversion will arise.
The risk aversion falls with rising surplus consumption and the reverse holds
for falling surplus consumption. A high volatility of the surplus consumption
will lead to a high volatility of the growth of marginal utility and thus to a
high volatility of the stochastic discount factor.

Such habit persistence has been introduced in asset pricing models by
Constantinides (1990) in order to account for high equity premia. Asset
pricing models along this line have been further explored by Campbell and
Cochrane (2000), Jerman (1998) and Boldrin et al. (2001). As the literature
has demonstrated (Jerman 1998, and Boldrin et al. 2001) one needs not
only habit formation but also adjustment costs of investment to reduce the
elasticity of the supply of capital. It seems to be both habit persistence and
adjustment costs for investment which are needed to generate higher equity
premium and Sharpe ratio.

Yet, as it has been shown in Grüne and Semmler (2004b) habit forma-
tion models can only slightly improve the equity premium and Sharpe ratio.
Even the above mentioned recently developed habit formation model do not
generate enough co-variance of consumption growth with asset returns so as
to match the data. Models with loss aversion in preferences where the loss
or gain in financial wealth affects the agent’s welfare do not have to increase
the co-variance of consumption growth with asset returns to improve the
aforementioned financial market characteristics. The time varying risk aver-
sion, arising from gains and losses in financial wealth, will generate a higher
volatility of asset prices, independently of dividend pay-offs, a higher equity
premium and Sharpe ratio than the consumption based asset pricing models.

Since accuracy of the solution method is an intricate issue for models
with more complicated decision structure, one first have to have sufficient
confidence in the accuracy of the solution method when solving such models.
In Grüne and Semmler (2004a,b) a stochastic dynamic programming method
with flexible grid size is used to solve such models. In that method an efficient
and reliable local error estimation is undertaken and used as a basis for a local
refinement of the grid in order to deal with regions of steep slopes or other
non-smooth properties of the value function (such as non-differentiability).
This procedure allows for a global dynamic analysis of deterministic as well

Cochrane (2000), Jerman (1998), Boldrin, Christiano and Fisher (2001) and Cochrane
(2001, ch. 21).
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as stochastic intertemporal decision problems. 5

As has been shown in Grüne and Semmler (2004a) the errors, as compared
to the analytical solutions, are small. This method has also been applied in
Grüne and Semmler (2004b) where the habit formation model is numerically
solved. Using this new method there it has been shown that models with
habit formation are not sufficient to solve the above discussed financial mar-
ket puzzles. A similar dynamic programming method is used in this paper
and a model of loss aversion, as proposed by Benartzi and Thaler (1995)
and Barberis et al. (2001), is reformulated for a production economy and
numerically solved which comes much closer to solving the aforementioned
financial market puzzles.

The paper is organized as follows. Section 2 discusses related literature.
Section 3 presents the model. Section 4 introduce the stochastic dynamic
programming algorithm. Section 5 studies our model of loss aversion and
reports numerical results. Section 6 evaluates the results in the context of
other recent studies. Section 7 concludes the paper.

2 Moving Beyond Consumption Based Asset

Pricing Models

As above discussed, the basic problem in matching the asset market features
to data using a consumption based model, is that empirically there is a lack
of co-variance of consumption growth and asset returns. Consumption based
asset pricing models have not been successful to capture the historical aver-
age return and volatility in stock returns.6 Since even a power utility function
with large coefficient of relative risk aversion fails to match the consumption
based asset pricing model to the data researchers have used more sophisti-
cated utility function.7 As aforementioned one of the recent specification of
a utility function is habit formation. One might think to improve on the
equity premium and Sharpe ratio puzzles by building models that increase
consumption volatility through increasing the parameter of risk aversion, as
in power utility models, or through a time varying risk aversion as in habit
formation models. Yet, since empirically the co-variance of consumption
growth with asset returns is low this might be a misleading research strategy

5For deterministic versions of this paper, see Grüne (1997), Santos and Vigo–Aguiar
(1998), and Grüne and Semmler (2004a).

