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Abstract

Multiple equilibria and history dependent optimal solutions are im-
portant features of a wealth of widely diverse economic models. These
features are typically related to the presence of market imperfections, ex-
pectational phenomena, and the like. Less known is that they can also
arise in efficient deterministic intertemporal optimization models. We ex-
amine different mechanisms that can generate multiple optimal equilibria
in models of the latter type, and discuss the properties of the thresh-
olds that separate the basins of attraction of the different equilibria. As
most of the existing literature, the paper focuses on one-dimensional state
space models. However, an extension to the two-dimensional case is also
presented. Since in many important instances the thresholds cannot be
found analytically, we present three methods that allow to compute and
analyze them numerically. Finally, we give a cursory review of efficient
dynamic economic models with multiple equilibria.

Keywords: Dynamic optimization models, Multiple equilibria, His-
tory dependence, Thresholds, Skiba points, Numerical methods.
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1 Introduction

A prominent figure of medieval philosophy, Buridan’s donkey, is shown standing
at equal distance from two identical and equidistant bales of hay, unable to
decide towards which bale to go.! In modern economic parlance, one would say
that Buridan’s donkey is a rational economic agent indifferent between moving
towards the one or the other bale. Its current position is a decision threshold —
any small movement away from it will destroy the indifference and motivate a
unique optimal course of action: moving to the closest bale. The two bales can
be termed the donkey’s two optimal long-run stationary solutions.?

Buridan’s story provides an overly simplified example of a situation where
there is indifference between two or more optimal courses of action. Less trivial
occurrences are possible in more complex environments. Consider, for example,
the following case. Our donkey, that prefers more hay to less, is hesitating
between a large bale close by, and a small one further away. Does its indifference
necessarily reflect any kind of irrationality? Not so, if one takes into account the
disutility associated with going to go to either bale — that is, the costs associated
with the optimal trajectory towards the two long-term optimal solutions. If the
road towards the large bale, although short, is steep and bumpy, the donkey
may be well advised to follow the longer but easier way leading to the smaller
one. Simply stated, the best course of action in a given situation typically does
not depend exclusively upon the final rewards, that may be widely different,
but also upon the costs and benefits en route towards these rewards.

At the threshold separating two optimal courses of actions the donkey may
strictly prefer going to the one or to the other hay bale rather than remaining
immobile. Alternatively, if the stationary utility at the threshold is sufficiently
high and the road leading to the hay bales sufficiently arduous, it may be in-
different between going and staying. In both cases, however, the threshold is
unstable — all optimal trajectory lead away from it towards one or the other
long-term equilibria. Thus, the economic consequences are similar. Among
them one should note, most importantly, history dependence: In the presence
of a threshold, the optimal long-run stationary solution toward which an opti-
mally controlled system converges does depend upon the initial conditions. A

!For details on the life and the work of Jean Buridan — undoubtedly one of the most
influential philosophers and logicians of the late Middle Ages see Faral (1949) or Michael
(1985).

2In other words, the bales are attractors for a rational, i.e. optimizing donkey.



rational donkey born sufficiently close to it will spend its life at the large hay
bale. The same donkey, born further away, will not. Economies or economic
systems that are identical up to slightly different initial conditions may look
very different on the long term. More precisely, the optimal long-run solution
toward which an optimally controlled system is attracted may depend on the
initial conditions — that is more often than not, on chance rather than wisdom.

In practical policy-making, it may be crucial to recognize whether or not
a given problem has multiple stable optimal equilibria and, if so, to precisely
locate thresholds separating the basins of attraction towards these equilibria.
Consider again our donkey, but assume now that it is on a float going down a
river. T'wo bales of hay are on the shore, both downstream of the donkey’s initial
position, with the largest one the higher one on the river. Up to some point, it
will be rational for the donkey to steer the float towards the larger bale. If it
waits too long, however, its best choice may be to go to the smaller one, in order
to avoid the high costs of rowing against the stream. By shifting the relative
importance of interim and long-term costs and benefits, inadvertently crossing
the threshold may doom a rational decision-maker to a lower long-term utility
level. Late action can mean foregoing any rational motive to attempt reaching
a superior long-run equilibrium, thus condemning the decider (for instance,
society) to a gloomy future.

Thus motivated, this paper is devoted to a synthetic presentation of the
properties necessary for the existence of multiple stable long-run stationary so-
lutions and history dependence in optimal control problems where all potential
externalities have been properly internalized, that is, in efficient optimal control
problems. Particular attention is given to conditions under which the thresh-
olds separating the stable long-run solutions take the particularly challenging
form of so-called Skiba points, and to the properties of the thresholds. Section
2 introduces the class of dynamic optimization problems considered. Section
3 presents and discusses different necessary conditions for history dependence
and the associated properties of the thresholds. Section 4 is devoted to the
presentation of numerical methods for finding Skiba points and characterizing
the global dynamics about these points. A numerical example is given. Sec-
tion 5 gives a short survey of efficient dynamic economic models with multiple
steady-states and history dependent outcomes. Section 6 concludes the paper.
Most of the analysis is restricted to one-dimensional control problems. However,
the paper also addresses the occurrence of multiple steady-states and thresh-
olds when the state-space is two-dimensional. In that case, the thresholds are
one-dimensional curves that generalize in a straightforward but non-trivial way
the zero-dimensional (point) thresholds found in one-dimensional models.

