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Abstract

The paper discusses penalised spline (P -spline) smoothing for hazard re-

gression of multivariable survival data. Non-proportional hazard functions are

fitted in a numerically handy manner by employing Poisson regression which

results from numerical integration of the cumulative hazard function. Multi-

variate smoothing parameters are selected by utilizing the connection between

P -spline smoothing and Generalised Linear Mixed Models. A hybrid routine

is suggested which combines the Mixed Model idea with a classical Akaike

information criteria. The model is evaluated with simulations and applied to

data on the success and failure of newly founded companies.
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1 Introduction

Modeling of survival data is largely dominated by the proportional hazard (PH)

model introduced by Cox (1972). Even though the PH model appeals by simple

numerical fitting based on the partial likelihood, the proportional hazard assumption

often restricts the model in applications since it means that covariate effects remain

constant over survival time. This assumption has been under major investigation

and numerous papers suggest extensions and testing procedures, see for instance

O’Sullivan (1988), O’Quigley & Pessione (1989), Hastie & Tibshirani (1990), Gray

(1994), Hess (1994) or Abrahamowicz, MacKenzie & Esdaile (1996). For a general

overview of estimation and tests in proportional hazard models we also refer to Lin &

Wei (1991) or Sasieni (1999). Allowing covariate effects to be dynamic in time leads

to a varying coefficient model as generally introduced by Hastie & Tibshirani (1993).

Here, constant covariate effects are replaced by smooth but unknown functions.

Smooth estimation can then be carried out using e.g. Spline fitting, as in Hastie &

Tibshirani (1993), see also Kooperberg, Stone & Troung (1995) or by applying local

techniques, see e.g. Fan, Gijbels & King (1997) or Cai & Sun (2003).

Smooth estimation in survival models is usually based on the partial likelihood

function. There are, however, two points of criticism which should be raised against

the use of the partial likelihood in the context of smoothing. First, in the simple case

that covariate effects are in fact constant over time, that is if the PH assumption

holds, the cumulative (integrated) hazard function in the likelihood function fac-

torizes to the cumulative baseline hazard multiplied by the covariate effects. If the

baseline hazard is then estimated by the empirical survivor function, the resulting

profile likelihood for the parameters is equivalent to the partial likelihood suggested

by Cox. This justification of the partial likelihood is due to Breslow (1972) (see also
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Cox, 1975 or Wong, 1986). However, if covariate effects do vary with time, that is

if the PH assumption is violated, such factorization of the cumulative hazard does

not exist and consequently, the partial likelihood does not have any justifcation as

profile likelihood function. Secondly, in partial likelihood estimation the baseline

hazard is treated as nuisance component and not explicitly estimated. In applica-

tions, however, knowledge about the baseline hazard can be of interest, in particular

if smooth, nonparametric regression is pursued. For this reason it seems worthwhile

to work directly with the likelihood function. This approach is pursued in this pa-

per in order to fit a smooth, non-proportional hazard model. The integrated hazard

function in the likelihood is thereby approximated using numerical integration based

on a trapezoid approximation. This in turn leads to a simple likelihood functions

which resembles a Poisson model.

As smoothing technique we employ penalized spline fitting (P -spline). The ap-

proach was originally introduced by O’Sullivan (1986), but the procedure finally

achieved general recognition with the paper by Eilers & Marx (1996). A comprehen-

sive overview about the current state of the art is found in Ruppert, Wand & Carroll

(2003). P -spline smoothing in survival models has been studied in Cai, Hyndman

& Wand (2002) for baseline hazard smoothing. The underlying idea of P -spline

smoothing is to fit a smooth curve by using a high dimensional basis. But instead of

simple parametric fitting a penalized version is pursued to provide a smooth fit. The

approach resembles standard spline smoothing as discussed e.g. in Wahba (1978), or

in its generalized form in Green & Silverman (1994). The major difference is that

for spline smoothing the dimension of the corresponding spline basis grows with

the sample size. In contrast, for P -spline smoothing a finite dimensional basis is

used, where the dimension is chosen in a rich and generous manner. The approach
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is numerically very handy. It also has has strong links to Linear Mixed Models

(see Wand, 2003) and to penalized quasi likelihood (PQL) estimation in General-

ized Linear Mixed Models (GLMM), as discussed in Breslow & Clayton (1993). The

connection becomes obvious if the penalty is rewritten as a priori distribution on the

coefficients of the basis. In fact, the smoothing parameters steering the amount of

penalisation is then playing the role of the a priori variance in the resulting Gener-

alized Linear Mixed Model. We utilize the link for smoothing parameter estimation.