6For an extensive account of this failure, see Campbell and Cochrane (2000). For an
extensive exploration of the role different types of preferences for asset pricing, see Backus
et al. (2004).

7For an elaborate overview, see Backus et al. (2004).
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to improve the equity premium and Sharpe ratio.
The current research on loss aversion models moves away from consump-

tion based models. The new strategy is to look for the impact of the fluctua-
tion of wealth on the households’ welfare, so that the decision on a stochastic
portfolio is impacted by both preferences over a consumption stream as well
as by changes in financial wealth. In the preferences there will be thus an
extra term representing the change of wealth. Furthermore, as prospect the-
ory has taught us, an investor may be much more sensitive to losses than
to gains, known as loss aversion. This, in particular, seems to hold if there
have been prior losses already. By extending the asset pricing model in this
direction one does not need to raise the variance of consumption growth and
increase the correlation of consumption growth with asset returns, a feature
not to be found in the data anyway.8

A low variance of consumption growth but a higher mean and volatility
of asset returns, might be achieved by a time varying risk aversion arising
from the fluctuation of wealth. The idea is that after an asset price boom the
agents may become less risk averse because the gains may dominate any fear
of losses. On the other hand, after an asset price fall the agent become more
cautions and more risk averse. This way the variation of risk aversion would
allow the asset returns to be more volatile than the underlying pay-offs, the
dividend payments, a property that Shiller (1991) has studied extensively.
Generous dividend payments and an asset price boom makes the investor
less risk averse and drives the asset price still higher. The reverse can be
predicted to happen if large losses occur. This may give rise to some waves
of optimism and pessimism and associated asset price movements.

Habit formation models attempt to increase the equity premium and
Sharpe ratio by constructing a time varying risk aversion arising from the
change of consumption. This occurs as current consumption moves closer
to (or further away) from an (external) habit level for consumption. Risk
aversion in models with loss aversion is varying not through surplus consump-
tion, as in the habit formation model, but rather through the fluctuation in
financial wealth. Hereby the risk aversion is affected by prior investment
experiences. This is likely to produce a substantial equity premium and
Sharpe ratio, high volatility of returns, yet it allows for a low co-variance of
the growth rate of consumption and asset returns, actually to be found in
the data.

Whereas the risk aversion in the habit formation model is finally driven by
consumption, this is not so in the loss aversion model, where the changes of
risk aversion are driven by changes of the value of assets. In the consumption

8See Semmler (2003, ch. 9)
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based asset pricing model assets are only risky because they co-vary with
consumption. In the loss aversion model changes of risk aversion arise from
the fluctuation of asset prices regardless of whether those fluctuations are
correlated with consumption growth.

Although the above is the most interesting feature of the loss aversion
model, the feedback effect of asset value – and changes of wealth – on pref-
erences on the one hand, and the choice of consumption path on asset value,
on the other hand, creates a complicated stochastic dynamic optimization
problem that we propose to be solved by a dynamic programming algorithm
as presented in Grüne and Semmler (2004a).

Finally, we want to note that the basic idea of loss aversion has been
developed in the so-called prospect theory which goes back to Kahneman
and Tversky (1979) and Tversky and Kahneman (1992). It has been further
developed for applications in asset pricing by Benartzi and Thaler (1995),
although there in the context of a single period portfolio decision model,
and Barberis et al. (2001) for an intertemporal model of an endowment
economy.9 Yet, without the asymmetry in gains and losses, with prior losses
playing an important role, the risk aversion will be constant over time and
the theory cannot contribute to the explanation of the equity premium and
Sharpe ratio.

3 The Asset Pricing Model with Loss Aver-

sion

In order to formalize the new idea on asset pricing we may follow Barberis
et al. (2001) and specify the following preference

E

[
∞∑

t=0

(

ρt C1−γ
t

1 − γ
+ btρ

t+1ν(Xt+1, St, zt)

)]

(1)

The first term in equ. (1) represents, as usual, the utility over consump-
tion, using power utility, ρ is the discount factor and γ, the parameter of

relative risk aversion. For γ = 1 we replace
C

1−γ
t

1−γ
by the log–utility ln Ct.