At this place, let us make clear that we are not concerned with another
important but unrelated problem in economic dynamics, namely, the problem
of indeterminacy, see e.g. Majumdar et al. (2000). In the cases we are consid-
ering, and contrary to what characterizes indeterminacy, the optimal solutions
are uniquely well-defined at almost every point. There exists, however, a set
of points where the unique decision-maker may be indifferent between two or
several of these solutions.



2 Framework and optimality conditions

In this paper, we consider inter-temporal optimization problems P (xg) of the
type:

V(xzg) = sup /OO e " F(z(t), u(t))dt, (1)
u(t)eU JO

sit. = f(z(t),u(t)), =z(0) ==, (2)

where x is the state, u the control, U a compact set of admissible controls,
t the time index, and r > 0 a discount rate. Furthermore, F(x(t),u(t)) is
a return function, f(z(t),u(t)) describes the state dynamics, and V(zg) is the
value function, i.e. the maximum aggregate present value of benefits for starting
at 2(0) = xg. The problem is parameterized in terms of the initial conditions
xg, that are a crucial ingredient of a history dependent outcome.

In line with most of the relevant literature we restrict ourselves unless oth-
erwise mentioned to one-dimensional models, i.e., x € R, and assume a scalar
control, v € R. However, we will address extensions to the case z € R?. To
simplify the notation, we omit arguments whenever possible without risk of con-
fusion. In particular, the variables are not indexed with time ¢ in the rest of the
paper. Similarly, the word optimal will be typically omitted. Thus, for example,
an optimal trajectory (optimal solution) will be termed trajectory (solution).

Much of the presentation will be based on Pontryagin’s mazimum principle,
and thus, carried out in terms of the current value Hamiltonian H (u, z, ) :

H(u,z,\) = F(u,z) + Af (u, z), (3)

where A is an co-state variable that can be interpreted as the dynamic shadow
price of a marginal modification of the current state z. In terms of this Hamil-
tonian, the first-order conditions for an optimal policy u are given by the canon-

ical system:
T = H)y,
{ A=ri— H, 4)

together with the transversality condition:

lim e™"*\ = 0, (5)

t—o0

and, assuming an interior solution, the Hamiltonian maximization condition:
H, =0. (6)

Under standard assumptions, the system (4)-(6) associates to the current value
of the state z an unique value of the co-state variable, A = A(z). The optimal
control u can likewise be expressed as a function of the current state x in terms of
a policy function u = u(x). We assume, unless otherwise specified, that H,,, < 0.
This insures that the equation H, = 0 can be solved for the control.



We speak of a concave model if H is jointly concave in the state z and the
control u, i.e., if HyyH,, — H2, > 0. Otherwise, we speak of a non-concave
model if H,, H,,— H2, <0, or of a convez model if H,, > 0. One should stress
that we do not require concavity or convexity globally, but only over some
compact set of interest for the concrete problem studied. Most importantly,
note that joint concavity in x and u of the Hamiltonian is a globally sufficient
condition for optimality. On the other hand, non-concave or convex models may
violate, locally or globally, these sufficient conditions.

Besides the approach described above, another method based on the Hamilton-
Jacobi-Bellman (HIB) equation is used at places, in particular, in Section 4.
This approach relies on the fact that the value function V' (x) (which is assumed
in this paper to be continuous) must satisfy the HJB functional equation:

V(@) = sup [F(z.u) + Va(x) f(z )], ™

where V,(z) is the derivative of V(z) w.r.t. z. A third approach, discrete time
dynamic programming, can be employed to study global dynamics and to detect
thresholds based on a discretization of (7). Further details on these last two
methods are given in Section 4.

Typically, the optimal long-run solutions of the control problem P (zg) —
that is, the attractors of the optimally controlled system — will be saddle-points
in the canonical space (x,\).* Other types of attractors are possible, such as
the origin if the feasible state-space is bounded by non-negativity conditions or,
formally, +o0 if the optimal trajectories grow without bounds. With some abuse
of language, we will reserve the term stable steady-state to designate the value
of the state variable x at any optimal attractor, independently of the specific
form it may take.

In the context of a one-dimensional optimal control problem P (zg), a thresh-
old is a value of the state variable x at which the decision-maker is indifferent
between converging toward the one or the other of several stable steady-states.
If it exists, the threshold will therefore lie between at least two stable steady-
states xr and zr. Between the two stable steady-states, there will also always
be an unstable stationary solution of the canonical system, whose z-value will
be termed an unstable steady-state and designated by xp;.