It will be demonstrated that the PQL approach is numerically simple but fails to

estimate reasonable smoothing parameters in low intensity hazard models. Alterna-

tively an EM based procedure as suggested in Booth & Hobert (1999) could be used

for the price of increased numerical effort. We suggest a hybrid approach based on

the numerically attractive PQL estimates combined with an Akaike criterion.

The paper is organized as follows. In Section 2 we first motivate the use of P -

splines for fitting non-proportional hazard models. We demonstrate how integrals

of the hazard function can be approximated by trapezoid integration, yielding a

Poisson type model. We provide some asymptotic consideration and discuss practical

adjustments of the fitting algorithm. In Section 3 we derive the link to GLMMs and

discuss the estimation of the smoothing parameter. An application and simulations

are provided in Section 4. A discussion finalizes the paper. Technical details are

found in the Appendix.

2 Smooth Hazard Model

2.1 P -Spline Fitting

Let Ti denote the survival time of the ith individual or observational units and let Ci

be the corresponding right censored time, i = 1, . . . , N . We observe Yi = min(Ti, Ci)
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and define the censoring indicator δi = 1 if Ti < Ci and δi = 0 otherwise. With

xi we denote the p dimensional covariate vector for the i-th individual, which for

simplicity of presentation is assumed to be time constant. The hazard function is

then modeled as

h(t, xi) = λ0(t) exp{x
T
i βx(t)} (1)

with λ0(t) as baseline hazard and βx(t) as vector of covariate effects varying smoothly

with survival time t. For convenience we rewrite (1) as h(t, xi) = exp{ziβ(t)} with

zT
i = (1, xT

i ) and β(t) = {log λ0(t), β
T
x (t)}

T . The task is to estimate β(t) smoothly

by avoiding any stringent parametric assumptions. This is achieved by penalized

spline regression.

For the sake of simplicity let us first consider smooth estimation of the baseline

function β0(t) = log λ0(t). Let B(t) = {b1(t), . . . , bq(t)} be a high dimensional basis

developed over the knots t1, . . . , tq. Convenient choices are a B-spline basis (see

de Boor, 1978) or truncated polynomials (see e.g. Wand, 2003). The dimension q

of the basis is chosen lavish, such that the model bias β0(t) − B(t)α0
0 is negligible,

where α0
0 = (α0

01, . . . α
0
0q)

T is the vector of “best” coefficients in the sense of having

minimal Kullback-Leibler distance. More details are found later in the paper. Since

q is supposed to be large, simple maximum likelihood estimation of α0 would be

highly variable and numerically unstable. Therefore, in order to achieve smoothness

and numerical stability the penalty term λ0α
T
0 D0α0 is introduced, with D0 as an

appropriately chosen penalty matrix and λ0 as a bandwidth parameter steering

the amount of penalization. Possible choices for D0 are differences based penalties

as suggested in Eilers & Marx (1996) or taking D as identity matrix (see Wand,

2003). The latter choice is a reasonable candidate when working with truncated
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polynomials.

In the same fashion we now fit all remaining components in the model. It is

thereby tactically an advantage to extract the intercept from the smooth function.

This means for estimation we decompose βl(t) to β0l+B̃(t)αl, l = 0, . . . , p, where β0l

is the constant part and B̃(t) as a basis matrix containing no intercept. We define

θl = (β0l, α
T
l )