The second term captures the effect of the change of wealth on the agent’s
welfare. Hereby Xt+1 is the change of wealth, St, the value of the agent’s
risky assets. Finally, we want to note that zt is a variable, measurng the
agent’s gains or losses prior to period t as fraction of St. The variables St

9Further important literature along this kine is Thaler et al. (1997), Barberis and
Huang (2003), Barberis et al. (2004a,b), Barberis and Thaler (2003).
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and zt express the way of how the agent has experiences gains or losses in
the past affecting his or her willingness to take risk.

In particularly, it is presumed that

Xt+1 = StRt − StRf (2)

which means that the gain or loss StRt, with Rt the risky return, Rf the
risk free return, is measured relative to a return StRf from a risk-free asset.
The difference Rt − Rf can be positive, zero or negative and the variable zt

can be greater, equal or smaller than one, with

ν(Xt+1, St, 1) =

{

Xt+1 for Xt+1 ≥ 0

λXt+1 for Xt+1 < 0
(3)

and λ > 1 as defined by

λ(zt) = λ + k(zt − 1) (4)

expressing the fact that a loss is more severe than a gain with k > 0, and

zt+1 = ηzt

R

Rt+1

+ (1 − η) (5)

with η ∈ [0, 1] and R a fixed parameter which is chosen to be the long
time average of the risk free interest rate. Moreover, it is presumed that

bt = b0C̃
−γ
t (6)

with b0, a scaling factor, and C̃t some aggregate consumption which will
be specified below, so that the price-dividend ratio and the risky asset pre-
mium remain stationary. Hereby b0 is an important parameter indicating
the relevance that financial wealth has in utility gains or losses relative to
consumption. In case b0 = 0, we recover the consumption based asset pricing
model with power utility.

Barberis et al. (2001) employ such a model of loss aversion and asset pric-
ing to two stochastic variants of an endowment economy without production.
In the first model variant there is only one stochastic pay-off for the asset
holder, a stochastic dividend, whereby dividend pay-offs are always equal to
consumption. In the other model variant dividends and consumption follow
different stochastic processes.

From the agent’s Euler equation for optimality of the equilibrium Barberis
et al. (2001) obtain a characterization of a stochastic discount factor for the
risk-free rate
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1 = ρRfEt

[

(C̃t+1/C̃t)
−γ
]

(7)

and for the risky asset

1 = ρEt

[

Rt+1(C̃t+1/C̃t)
−γ
]

+ b0ρEt [ν̂(Rt+1, zt)] (8)

with

ν̂(Rt+1, zt) =







Rt+1 − Rf,t, Rt+1 ≥ ztRf,t and zt ≤ 1
(zt − 1)Rf,t + λ(Rt+1 − ztRf,t), Rt+1 < ztRf,t and zt ≤ 1
Rt+1 − Rf,t, Rt+1 ≥ Rf,t and zt > 1
λ(zt)(Rt+1 − Rf,t), Rt+1 < Rf,t and zt > 1

(9)
From (7) we obtain the stochastic discount factor for the risk-free rate,

Rf

mf,t+1 = (C̃t+1/C̃t)
−γ ,

which coincides with the stochastic discount factor for the consumption based
model, see Cochrane (2001, sect. 1.2)

As compared to (7), equ. (8) has two terms. The first term represents the
usual one also found in (7), obtained from consumption based asset pricing.
The second term expresses the fact that if the agent consumes less today and
invests in risky assets the agent is exposed to the risk of greater losses, a risk
that is represented by the state variable zt.