Intuitively, it may be tempting to hypothesize that thresholds and unstable
steady-states coincide. After all, the dynamics defined by (4)-(6) imply that the
system will converge towards the one or the other stable steady-state depending
upon whether the current state = is on the left or on the right of the unstable
steady-state x,,. This intuition is correct if z,; is optimal in the sense that the
pair (a7, A(zas)) defined by (4)-(6) is optimal for the problem P (z¢). However,
it forgoes the fact that, as already mentioned, (4)-(6) provide only first-order

3Most non-economists (and some economists as well) may be puzzled by our naming a
saddle-point an attractor. It is in the limited sense that, in the state-control space (a) the
optimal steady-state is usually a saddle-point; and (b) the optimal trajectory leading to the
optimal steady-state coincides with the stable branch of this saddle-point.



conditions for a possible optimum. Thus, the unstable steady-state can be non-
optimal, in the sense that the pair (27, A(x 7)) is non-optimal. If it is the case,
the dynamics implied by (4)-(6) will typically not be optimal in a vicinity of the
unstable steady-state, and threshold and unstable steady-state will normally
differ. Note that, by definition, an inner stable steady-state is always optimal.

Thresholds that arise in connection with non-optimal unstable steady-states
are usually called Skiba thresholds (or points, or sets), in honor of the pioneering
work of Skiba (1978). Alternatively, they have also been named DNS thresholds,
adding to Skiba’s initial those of Dechert and Nishimura, who gave in their 1983
article the first exact proof of the existence of a Skiba point separating two basins
of attraction in a one-state dynamic optimization model. Skiba thresholds are
much more difficult to locate than those thresholds that are associated with
optimal unstable steady-states, because there is no appropriate ”local” equation
to define them. In particular, the first-order conditions (4)-(6) do not provide
the information needed to locate them exactly. It is therefore important to
determine general conditions under which the thresholds are Skiba points and
to find ways for finding their precise location.

The properties of the optimal control at a threshold are closely associated
with the kind of threshold considered — Skiba point or not. In the case of
a Skiba point, the control typically jumps at the threshold. Otherwise, it is
everywhere continuous. Similarly, in the vicinity of a Skiba point, there may
be several candidate value functions V(z), defined as the maximum aggregate
present value of benefits when starting in x and converging towards a steady-
state along a path satisfying the first-order conditions for a maximum of (1)-(2).
We will see at a later place that both properties — discontinuity of the optimal
control and multiple candidate value functions — are closely related. Finally, in
the Skiba case, the threshold can be associated with either a node or a spiral
source of the canonical trajectories. Otherwise, only nodes are possible.

These properties of the unstable steady-state x,; and associated threshold,
on which we shall further elaborate in the next section, are summarized in Table
1. Remember that =, is always optimal in concave models.

(xar, AM(zpr)) OPTIMAL

(xar, Mz pr)) NON-OPTIMAL

LOCAL CANONICAL DYNAMICS AT Z s

node

node or spiral

THRESHOLD

coincides with xpr

Skiba point; typically # s

OPTIMAL CONTROL

no jump at the threshold

typically jumps at the threshold

CANDIDATE VALUE FUNCTIONS V

coincide with the true V'

typically, several V # V/

Table 1: Main properties of the unstable steady-state z,; and of the threshold

It is important to note that the optimal solution does not satisfy the first-
order conditions (4)-(6) not only at the Skiba point, but also in an (unknown)
neighborhood of this point. The exact size of the neighborhood can only be
determined numerically. For a global analysis of the truly optimal trajectories
about the Skiba point see Wagener (2003).



3 Thresholds and necessary conditions

In this section, we classify and compare the necessary conditions for different
types of thresholds separating optimal trajectories towards different stationary
solutions. For the considered class of problems P (zg), convexity or at least non-
concavity is usually considered to be the very property that causes the long-term
behavior to depend on the initial state, i.e., that leads to history dependence.
This history dependence due to ’increasing returns’, ’positive feedbacks’, etc.,
plays a central role in many policy related discussions, ranging among others
from the choice of a technology to differences in economic development. The
first subsection reviews this traditional road to multiple steady-states. The next
subsection draws attention to the fact that this is not the only route and that
a strictly concave framework does not rule out history dependent outcomes —
a result that may appear surprising and, in any case, has been largely over-
looked if not negated in influential economic literature. A separate subsection
is devoted to the comparison of these two different generating mechanisms for
multiple steady-states — the common denominator between the two being that
the existence of an unstable steady-state is a necessary condition for history
dependence. However, before comparing the two mechanisms, a subsection ex-
tends the analysis to the case of linear control models. The last subsection
cursorily addresses extensions to higher dimensional systems.

3.1 Convexity and non-concavity

The theoretical contributions of Skiba (1978) and Dechert and Nishimura (1983)
have sharpened our understanding of history dependent evolutions due to con-
vexities and non-concavities. Our presentation of their results is based on the
well known Ramsey model. In this model, u is consumption, F' the utility from
consumption, x the capital stock, and § is the capital depreciation rate. The
problem P (zg) takes the form:

u

sup /000 e " F(u)dt, (8)
st.z=f(z,u) =®(z) —u—dz, x>0, z(0) = o, 9)

where ® is the production function, with ®(0) =0 and ®, > 0. The first-order
conditions (4)-(6) yield the famous Ramsey rule:

D, =r+4. (10)

In the standard case of global diminishing returns, i.e. when ®,, < 0 for all
x, the Ramsey rule defines for ® satisfying the Inada conditions a unique non-
trivial (i.e., # 0) stable steady-state since @, is monotonically decreasing and
ranges over all positive real numbers.