T and using the Kronecker product we can jointly write β(t) = W (t)θ

with W (t) = Ip+1 ⊗ {1, B̃(t)} and parameter vector θT = (θT
0 , . . . , θ

T
p ), where Ip+1

is the p + 1 dimensional identity matrix. In principle the spline bases used for

fitting βl(t) can differ among the separate components of β(t) so that W (t) is of

block diagonal form with different spline bases on its diagonal. For simplicity of

presentation, however, we ignore this generalization here. To achieve a smooth fit

the coefficients αl are now jointly penalized which leads to the penalized likelihood

function

lP (θ, λ) =
N∑

i=1

li(θ)−
1

2

p∑

l=0

λlα
T
l Dlαl (2)

with li(θ) = δi

(
zT

i W (Yi)θ
)
−
∫ Yi

0 exp{zT
i W (t)θ}dt as likelihood contribution (see

Cox & Oakes, 1984) and λ = (λ0, . . . , λp) as component-wise smoothing parameters

steering the amount of penalization for each component. For notational convenience

the penalty component in (2) can be rewritten as θT (ΛD)θ with D as block di-

agonal matrix built from matrices diag(0, Dl), l = 0, . . . , p, where diag(0, Dl) is

the q + 1 dimensional diagonal basis having Dl in the bottom right corner and 0

elsewhere. Bandwidth matrix Λ matches accordingly as a diagonal matrix with

(λ0 ⊗ 1T
q+1, . . . , λp ⊗ 1T

q+1) on the diagonal, with 1q as q dimensional unit vector.

Differentiating (2)with respect to θ leads to the penalized score equation

∂lp(θ, λ)

∂θ
=

N∑

i=1

si(θ)− ΛDθ = 0 (3)
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with si(θ) = δiW
T (Yi)zi −

∫ Yi

0 W T (t)zi exp{z
T
i W (t)θ}dt. Accordingly, the second

order derivative results to

∂2l(θ)

∂θ∂θT =
N∑

i=1

∇si(θ)− ΛD (4)

where ∇si(θ) = −
∫ Yi

0 W T (t)zzT
i W (t) exp{zT

i W (t)θ}dt.

2.2 Integration

The penalized score function (3) and its derivatives contain integrals based on the

hazard function. Since no analytic solution is readily available numerical integration

is employed. A computationally handy version is to approximate the integrals by

trapezoids. Let therefore 0 = τ0 < τ1 < . . . < τK be a grid of points that span

the range of the observed failure times, i.e. τ1 = min{Yi : δi = 1} and τK =

max{Yi : δi = 1}. Index Ki is defined through τKi−1 < Yi ≤ τKi
and with mi(t) =

W T (t)zi exp{z
T
i W (t)θ} we denote the integrand in (3). This is approximated by a

polygon going through the points
(
τk,mi(τk)

)
, k = 0, 1, . . . , Ki − 1 which leads to

∫ Yi

0
mi(t)dt (5)

≈ d(Ki > 1)
Ki−1∑

k=1

1

2
(τk − τk−1)

{
mi(τk) +m(τk−1)

}

+
1

2
(Yi − τKi−1)

{
mi(τKi−1) +m(τKi

)
}

(6)

=
1

2
min(τ1, Yi)mi(τ0) +

1

2

Ki∑

k=1

{
min(τk+1, Yi)−min(τk−1, Yi)

}
mT

i (τk)

with d(·) as indicator function. The score contribution si(θ) is now approximated

by

si(θ) = δiW
T (Yi)zi −

Ki∑

k=0

W T (τk)zi exp{z
T
i W (τk)θ + oik} (7)

where oik are given offsets defined through oi0 = log{min(τ1, Yi)} and for Ki > 1

oik = log[1/2{min(τk+1, Yi)−min(τk−1, Yi)}] for k = 1, . . . , Ki with τK+1 set to infin-

ity. Approximation (7) shows the form of a Poisson model fitted to the independent
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pseudo observations Ỹik ∼ Po(ziW (τk)θ+ oik) taking values Ỹik = 0 for k < Ki and

ỸiKi
= δi. Hence by trapezoid integration we get an approximate fit of model (1) by

fitting a penalized Poisson regression model with given offset and pseudo data Ỹik,

k = 1, . . . , Ki, i = 0, . . . , n

2.3 Practical Adjustments

Inserting approximation (7) in (3) yields the approximate score equation to be

solved. The trapezoid integration is applied in the same way to approximate the

second order derivative (4), so that solving the score equation can be carried out

with a standard Newton procedure. In practice, however, there are a number of

adjustments necessary, like how to choose q, the dimension of the basis, and how

to specify K, the number of integration grid points. Finally, the ultimate question

how to choose the right amount of penalization is postponed to the next section.