If we consider the cases in (9) seperately, one sees that for each single
case the right hand side of (8) is affinely linear in Rt+1. More precisely, we
can rewrite (8) as

1 + ρb0α2Rf,t = Et

[(

ρ
(

C̃t+1/C̃t

)
−γ

+ b0α1

)

Rt+1

]

(10)

with α1 and α2 given by

α1 = 1, α2 = 1 for Rt+1 ≥ ztRf,t and zt ≤ 1
α1 = λ, α2 = (λ − 1)zt + 1 for Rt+1 < ztRf,t and zt ≤ 1
α1 = 1, α2 = 1 for Rt+1 ≥ Rf,t and zt > 1
α1 = λ(zt), α2 = λ(zt) for Rt+1 < Rf,t and zt > 1

(11)

Using the equation

Rt+1 =
Pt+1 + Dt+1

Pt
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for the risky return with Pt denoting the asset price and Dt the dividend,
which we chose equal to C̃t in our model and plugging this equation into (10)
and using (9) we obtain

Pt = Et








ρ
(

C̃t+1/C̃t

)
−γ

+ ρb0α1

1 + ρb0α2Rf,t
︸ ︷︷ ︸

=mt+1

(C̃t+1 + Pt+1)








(12)

Note, again, that for b0 = 0 this equation coincides with the stochastic dis-
count factor for the consumption based model, see Cochrane (2001, sect. 1.2)
Note, however, that for b0 6= 0 in contrast to the consumption based case the
stochastic discount factor depends on Rt+1,

10 which in turn depends on Pt+1,
thus the right hand side of (11) becomes nonlinear and even discontinuous
in Pt+1.

In order to generate the consumption C̃t, we use the basic growth model
from Brock and Mirman (1972). This amounts to choosing C̃t to be the
optimal control of the problem

max
C̃t

E

(
∞∑

t=0

ρt C̃1−γ
t

1 − γ

)

(13)

subject to the dynamics

kt+1 = ytAkα
t − C̃t (14)

ln yt+1 = σ ln yt + εt (15)

with εt being i.i.d. random variables. Here γ is the same as in (1) and as there
we replace the utility function by log–utility ln C̃t for γ = 1. In this case, i.e.
for log–utility, the optimal consumption policy is known and is given by

C̃(kt, yt) = (1 − αρ)Aytk
α
t .

For γ 6= 1 we compute C̃t numerically.
For this model we want to compute a number of financial measures: The

risk free interest rate Rf,t, the equity return Rt+1, the stochastic discount
factors mt+1 and mf,t+1, all of which are specified above. In addition we will
compute the Sharpe Ratio given by11

10See equ. (11) where it is visible that Rt+1 relative to the risk free rate impacts the
stochastic discount factor in equ. (12).

11See Cochrane (2001)
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SR =

∣
∣
∣
∣

E(Rt+1) − Rf,t

σ(Rt+1)

∣
∣
∣
∣
=

−Rf,tCov
(

mt+1, Rt+1

)

σ(Rt+1)
. (16)

4 Stochastic Dynamic Programming Approach

Our approach to solve the model described above is a stochastic dynamic
programming method using the stochastic discount factors mf and m from
the previous section. More precisely, using the state vector

xt = (kt, ln yt, zt),

the equations (14), (15) and (5) for kt+1, ln yt+1 and zt+1 define dynamics for
xt which we can write shortly as

xt+1 = ϕ(xt, C̃t, εt).

Now using Bellman’s optimality principle the optimal value function V of
the problem (13) is characterized by

V (x) = max
C̃

Et

[

C̃1−γ

1 − γ
+ ρV (ϕ(x, C̃, ε))

]

(17)

which can be used as the basis of our algorithm.
In contrast to other stochastic dynamic programming methods, here the

dynamic programming principle (17) is not sufficient in order to solve the
problem, because the dynamics ϕ depend not only on the state vector xt, the
control C̃t and the random variable εt, but also on the the risk free interest
rate Rf,t and on the risky return Rt+1, i.e., the equations are externally cou-

pled. Since Rf,t and Rt+1 are, in turn, obtained from the stochastic discount
factors and from the asset price function P , now the crucial observation is
that using mf and m, the values Pt and Rf,t are again characterized by the
dynamic programming principles

Rf,t = Et [mf,t+1] (18)

Pt = Et [mt+1(Dt+1 + Pt+1)] (19)

Hence, we can solve the three equations (17), (18) and (19) in conjunction in
order to obtain the solutions V , P and Rf simultaneously as functions of x.