Let now introduce a non-concavity by assuming that the production function
is locally convex, ®,, > 0 for x < Z, ®,, < 0 for z > Z, some T > 0. That is,



let assume increasing returns to scale for small capital stocks, z < Z. In that
case, the Ramsey rule allows for two steady-states xj; and z g, with xp); < zg.
The lower steady-state x,; lies in the convex domain of ®, xp; < Z. The upper
steady-state x g lies in the concave domain, zz > Z. Of these two steady-states,
the one in the convex domain, x s, is unstable. Although the pair (zar, A(zar))
satisfies the first-order conditions (4)-(6), it is not optimal. Thus, there exists a
Skiba threshold z° that separates two domains of attraction towards the non-
trivial steady-state xg respectively towards the trivial steady-state xz;, = 0.
That is, z(t) — zg for g > 27, and (asymptotically for F satisfying the Inada
conditions) x(t) — 0 for zg < z°. Typically, the Skiba threshold z* lies in a
neighborhood of the unstable steady-state x s, but does not coincide with it.

Locally increasing returns to scale underlie many economic models and are
arguably the most typical cause for convexity or non-concavity, see Section 5.
The economic sources of these increasing returns may among others arise from
fixed costs in public infrastructure and networks (telecommunications, e.g.).
Multiple steady-states are then possible if ’average’ costs are higher for small
than for large values of the stock. In the case of a telephone network, for
example, the stock is the number of users. If this number is small, the average
fixed costs per users will be typically much higher than if it were large.

3.2 Thresholds in concave models

The existing literature strongly suggests that the kind of convexities (or, at least,
non-concavities) presented in the last sub-section are necessary in order to obtain
multiple steady-states. To give a prominent example, Arthur (1989b) states that
increasing returns give rise to lock-ins and thus to history dependence, but that
the outcome is independent of history if technologies are subject to constant or
diminishing returns. The purpose of this subsection is to correct this overall
perception by showing that multiple steady-states and history dependence are
possible in strictly concave inter-temporal optimization problems. Two early
examples can be found in Kurz (1968) and Liviatan and Samuelson (1969).
Nonetheless, this point has been neglected in important parts of the subsequent
literature.
The following exposition draws on Feichtinger and Wirl (2000), who derive

the necessary condition:

dx

e fz + fuuz > 0 at a steady-state (11)
for the existence of an unstable steady-state and of a threshold within a concave
framework. This condition can only be satisfied if at a steady-state either:

r> f, >0 (12)
or: I
_ —Llux ) 1



Condition (12) requires ’growth’, i.e., f; > 0 , but below the rate of dis-
count. Thus, the standard Ramsey and the standard renewable resource models
do not allow for an unstable steady-state, see (10).

Condition (13) also requires growth, but this growth is now indirectly in-
duced by the optimal control. This requires that the mixed derivative character-
izing the state-control interactions be the proper magnitude and sign: H,, > 0
for f,, > 0, otherwise H,, > 0. In this regard, note that Kurz (1968) emphasizes
the ’growth’ condition (12). Specifically, he introduces a wealth effect into the
standard Ramsey model of optimal growth, that leads to an unstable steady-
state with 7 > f, > 0. On the other hand, while starting like Kurz with the
Ramsey framework, Liviatan and Samuelson (1969) argue that an externality is
not needed and rely on the control-state interactions (13) to insure the existence
of an unstable steady-state.

To demonstrate the usefulness and the simplicity of the Feichtinger-Wirl
approach, and in particular of the growth condition (12), consider the traditional
Ramsey model with a strictly concave production function ®. Assume, however,
that the utility function includes wealth effects as in Kurz (1968) and Wirl
(1994). In this formulation, the total utility F' is the sum of the utility from
consumption v = v (u) and of a wealth effect w = w (x) , that is F' = v(u)+w(z).
The Ramsey problem is then given by:

u

sup /000 e " (v(u) + w(z)) dt, (14)
st.x=®(z) —u—dz, z(0) = z(. (15)

The separable specification of F' and f rules out (13) as a source for an
unstable steady-state. Without the wealth effect, the Ramsey rule (10) must
hold at an optimal steady-state, implying that the alternative condition (12)
cannot be satisfied either. Indeed, the Ramsey rule requires ®, = r 4 9, while
(12) demands @, < r + §. The wealth effect, however, increases the stationary
capital stock, thus decreasing ®, at the stationary solution. Thus, the model
with wealth effect satisfies the growth condition r > % =&, — >0 for any z
between the traditional Ramsey rule, ®, = r+ 4, and the maximum sustainable
consumption, ®, = 4.