For the location of integration points τk we suggest to use the observed failure

times. A coarser grid omits information in the data, a finer grid leads to identifiabil-

ity problems. Moreover the choice of K and q should fulfill the restriction K ≥ q to

achieve identifiability. We used the rule of thumb q = min{n/4, 25, K + 1} which is

in line with Wand (2003) and showed satisfactory results in our examples. Practical

experience in standard models has also shown that the actual choice of q has little

influence on the fit (see also Ruppert, 2002). Finally, a starting value for the pe-

nalized fit can be obtained by fitting a model with an unpenalized baseline hazard

but with covariate effects being constant, that is we set λ0 → 0 while λl → ∞ for

l = 1, . . . , p. This mirrors a proportional hazard model and the fit is numerically

stable.
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2.4 Asymptotic Considerations

Let θ0 be the ”true” coefficient, that is W (t)θ0 is the best approximation to the

smooth curve β(t) based on the Kullback Leibler discrepancy

K{W (t)θ, β(t)} = E
[
l{W (t)θ0} − l{β(t)}

]
, (8)

where the expectation E(·) is carried out with respect to model (1) and the true

underlying censoring process. Differentiating (8) defines θ0 implicitly through

0 = E

{
N∑

i=1

si(θ
0)

}
. (9)

Let θ̂ be the estimated coefficient resulting from (3). It is shown in the Appendix

that the penalized estimate is consistent in the sense

θ̂ − θ0 = −

{
N∑

i=1

∇si(θ)

}
−1 N∑

i=1

si(θ) {1 + op(1)} (10)

assuming that λl = o(N 1/2), l = 0, . . . , p. The latter assumption is rather weak as

it allows the smoothing parameter to increase with growing sample size. A data

driven choice derived below is in fact suggests bounded, if the underlying function

is not constant.

From (10) we can also derive a variance formula for the estimate. In practice

however, the following sandwich version performs better:

var(θ̂) = −

{
N∑

i=1

∇si(θ)−ΛD

}
−1 { N∑

i=1

∇si(θ)

}{
N∑

i=1

∇si(θ)−ΛD

}
−1

3 Relation to Generalized Linear Mixed Models

3.1 Penalized Quasi Likelihood Estimation

Penalized spline smoothing has strong affinities to penalized quasi likelihood esti-

mation in Generalized Linear Mixed Models (GLMM) as discussed in Breslow &
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Clayton (1993) (see also McCulloch & Searle, 2001). For normal response models

this link is illuminated in depth in Wand (2003) (see also Cai, Hyndman & Wand,

2002). For non-normal response models we achieve the link in the following way. We

consider coefficients αl, l = 0, . . . , p, as independent normally distributed variables

with

αl ∼ N(0, λ−1
l D−

l ) (11)

where D−

l is the (generalized) inverse of Dl. The bandwidth parameters λl now

occur in the a priori variance of αl. Conditional on αl, l = 0, . . . , p and based on

the trapezoid integration we model

Ỹik|(α0, . . . , αp) ∼ Po(zT
i W (τk)θ + oik) (12)

with θ as above composed from β0l and αl. Apparently, (11) and (12) provide the

ingredients of a Generalized Linear Mixed Model. The likelihood for parameters β0l

and λl, l = 0, . . . , p, is then obtained by integrating out the random coefficients, i.e.

l(β00, . . . , β0p, λ0, . . . , λp) =
∫ N∏

i=1

Ki∏

k=1

Po(Ỹik; z
T
i W (τk)θ + oik) (13)

×
p∏

l=0

φ(αl, λ
−1
l D−

l )dαl

with φ(·) as a normal density function. Using a Laplace approximation for the

integral leads to penalized quasi likelihood estimation (see Breslow & Clayton, 1993).

It is not difficult to show that this in turn gives the estimating equations given by

(3), with scores si(θ) as listed in (7).