In order to approximate these functions numerically, we chose an appro-
priate domain Ω ⊂ R

3 for our state vector and (in all our examples this was

10



chosen as Ω = [1, 4] × [−0.32, 0.32] × [0.5, 2]) and approximate the solutions
V , Rf , P : Ω → R as continuous and piecewise multilinear functions on a
cuboidal grid Γ on Ω. In order to make this approach efficient, we chose the
grid adaptively using the a posteriori error estimation based grid generation
technique described in Grüne and Semmler (2004a,b). For each set of param-
eters we have performed 3 adaptation steps resulting in a grid with ≈ 10000
cuboidal elements and an error of order 10−5 (measured accumulated along
the optimal trajectories).

Since the equations (17)—(19) are nonlinear due to the external coupling,
it is not a priori clear how they can be solved simultaneously. In our approach
we have implemented the dynamic programming principles directly using a
straightforward fixed point (or value) iteration. With this procedure we could
achieve convergence for all considered parameter sets. We note, however, that
more sophisticated Newton like techniques may perform better here, these
methods are the topic of further research.

Once the asset price function Pt is computed, all financial measures can be
directly obtained from this function using a second dynamic programming
computation. Since all necessary values for the computation of the risky
returns, the risk free interest rates, the stochastic discount factors etc. are
stored as a result from the first computation this second step is numerically
cheap and took less than 2 seconds in each example. We emphasize that
here we can compute all expectations, variances etc. directly in terms of the
formulas from section 3 and that all functions appearing in these formulas
are x–dependent in our model, e.g., for the current state vector xt we obtain
Rt = R(xt) and Rt+1 = R(ϕ(xt, C̃(xt), εt)). Thus, for instance, if we want to
compute the equity return Rt+1 for some state vector xt, by direct numerical
quadrature we can compute Et(Rt+1) = Et[R(ϕ(xt, C̃(xt), εt))]. In particu-
lar, we do not need to rely on (slowly converging) Monte Carlo simulations
along optimal paths in order to compute these quantities; in our approach
simulations are only used in order to average the obtained state dependent
values along typical sample paths.

5 Presentation of the Results

Using the method described in the previous section we have determined sev-
eral characteristic values for a number of parameters. Since our method
derives these values as functions of kt, yt and zt, in order to obtain repre-
sentative values we have evaluated them along an optimal trajectory using
50 000 samples and the same random sequence εt for each set of parameters.
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For the underlying Brock–Mirman model the parameters were chosen as

A = 5, α = 0.34, σ = 0.9, ρ = 0.95,

and εt was chosen as a Gaussian distributed random variable with standard
deviation σ = 0.008, which we restricted to the interval [−0.032, 0.032].

For the loss aversion asset pricing model our standard set of parameters
was

γ = 1, λ = 10, η = 0.9, b0 = 1 and k = 3.

In each of the tables below one of these parameters is varied in order to
explore the variation of the data with respect to this parameter. The param-
eter in bold indicates the row containing the standard parameters specified
above.

λ 0 1 2.25 10 20
Rf 1.05273 1.05273 1.05273 1.05273 1.05273
Var(Rf ) 0.00001 0.00001 0.00001 0.00001 0.00001
Rt+1 1.05279 1.05280 1.05333 1.05393 1.05405
Var(Rt+1) 0.00840 0.00843 0.00847 0.00085 0.00856
Sharpe Ratio 0.00798 0.00838 0.07187 0.14134 0.15480
Cov(mf,t+1, Rt+1) -0.00006 -0.00003 -0.00003 -0.00002 -0.00002

Table 1: Results for varying λ

b0 0 0.01 0.05 0.1
Rf 1.05273 1.05273 1.05273 1.05273
Var(Rf ) 0.00001 0.00001 0.00001 0.00001
Rt+1 1.05279 1.05282 1.05362 1.05396
Var(Rt+1) 0.00840 0.00840 0.00848 0.00855
Sharpe Ratio 0.00798 0.01114 0.10516 0.14453
Cov(mf,t+1, Rt+1) -0.00006 -0.00006 -0.00005 -0.00005