From the Hamiltonian:

H=v(u) +w(z) + A[®(z) — u — dx] (16)
one derives the first-order conditions for interior solutions:

Vy — A =0, (17)

A= (r+0— D)\ — w,. (18)

Using for w in the state equation (15) the optimal control u* determined by
the maximum principle (17), u* = C(\), Cx = 1/vy,, < 0, yields the canonical



equations in (z, \) sketched in the phase diagram of Figure 1. The downwards
sloping curve A\ = w,/(r + 6 — ®,) characterizes the {A = 0} isocline. The
{2 = 0} isocline is U-shaped with its minimum at the point where stationary
consumption is maximized (®, = §), and poles at the points of zero consump-
tion (x = 0 and ®(z) = dx) for v satisfying the Inada conditions, suggesting
the possibility of multiple steady-states. Straightforward numerical examples
confirm that multiple steady-states can indeed arise — see e.g. Hof and Wirl
(2000). Note that with the present model the unstable steady-state x,; is al-
ways optimal and coincides with the threshold.

A A

X
>
=
m
>
>
A
xvy

Figure 1: Phase diagram of the Ramsey model with wealth effects.

Some commentators have critically noted that conditions (11), (12) and (13)
are only necessary for multiple steady-states. However, so are the familiar condi-
tions of either convexity (with respect to the state) or lack of (joint) concavity.
For example, the model of saving and growth with habit formation of Caroll
et al. (2000) has a globally non-concave utility function*. Yet, the long-run

A This property is not explicitely pointed out by the authors.
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outcome is unique.

3.3 Models linear in the control

A model that is linear in the control, H,, = 0, has the same canonical equation
system than in the previous case, with the only modification that the optimal
control now depends discontinuously on the state and the co-states:

a
u=u(z,\) = singular arc  if H,=F,+ M,
i

0,

AV

where u and @ denote lower and upper bounds on the control, v € U = [u,a]. A
steady-state is determined by the intersection of the singular arc, H, = 0, with
the A = 0 isocline. The singular arc is defined by aving — —F,/ fu. Because of
H,, = 0, a concave Hamiltonian implies H,, = 0. Thus, A*"® is a constant and
the A = 0 isocline is monotonically declining. Consequently, multiple steady-
states are impossible in a concave model, see Feichtinger and Wirl (2000).

Yet, if there is a local convexity with respect to the state, multiple steady-
states are possible even in a separable model. Brock (1983) provides a nice
example in the context of lobbying and entry deterrence. Moreover, even the
milder condition of a lack of joint concavity allows for multiple steady-states
and history dependence. Although concavity with respect to the state implies
that the A = 0 isocline is monotonic, a singular arc depending on = may be
sufficient for the isoclines to intersect more than once. This can be the case
even if this dependence is linear, thus preserving concavity in « but not joint
concavity in x and u. To recognize it, consider the following simple example of
renewable resource extraction with an interaction in utility between the catch
u and the biomass x:

F = au+ Bz +~yux and f = g(z) —u, g(z) = (1 — ), (19)

where g(z) is the growth function for the biomass. The singular arc specifies
the co-state as a linear function of the state, \*"®* = a + vx. The differential
equation for the co-state is given by:

A=(r—gz)A—yu—B.

Substituting the control that ensures a steady-state, v = z(1 — z), into the
differential equation for the co-state and solving for A leads to:

B+ ag(m).

AMymo=0<= = p—

A steady-state is determined by the intersection of A [;_o= 0 with A*™#. For
a proper choice of the parameters, there can be two positive steady-states, see
Figure 2.

11
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Figure2: Phase diagram for (19)
at the parameter values r = 1.5, =0.5,8 =0.05,~v = 50.

3.4 Common features and differences

The economic implications of multiple steady-states, as we just discussed them,
appear largely independent of the question whether or not the underlying model
is concave. In any case, if the canonical system exhibits multiple steady-states,
there exists a threshold, that is, a (set of) critical values of the state = with
the following property: The optimal long-run outcome is different depending
on which side of the threshold the current state lies. In the case of a one-
dimensional system, it will be optimal to let = grow if its current value lies on
the one side, to let it decline if it lies on the other side of the threshold.
Nonetheless, there are important differences between the unstable steady-
states that arise in the concave and non-concave cases — recall Table 1. In order
to recognize them, let us first investigate the eigenvalues of the Jacobian of the
canonical equations. For the scalar state, scalar control optimal control model
considered here, the eigenvalues of this Jacobian are invariably real for a concave

12



Hamiltonian, see Feichtinger and Wirl (2000). Thus, in the concave case, any
unstable steady-state is a node. In the non-concave or convex cases, both a
node and a spiral are possible. That is, the type of local dynamics around the
unstable steady-states, node or spiral, does not allow for properly differentiating
between the concave and the non concave/convex cases. Nonetheless, much
of the economic literature on non-concave applications neglects the possibility
of nodes and assume, without verifying whether or not it is the case in the
particular model considered, that the unstable steady-states are spirals of the
canonical system.

Another error commonly encountered is that history dependence necessarily
involves a jump in the control at the threshold. This is not generally true.
A jump is impossible in the concave case, since the optimal control is unique.
Hence, a jump can occur only in non-concave and convex models.

Finally, the unstable steady-states are always optimal and invariably coincide
with the threshold in the concave case. In the non-concave and convex cases,
this is usually not true. The unstable steady-states are not optimal and do not
coincide with the thresholds, which are in that case Skiba points.

These last two points, the (non) existence of a jump and the coincidence
or non-coincidence of the threshold point with an unstable steady-state, can be
best illustrated in terms of the candidate value functions V' (z) defined in Section
2. Suppose there are three steady-states, x;, < ) < xg, with x; unstable.