3.2 Maximum Likelihood based Estimates

The connection between smoothing and GLMMs is not only of theoretical nature

but can be exploited practically to choose appropriate smoothing parameters λl,
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l = 0, . . . , p. The idea is to estimate λl based on the likelihood function (13). To do

so we introduce the following notation. Let U ik = zi{Ip+1⊗B(τk)} for k = 0, . . . Ki

and U i = (UT
i0, . . .U

T
iKi

)T . That is U i is the observed design for the pseudo Poisson

variables of the i-th individual. Approximating the integral by Laplace integration

and inserting estimates for β0l provides the Laplace approximation for the log profile

likelihood

lP (λ0, . . . , λp) =
N∑

i=1

Ki∑

k=0

logPo(Ỹik; ·)−
1

2

p∑

l=0

(
λlα̂

T
l Dlα̂l + log |λlDl|

)
(14)

−
1

2
log |

N∑

i=1

UT
i ViU i + diag(λlDl)|

with Vi = diag(var(Ỹi0), . . . , var(ỸiKi
)) resulting from the Poisson model and diag(λlDl)

as block diagonal matrix built from λlDl, l = 0, . . . , p. Ignoring the dependence of

Vi on λ we get by differentiating (14)

0 = α̂T
l Dlα̂l −

q

λ
− tr

(( N∑

i=1

UT
i ViU i + diag(λlDl)

)l
Dl

)
(15)

where superscript l refers to the l-th block diagonal of matrix (
∑N

i=1 U
T
i ViU i +

diag(λlDl))
−1. In asymptotic terms the latter component in (15) is of order O(N−1)

and could be neglected. Practical experience showed however that the term should

not be omitted in finite samples and we make use of the approximate version

1

λ
{q + tr

(
(

N∑

i=1

UT
i ViU i + diag(λlDl))

lDl

)
} =

dfl

λl

+O(N−1)

with

dfl := tr{(
N∑

i=1

z2
ilB

T
i ViBi + λlDl)

−1
N∑

i=1

z2
ilB

T
i ViBi}

as approximate for the degree of freedom of the l-th smooth component and Bi =

(BT (τ0), . . . , B
T (τKi

))T . This finally yields the PQL estimate for λl via

λ̂l =
dfl

α̂T
l Dlαl

, (16)
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The smoothing parameter estimate (16) depends on estimates θ̂ and vice versa. A

convenient way to estimate both, λ and θ, is to cycle between estimation of θ for

given λ and estimation of λ for given θ. We denote with λ̂(j) and θ̂
(j)

the estimates

in the j-th cycle of such algorithm.

3.3 Hybrid Smoothing Parameter Selection

Laplace approximation or PQL estimation, respectively, of the marginal likelihood

can perform poorly, as pointed out in (Breslow & Lin, 1995) or Shun & McCul-

lagh (1995). We observe unsatisfactory performance of the PQL estimates for low

intensity Poisson data. To demonstrate this deficit we simulate 400 Poisson data

Yi ∼ Po{µ(t)} with µ(t) as smooth but low intensity mean. Function µ(t) is fitted

by P -spline smoothing using a truncated linear basis with 30 knots. In the left

plot in Figure 1 we show the mean and pointwise 95% confidence intervals of 150

simulation with smoothing parameter λl estimated by (16). The true function is

shown as dashed line. Apparently the PQL estimate over-smoothes and fails to

detect the smooth structure. To overcome this deficit one can replace the Laplace

approximation by a more accurate approach. We consider the Monte Carlo EM

algorithm suggested by Booth & Hobert (1999). The result is shown in the middle

plot in Figure 1. The improved behavior of the EM fit has however to be bought

for the price of increased numerical effort. We therefore prefer to employ a hybrid

strategy by taking advantages of the numerical simplicity of the PQL estimate, but

to control the estimates with the Akaike criterion. This means at the j-th cycle of

the PQL estimation we calculate the Akaike criterion AIC(λ̂(j)) with

AIC(λ) =
N∑

i=1

Ki∑

k=0

logPo(Ỹik, ·) + 2df(λ)
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where df =
∑p

l=0 dfl is the degree of freedom of the model. We terminate the

iterations if AIC(λj+1) > AIC(λ(j)). The right hand plot in Figure 1 shows the

behavior of the hybrid procedure. The performance appears promising, which also

shows in further simulation in the next section. It is thereby important to point

out that the hybrid estimate is numerically very handy which is advantageous in

particular in multivariate smoothing parameter selection.