Table 2: Results for varying b0
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b0 0.5 1 3 10
Rf 1.05273 1.05273 1.05273 1.05273
Var(Rf ) 0.00001 0.00001 0.00001 0.00001
Rt+1 1.05419 1.05393 1.05338 1.05297
Var(Rt+1) 0.00858 0.00085 0.00879 0.00842
Sharpe Ratio 0.17072 0.14134 0.07438 0.02919
Cov(mf,t+1, Rt+1) -0.00003 -0.00002 -0.00001 0.0

Table 3: Results for varying b0

k 1 3 10 150
Rf 1.05273 1.05273 1.05273 1.05273
Var(Rf ) 0.00001 0.00001 0.00001 0.00001
Rt+1 1.05393 1.05393 1.05393 1.05396
Var(Rt+1) 0.00854 0.00085 0.00855 0.00856
Sharpe Ratio 0.14128 0.14134 0.14154 0.14463
Cov(mf,t+1, Rt+1) -0.00002 -0.00002 -0.00002 -0.00002

Table 4: Results for varying k

γ 1 2 3
Rf 1.05273 1.05258 1.05174
Var(Rf ) 0.00001 0.00005 0.00005
Rt+1 1.05393 1.05505 1.05582
Var(Rt+1) 0.00085 0.01584 0.02196
Sharpe Ratio 0.14134 0.15985 0.18683
Cov(mf,t+1, Rt+1) -0.00002 -0.00010 -0.00020

Table 5: Results for varying γ

ρ 0.95 0.98
Rf 1.05273 1.02049
Var(Rf ) 0.00001 0.00001
Rt+1 1.05393 1.02156
Var(Rt+1) 0.00085 0.00842
Sharpe Ratio 0.14134 0.12740
Cov(mf,t+1, Rt+1) -0.00002 -0.00002

Table 6: Results for varying ρ
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As shown in the tables 1-6 the standard parameters generate already
reasonably high Sharpe ratios and the Cov(mf,t+1, Rt+1) is, as one would
expect from the data, always very low. The risk-free interest rate has, as
one also knows from the data, a low variance, but given that the subjective
discount factor is low in our model (the subjective discount rate is high) the
mean of the risk-free rate is high. The mean of the risk-free interest rate is,
however, considerable reduced if we take ρ = 0.98, as in table 6.

6 Interpretation of the Results

It is interesting to compare the numerical results that we have obtained,
by using stochastic dynamic programming, to previous quantitative studies
undertaken for consumption based asset pricing models (using power utility,
habit formation or recursive preferences)12, but employing other solution
techniques. We in particular will restrict ourselves to a comparison with
the results of habit formation models obtained by Boldrin et al. (2001) and
Jerman (1998) and Grüne and Semmler (2004b).13

Whereas Boldrin et al. use a model with log utility for internal habit,
but endogenous labor supply in the household’s preferences, Jerman studies
the asset price implication of a stochastic growth model, also with internal
habit formation but, as in Grüne and Semmler (2004b), labor effort is not a
choice variable. All three papers Boldrin et al. (2001), Jerman (1998) and
Grüne and Semmler (2004b) use adjustment costs of investment in a model
with habit formation.

Both, Boldrin et al. and Jerman claim that habit formation models with
adjustment costs can match the financial characteristics of the data. Yet,
both studies have chosen parameters that appear to be conducive to results
which replicate better the financial characteristics such as risk free rate, eq-
uity premium and the Sharpe ratio. In comparison to their parameter choice
Grüne and Semmler (2004b) have chosen parameters that have commonly
been used for stochastic growth models14 and that seem to describe the first
and second moments of the data well. Table 7 reports the parameters and
the results.

Both, the study by Boldrin et al. (2001) and Jerman (1998), have chosen a
parameter, ϕ = 4.05, in the adjustment costs of investment, a very high value

12For a comparison of the relative performance of those three types of preferences, see
Lettau and Uhlig (2002).

13The baseline stochastic growth model and its asset price implications is studied in
Grüne and Semmler (2004c).