In the case of a concave framework, any candidate value function V(z) is
globally optimal and unique — that is, it is the unique true value function V()
for the problem of interest, see the upper drawing in Figure 3. Therefore,
there is a unique control that satisfies the first-order conditions at the unstable
steady-state x 7. This control and (xar, A(zar)) are optimal.

In a non-concave or convex framework, at least two candidates for the value
function, say VL and V¥, exist, the first being associated with z; and the
second with zg. Since the problem of interest is a maximization, one should
choose for any given initial state xg the solution that yields the highest possible
payoff so that the (by definition unique) value function is given by V(z) =
sup {VE(x), VH(z)}. Therefore, if V¥(zg) < V*(x), then it is optimal to
choose the optimal control path that leads ultimately to xg, and if V% (zq) >
VE(20) the one leading to xz. At the value 2 where V¥ and V# intersect,
i.e. for which VL(2%) = VE(2%), one is indifferent between heading towards
xy, or towards xg. If indeed several candidate value functions do exist, the
threshold value z° will only incidentally coincide with the unstable steady-state
xpr. Moreover, (237, AM(2p)) will not be optimal. That is, the threshold in this
case is a Skiba point z°. This can be seen by substituting the stationary control
satisfying the first-order conditions associated with z,; into the steady-state
equation. The payoff at this steady-state falls short of the maximum, see the
lower drawing in Figure 3. Since the value functions cross at 2, the derivatives
of the value functions typically differ. But, according to the Hamilton-Jacobi-
Bellman equation, the optimal control depends on this derivative. Thus, it
jumps at z°.
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Figure 3: Comparing unique (concave) and multiple candidate value functions.



As mentioned earlier, concavity insures that there is a unique continuous
candidate value function and thus, that the policy function is continuous. But
what can be said about the continuity of the policy function in the non-concave
or convex cases? Matters are clear when the unstable steady-state is a spiral. A
simple inspection of the phase diagram shows that in that case the steady-states
cannot be connected by a continuous policy function. Interestingly enough, this
is not necessarily true when the unstable steady-state is a node. Consider the
relative adjustment cost framework in Feichtinger et al. (2001):

sup /000 e " u(z) — C(u

w x

)Jdt,

z=u—dz, z(0) = z(,

where v is the concave gross profit function, x the capital stock, v the gross
investment, C a convex cost function with the ratio of replaced capital as ar-
gument. This framework seems particularly well suited to trace out the rather

subtle points we are addressing here, because (a) it insures the existence of mul-

tiple steady-states (for the quadratic specification v = 2—12? and C = 14 (%)2 )

for example, the model admits three steady-states) and (b) the unstable steady-
state can fall into the concave or the non-concave domain and be either a node
or a spiral. In the case of an unstable node in the non-concave domain, Hartl
et al. (2003) present a numerical example with a phase diagram that allows
for a continuous connection between the steady-states, see Figure 4. Thus, for
specific values of the parameters, a unique candidate value function may indeed
exist. This point clearly requires further research. In any event, it suggests the
need for correcting the loose and often erroneous statements found in the lit-
erature that often assumes the existence of an unstable spiral without carrying
out the necessary eigenvalues analysis.
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Figure 4: Phase diagram for the relative adjustment cost framework,
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quadratic specification, v = ,r=1,6 =0.1.

3.5 Higher order systems

We consider only such two-dimensional systems, = € R?, that can be derived
from one-dimensional ones using the embedding approach developed in Fe-
ichtinger et al. (1994). With this approach, the originally one-dimensional
problem is transformed into a two-dimensional one by introducing control ad-
justments costs, denoted v. For simplicity’s sake, these costs are assumed here
to be quadratic:

sup / et (F(m,u) - %mﬂ) dt, (20)
0

u(t)eU
sit. & = f(z,u), (0) =xzo, & =0, u(0) = ug, (21)
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Since v = 0 at a steady-state, the original one-dimensional and the derived
two-dimensional problems both have the same steady-states.

An unstable steady-state of the original problem remains unstable for the
derived problem, since det(J) > 0 <= det(J) < 0, where J is the determinant
of the canonical equations system of the original, and J the Jacobian of the four-
dimensional canonical equations system of the derived problem. It is impossible
to stabilize an unstable system by introducing adjustment costs.

The converse is not true. Adjustment costs may destabilize an otherwise
stable steady-state, see Feichtinger et al. (1994). In particular, in the concave
case, adjustment costs can transform a stable steady-state into an unstable
steady-state or into a limit cycle (e.g. a Hopf cycle) if the growth condition
r > fr > 0 is satisfied. This may appear counter-intuitive, since at the original
stable steady-state no control adjustments are necessary, while at the derived
unstable one costly adjustments are permanently needed.