4 Application

4.1 Simulation

We simulate survival data for N = 400 individuals on a discrete time grid t =

1, 2, 3, . . . using a constant drop out probability of 3 % for each time interval t to

t+1. The two binary covariates x1 and x2 are randomly chosen with P (x1 = 1) = 0.5

and P (x2 = 1) = 0.3. As dynamic effects we include β0(t) = −5 as constant baseline

hazard and β1(t) = −1+t/30 and β2(t) = 1.5 sin(πt/60). In Figure 2 we show for one

simulation the principle of the hybrid smoothing parameter selection. Smoothing

parameter estimation is started with bandwidth λ̂
(0)
l = exp(−5) for l = 0, 1, 2 and

updated with λ
(t)
l as long as the Akaike criterion decreases. Figure 2 shows the

Akaike function for λ1 and λ2 (with λ0 set to its optimal value infinity due to the

constant baseline). The steps of the algorithm are indicated with numbers, where

λ̂/
(6)

is the final estimate based on the stopping rule. The crosses show the further

steps of the PQL iteration which apparently steers towards oversmoothing.

In Figure 3 (two left plots) we show for 100 simulation the final estimates λ̂(t)

based on the the hybrid approach (top row) and the PQL estimates (bottom row).

The tendency of oversmoothing for PQL is obvious. The PQL estimates have a

high probability of omitting the dynamic structure of the effects. In this respect
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the hybrid approach performs better. This can also be seen from the estimated

curves β̂l(t) shown in the middle plots for β1(t) and in the right hand side plots

for β2(t). We show the simulation estimates corresponding to the 5, 15, 25, 50, 75,

85 and 95% quantiles of λ̂
(t)
l . The true curve is included as thick line. It appears

that the hybrid routine performs well by detecting non-proportional hazards, while

the PQL estimate is less sensitive. This impression remains unchanged in a slightly

modified simulation. We set β2(t) to zero yielding the results shown in Figure 4.

The hybrid approach now detects the proportional (zero) hazards for β2(t). Overall

the interpretation does not change and the hybrid smoothing parameter selection

performs promising.

4.2 Example

We demonstrate the modeling approach with data from the so called Munich founder

study. In this study a sample of size N = 1123 is drawn from firms which have been

founded during the years 1985 and 1986 in the state of Bavaria. The firms were fol-

lowed up until 1990 and the measurement of interest is the time the companies stays

in the market without going bankrupt. Details on the study can be found in Brüderl,

Preisendörfer & Ziegler (1992), data are available from the Central Archive for Em-

pirical Social Research, University Cologne, Germany (http://www.gesis.org/ZA/).

We consider a subsample of 369 firms with their founders aged 30 years and younger.

About 50 % (185) of the firms went bankrupt within the first 5 years of follow up.

We model the survival time T of the enterprise to depend on the following indicator

variables:

• start capital: =1 if the company started with capital, =0 otherwise,

• plan: = 1 if the planing process for the venture took longer than 6 months, =0

otherwise,
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• branch knowledge: =1 indicates that the founder had previous knowledge and

expertise in the branch of the firm, =0 otherwise,

• innovation: =1 if the product produced or sold by the company is an innovation,

=0 if the product is on the market already,

• purpose: =1 if the business was started and is run as main source of income for

the founder, =0 otherwise,

• degree: =1 indicates whether the founder is holding a degree (university or crafts-

men degree), =0 otherwise,

• gender: =1 for male.

The resulting fits with smoothing parameters selected by the hybrid approach are

shown in Figure 5. The baseline uncovers a dereasing risk of failure with the company

being on the market. If the business started with positive capital and was planed

in advance it has a reduced risk of failure. These effects however fade away after

about 2-3 years. Branch experience has a constant risk decreasing effect. Innovative

products induce an increased risk with hardly any time variation. Companies which

have been founded to provide the main source of income for the founder have better

survival chances. This effect gets strengthened over time. Finally, the degree of the

founder has a weak effect only and gender does not appear to be significant.

5 Discussion

We demonstrated the use of P -splines for fitting non-proportional hazard models.

Numerical integration was pursued which led to Poisson data. Multivariate smooth-

ing parameter selection was carried out by a hybrid procedure, utilizing the link

between P -spline smoothing and Generalised Linear Mixed Models. In particular

complicated grid searching was avoided and the routine is numerically simple. A
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data example demonstrated the new insight which could be gained by allowing haz-

ard functions to be dynamic in time.