14See Santos and Vigo-Aguiar (1998).
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which is at the very upper bound found in the data.15 Since the parameter ϕ
smoothes the fluctuation of the capital stock and makes the supply of capital
very inelastic, we have rather worked with a ϕ = 0.8 in order to avoid such
strong volatility of returns generated by high ϕ. Moreover, both papers use a
higher parameter for past consumption, b, than Grüne and Semmler (2004b)
have chosen. Both papers have also selected a higher standard deviation of
the technology shock. Boldrin et al. take σ = 0.018, and Jerman takes a
σ = 0.01, whereas Grüne and Semmler (2004b) use σ = 0.008 which has been
employed in many models.16 Those parameters increase the volatility of the
stochastic discount factor, a crucial ingredient to raise the equity premium
and the Sharpe ratio.

Boldrin et al.a) Jermanb) Grüne US Datad)

and Semmlerc) (1954-1990)
b= 0.73-0.9 b= 0.83 b= -0.5
ϕ=4.15 ϕ=4.05 ϕ= 0.8
σ= 0.018 σ= 0.01 σ= 0.008
ρ= 0.9 ρ= 0.99 ρ= 0.9
ρ= 0.999 ρ= 0.99 ρ= 0.95
γ= 1 γ= 5 γ= 1-3
Rf = 1.2 Rf = 0.81 Rf = 5.1 − 8.5 Rf = 0.8
E(R)−Rf =6.63 E(R) − Rf =5.9 E(R)−Rf =0.33 E(R) − Rf =6.18
SR= 0.36 SR= 0.33 SR=0.057 SR=0.35

a) Boldrin et al.(2001) use a model with endogenous labor supply, log utility for habit
formation and adjustment costs.

b) Jerman (1998) uses a model with exogenous labor supply, habit formation with
coefficient of RRA of 5, and adjustment costs.

c) Grüne and Semmler (2004b). Note that here the risk-free rate is high, because the
subjective discount factor, ρ, is low (which implies a high subjective discount rate).

d) The following financial characteristics of the data are reported in Jerman (1998).

Table 7: Habit formation models

15See for example, Kim (2002) for a summary of the empirical results reported on ϕ in
empirical studies.

16This value of σ has also been used by Santos and Vigo-Aguiar (1998).

15



Barberis Grüne US Datag)
et ale) and Semmlerf ) (1954-1990)
λ = 2.25 λ = 10
b0 = 2.0 b0 = 1.0
k = 3.0 k = 3.0
γ = 1.0 γ = 1.0
ρ = 0.98 ρ = 0.95(0.98)
Rf = 3.79 Rf = 5.3(2.1) Rf = 0.8
E(R) − Rf E(R) − Rf E(R) − Rf = 6.18
SR = 0.17 SR = 0.14(0.13) SR = 0.35
– Cov(mf , R) = −0.00002 Cov(∆c, R)=0.0027

e) Barberis et al. (2001) use a loss aversion variant with exogenous dividends (equal
consumption)

f) Note that Grüne and Semmler, this paper, use a model for a production economy
with endogenous consumption.

g) Data sources, see table 7, Cov(∆c,R) is from Campbell (1999).

Table 8: Loss aversion models

Jerman, in addition, takes a very high parameter of relative risk aversion,
a γ = 5, which also increases the volatility of the discount factor and increases
the equity premium when used for the pricing of assets. Jerman also takes
a much higher persistence parameter for the technology shocks, a ρ = 0.99,
from which one knows that it will make the stochastic discount factor more
volatile too. All in all, both studies have chosen parameters which are known
to bias the results toward the empirically found financial characteristics.17

Grüne and Semmler (2004b) have chosen a model variant with no endogenous
labor supply, which, as Lettau and Uhlig (2000) show, is the most favorable
model for asset pricing in a production economy, since including labor supply
as a choice variable, would even reduce the equity premium and the Sharpe