Thus, there are two possible causes for the existence of an unstable steady-
state in the derived problem: (a) the original problem has one; or (b) the original
problem has a stable steady-state that becomes unstable due to the adjustment
costs. The growth condition (11) must be satisfied in both cases. Thresholds
and history dependence arise only in the first case (a), that is, when the original
steady-state is unstable, det(J) > 0. As previously indicated, this is the case
if and only if det(J) < 0. The second road to instability (a) does not lead to
thresholds. N

The condition for an unstable steady-state, det(J) < 0, is equivalent to
one eigenvalue of the Jacobian being negative and the three others either being
positive or having positive real parts, see Dockner (1985). Hence, an unstable
steady-state remains conditionally stable along a one-dimensional manifold M
of initial conditions. This is illustrated in Figure 5, that shows a situation with
two (saddle-point) stable steady-states and an unstable one, indicated by dots.
The unstable steady-state can be reached from any initial condition along the
dotted line, that is, from any point on the manifold M. This extends by one
dimension the well-known property that in the one-dimensional case the system
remains at the threshold if it starts there. In a concave framework, unstable
steady-states are optimal, so that the manifold M is also the threshold that
separates the domains of attractions of the stable steady-states.

For a convex model, similarly to the one-dimensional case, the threshold is
given by the intersection of the candidate value functions associated with the
long-run outcomes. The projection of this intersection onto the state space, a
one-dimensional manifold, is the Skiba threshold that separates the domains of
attractions of the stable steady-states. This threshold can differ from the one-
dimensional manifold M, if the unstable steady-state and the corresponding
stationary control are not optimal.
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Figure 5: Thresholds in two-dimensional models.

Thus, the concept of a separating threshold between stable steady-states
defined for one-dimensional models extends naturally, and directly to the case

of two

dimensions. The main difference is that it is no longer a point, but a curve,

that separates the domains of attractions. Also, in the one-dimensional case, the
optimal policy is necessarily unique on the right and on the left of a Skiba point.
Two dimensional Skiba thresholds, by contrast, can separate several roads to

the sa:
the co

me equilibria. Finding the separating curve is fairly straightforward in
ncave case, but not trivial, since it is the stable manifold associated with

the unstable steady-state. If the model is not concave, its computation is even
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more involved, as shown in the next section.

4 Numerical Methods for Detecting Skiba Points

A rigorous study of a dynamic model with multiple steady-states requires locat-
ing the thresholds analytically. When these thresholds are Skiba points, there
is no appropriate ”local” equation to define them. In this case, the Skiba points
have to be determined numerically. In this section, we present three methods
that can be used to that purpose.

The first method uses the Hamilton-Jacobi-Bellman (HJB) equation to
solve the basic control problem P(zg) numerically. We summarize the corre-
sponding algorithm as applied by Semmler and Sieveking (1999). This algo-
rithm, due to Brooks Ferebee, implies three steps:

1. The first step consists in finding all the steady-states z;, i = 1,2, .... To
do so, compute the optimal feedback control u(z) that would keep = con-
stant over time, and define g(z) as g(z) := F(z,u(z)). To obtain the
steady-states x;, use the envelope condition for the continuous-time con-

trol problem P(xg):

r—afaa(z w) + g(z) =0, (22)

where g, (x) := 0g(z)/0x, and solve for the x;s. Remember that in a non-
concave problem not all (x;, A(x;))s are necessarily optimal.

2. In a second step, use the first-order conditions for a maximum w.r.t. u of
the right-hand-side of the stationary HJB-equation:

rV(z) =sup [F(z,u) + V(z)f(z,u)] (23)

to obtain, if possible, an explicit expression for V. (z) as a function of x
and V(z) :
Vao(z) = G(V (), ), (24)

where V(z) is the derivative of V(x) with respect to x. For each steady-
state z;, solve the differential equation (24) using as boundary condition:

V() = [ o)t = o) (25)
0

thus obtaining solutions V? of (24).

3. All the solutions obtained under step 2 satisfy the stationary HJB-equation,
that is, the necessary conditions for a value function. However, since they
were computed starting from steady-states x; that are not necessarily op-
timal, they do not automatically satisfy the sufficient conditions. In that
sense, they are just (local) candidates for the true value function. The
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Figure 1: Figure 6: Skiba point and global dynamics computed through the
HJB-equation.

sufficient conditions will be satisfied at any given 2 by a solution V' iff
Vi(z) > VI(z), all j # i. The true value function V(z) is found in a third
step by solving:

V(z) = supV". (26)

In other words, V(x) is defined piecewise by taking the upper envelope of the
different candidate value functions V?. The Skiba point(s) z° is (are) located
where the solution V? that defines the upper envelope changes, that is, at the
intersection of candidate solutions V?, see Fig. 6.

The main achievement of this algorithm is to find the location of the Skiba
points from the solutions of the HJB-equation. The outer envelope defined by
(26) determines the optimal global dynamics, that is, the history-dependent
solutions. Note that knowing V' permits to calculate the optimal control u(z) in
feedback form using the HJB-equation.

The second method is based on the maximum principle and the Hamil-
tonian. The necessary conditions provided by the Hamiltonian typically imply
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the dynamic properties shown in Figure 7.

Ay

\

X, X Xr X
Figure 7: Local dynamics about the candidates.

As stressed throughout this paper, the steady-state z, is usually a saddle-
point, x; is an unstable node or focus, and z g is again a saddle-point. There
are connecting orbits from z,; to z; and xg. Thus, in general, one can proceed
as follows to obtain the global dynamics from the Hamiltonian H(-) associated
with the problem P(zg).