A Technical Details

The penalized estimate is defined through 0 =
∑N

i=1 si(θ̂)−ΛDθ. Expansion provides

0 =
N∑

i=1

si(θ
0) +

N∑

i=1

∇si(θ
0)(θ̂ − θ)− ΛDθ̂ (17)

+
[ N∑

i=1

∇2si(θ
0)(θ̂ − θ)2

]
+ . . . (18)

where brackets [·] here and in the following embrace terms which are written in a

symbolic manner since ∇2si(·) = ∂∇si(· · ·)/∂θ is a three dimensional array. Ex-

act notation is possible by employing the Einstein summation convention (see e.g.

McCullagh, 1987), for simplicity of notation however we here prefer the obvious

symbolic notation using brackets. Moreover, we will subsequently drop the param-

eter argument if components are calculated at the ”true” parameter value, e.g. we

write si shortly for si(θ
0). Inversion of (17) then provides

θ̂ − θ0 =
(
−

N∑

i=1

∇si + ΛD
)
−1( N∑

i=1

si + λDθ
)

(19)

−
1

2

[(
−

N∑

i=1

∇si + ΛD
)
−3( N∑

i=1

si + ΛDθ
)(
−

N∑

i=1

∇2si

)]
+ . . .

We decompose ∇si in its mean and stochastic part via −∇si = F i + εi with

F i = E(−∇si). From (19) we get

θ̂ − θ0 =
( N∑

i=1

F i +ΛD
)
−1( N∑

i=1

si +ΛDθ
)

(20)

−
[( N∑

i=1

F i

)
−2( N∑

i=1

εi

)( N∑

i=1

si +ΛDθ
)]

(21)

−
1

2

[( N∑

i=1

F i

)
−3( N∑

i=1

si +ΛDθ
)(
−

N∑

i=1

∇2si

)]
+ . . . (22)
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It will become obvious that components (21) and (22) are of negligible order com-

pared to the leading term. We therefore concentrate on (20) only, which by expan-

sion yields

θ̂ − θ0 =
( N∑

i=1

F i

)
−1( N∑

i=1

si +ΛDθ
)
−Λ

( N∑

i=1

F i

)
−1
D
( N∑

i=1

F i

)
−1( N∑

i=1

si +ΛDθ
)

+
[
Λ2
( N∑

i=1

F i

)
−3
D2

( N∑

i=1

si +ΛDθ
)]
.

We assume that λl = o(N 1/2), l = 0, . . . , p, that is the penalty λl may tend to infinity

but at a smaller rate than N 1/2. Note that this is a very weak condition and in fact

the ML estimate of λl is of order O(1) (as long as λ = O(1). Using this assumption,

the variance of the first term is of order O(N−1) and dominates the variance of the

second term which has order O(N−2Λ) = o(N−3/2). Moreover, with (9) we find the

bias of θ̂ to be given by (
∑N

i=1 F i)
−1ΛDθ which is of order O(N−1Λ). As mean

squared error of θ̂ we therefore get

var(θ̂) + bias(θ̂)2 = O(N−1) +O(Λ2N−2) (23)

which is dominated by the variance as long as Λ = o(N 1/2).

Finally, reflecting that si, i = 1, . . . N , are independent it is easily seen with

arguments similar to those above that (21) is of order Op(N
−1) +Op(N

−1Λ). Anal-

ogously, (22) is found to have negligible order.
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Figure 1: Mean and pointwise empirical 90 % confidence intervals based on 100

simulated estimates of low intensity Poisson data. The dashed curve gives the true

function
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Figure 2: Akaike function AIC(λ) for a single simulation. Shown is the difference

to the minimum. The line with the thick numbers indicate the steps of the hybrid

estimate λ̂(j) with highest number as final estimate. The crosses show the further

divergence of Laplace estimates, i.e. if the stopping rule is ignored.
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Figure 3: Estimated smoothing parameter (left plots) for hybrid approach (top row)

and PQL (bottom row) with corresponding fits β1(t) (middle plots) and β2(t) (right

plots).
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Figure 4: Estimated smoothing parameter (left plots) for hybrid approach (top row)

and PQL (bottom row) with corresponding fits β1(t) (middle plots) and β2(t) (right

plots).
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Figure 5: Baseline and dynamic effects for Munich founder study. As reference the

zero line is indicated as dotted line. Shown are penalised estimates and pointwise

95 % confidence intervals.
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