17We also want to remark that both, Jerman and Boldrin et al., do not provide any
accuracy test for their procedure that they have chosen to solve the intertemporal decision
problem. Boldrin et al. use the Lagrangian multiplier from the corresponding planner’s
problem to solve for asset prices with no accuracy test for the procedure. Jerman uses a
log-linear approach to solve the model and an accuracy test of this procedure is also not
provided in the paper. We also want to note that there is a crucial constraint in habit
formation models, namely that the surplus consumption has to remain non-negative when
the optimal solution, Ct, is computed. As shown in Grüne and Semmler (2004b) this
constraint has to be treated properly in the numerical solution method.
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ratio.
One is thus inclined to state that previous studies on consumption based

asset pricing have not satisfactorily solved the dynamics of asset prices and
the equity premium puzzle. There are still puzzles remaining for the consumption-
based asset pricing model. At the heart of the consumptions based asset
pricing model is the co-variance of consumption growth with asset return,
which needs to be improved to get a higher equity premium and Sharpe ra-
tio. Yet as the empirical data show, see table 8, column 3, this co-variance
is very low.

On the other hand the models recently developed in behavioral finance
using loss aversion, do not have to match consumption growth data with
asset returns. Indeed, as table 8 shows, see column 3, the co-variance of
consumption growth with asset returns is empirically very low and thus the
(negative) co-variance with the growth rate of marginal utility would be low
too. Consumption based models attempt to improve this co-variance by em-
ploying other preferences (such as power utility with a very large parameter
of relative risk aversion, habit formation and recursive utility) but the co-
variance does not need to be improved in our asset pricing model. In fact in
our loss aversion model we have Cov(mf , R) = −0.00002 which is very small.
As can be seen from table 8 our proposed loss aversion model, where gains
and losses of wealth also appear in the preferences, produce a time varying
risk aversion, a low risk free rate (with low volatility), a high equity premium
(with high volatility) and a reasonably high Sharpe ratio.

Moreover, for a discount factor of ρ = 0.98 one obtains a risk-free interest
rate of approximately 2 percent, which is roughly half of the annual risk-free
rate (see table 7, column 4). Thus, our risk-free rate corresponds roughly
to a half of an annual risk free rate. If we use a conversion formula devel-
oped by Lo (2002)18 with SR(q) =

√
qSR with q the period return, then we

have approximately an annual Sharpe ratio of 0.20 which is in the vicinity of
the actual annual Sharpe ratio as reported in table 8, column 3. The habit
formation model in Grüne and Semmler (2004b), see the above table 7, col-
umn 3, is the same, in terms of its basic structures and parameters, as the
here solved model with loss aversion, see table 8, column 2. One can there-
fore be quite confident that the loss aversion model produces quantitatively
important contributions to the equity premium and Sharpe ratio puzzles.

18This is developed for IID returns.
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7 Conclusion

Extensive research effort has recently been devoted to study the asset price
characteristics, such as the risk-free interest rate, the equity premium and
the Sharpe ratio, arising from the stochastic growth model of the Brock
type. The failure of the basic model to match the empirical characteristics
of asset prices and returns has given rise to numerous attempts to extend
the basic model by allowing for different preferences and technology shocks,
adjustment costs of investment, the effect of leverage on asset prices and
heterogenous households and firms.19

In this paper we have gone beyond the consumption based asset pricing
model and have studied asset price characteristics when utility is not only
obtained from a consumption stream but also the fluctuation of the agent’s
value of financial wealth affect the utility of the agent. We have presumed,
along the recently proposed prospect theory, that agents become loss averse
when they had prior experiences of large losses in wealth and they are again
hit by a decline in their wealth in the current period. This gives rise, as we
have shown in sect. 3 of the paper, to a new form of a stochastic discount
factor pricing the income stream.

In the context of this model the agents do not have to experience large
losses in current consumption in order to induce them to change asset hold-
ings. In our model, as one finds in time series data, consumption growth
is de-linked from asset prices booms and busts and the co-variance of con-
sumption growth and asset returns can, as the empirical data show, indeed
be weak. In future research, one thus might want to design empirical estima-
tion strategies that excepts a de-linked relationship of consumption growth
and asset returns.

19A model with heterogenous firms in the context of a Brock type stochastic growth
model can be found in Akdeniz and Dechert (1997) who are able to match, to some
extent, the equity premium by building on idiosynchratic stochastic shocks to firms.
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