1. Compute the steady-states ;.
2. Compute the local canonical dynamics about the steady-states ;.

3. Compute the integrals along the stable manifold from the right and from
the left of the middle unstable steady-state. The intersection of the two
integral curves is the Skiba point, as shown in Figure 8.
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Figure 8: Skiba points and global dynamics computed through the
Hamiltonian.
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The point where the two integral curves intersect is the Skiba point z°
because at this point the payoffs for going to z; are the same as for going to
zgr. At the middle candidate z,; there are typically two solutions satisfying the
first-order conditions for optimality. However, one is superior to the other. For
details, see Beyn et al. (2001), that also indicate how to compute thresholds in
higher dimensional systems.

This second method has been suggested by Skiba (1978), analytically further
pursued by Brock and Malliaris (1989) and Brock and Starret (1999), and nu-
merically implemented by Beyn et al. (2001), and by Haunschmied et al. (2003).
Although it is useful for computing the global dynamics, it has shortcomings.
The precision with which the Skiba point can be computed depends crucially on
the approximation of the connecting orbits, that is, of the stable manifolds for
the steady-states z; and z g as shown in Figure 8. In order to obtain the correct
integrals, the connecting orbits should be precisely computed on grid points in
the state space, starting from x; and moving left to z and right to zg. These
shortcomings, however, do not weigh heavily in one-dimensional problems.

A third method, dynamic programming, can also be employed to compute
the Skiba points. Using the continuous dynamic programming equation (7)is
equivalent to iterating on the value function. If the iteration is properly done
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and converges, the value thus obtained will be greater at a non-optimal steady-
state x; than the value of V resulting from applying the optimal feedback control
u(z;) that would keep x = x; constant. This allows to check the optimality of
the candidate by direct inspection.

Generically, the dynamic programming method is more efficient at finding
strong attractors (for example limit cycles) than at detecting thresholds or Skiba
points, see Sieveking and Semmler (1997). Strong attractors are not influenced
severely by numerical errors such as rounding inaccuracies. By contrast, such er-
rors can considerably impair the search for a Skiba point, as this search amounts
to numerically locate a point in the state space where the control u starts chang-
ing direction. The use of dynamic programming on a grid for the state and
control equations generates numerical rounding errors that pile up in the iter-
ation of the value function, and also impact the control w. To rely on dynamic
programming to numerically find the Skiba points, it is necessary to have trust-
worthy estimates of the associated error bound. The problems of discretization
and estimation of error bounds are discussed in Semmler and Sieveking (1999)
and Griine and Semmler (2002). This last paper demonstrates the usefulness
of using an algorithm with flexible grid size about the region where the Skiba
point is expected to lie in order to efficiently find thresholds through dynamic
programming.

4.1 A numerical example

In this sub-section, we use the model with relative adjustment cost of section

3.4. to summarily demonstrate the usefulness of the HJB-equation in computing

value functions and Skiba points. Details are given in Kato and Semmler (2001).
The present value problem to be solved is:

u

V(z) = sup /000 e "'F(z,u)dt (27)

= /0 T et (@) -~ o(®yar, (28)
st. & =u— oz, z(0) = xo, (29)

where v = = — %xQ is a concave gross profit function, x the capital stock, u

the gross investment, and C(%) = 3y (%)2 a convex cost function with relative
adjustment costs as argument. Thus:

F(z,u) :x—le— 17 (g)Q. (30)

Remember that the model admits three steady-states, and that the unstable
one can fall into the non-concave domain. This is the case for the parameter
values used in the numerical computations to be presented below, that is, v =
20, 6 =0.1 and r = 0.05.
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From (29) one recognizes immediately that at a steady-state u = dz. Sub-
stituting for u in (30) gives the function g(x) :

g(x) =2 — %xQ - %527. (31)
The stationary HJB-equation is:
rV(z) = sup[F(z,u)+ V(z)(u—dz)) (32)
B 15 1 /u\2
= Slip [x — 5% =57 (;) + Vo (2z)(u — dz)| . (33)

As previously stated, we can compute the value functions and thresholds in
three steps.
Step 1: Identify the steady-states z;. From the envelope condition:

OF (z,u) B
one obtains:
_ 1z,
u= p= x. (35)

Using the stationarity condition u = dz, see (29), this last equation defines three
steady-states:

2 = {L@ , (36)
that is, for the parameter values indicated above:
zr, =0, zp =0.112702, xr = 0.887298.
Step 2: Solve the stationary HIB equation (32) starting from above steady-

states. From the first order conditions for a maximum w.r.t. u of the RHS of
(32) one obtains:

u
Substituting (37) into (32) gives after some manipulations:
1) 0 r
L (2)? — 2y=V, 2L — oy~ 2y — =0.
Va(2)” =2y Va(2) + 2 =7 =2y 5 V(2) =0 (38)

Solving (38) in terms of V,(z) yields the ordinary differential equation in x:

7o 7o gl T z < xj;
Valz) = —+ \/(;)2 — @2y —r-2,5V(@) for o 2 (39)
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that is, the function G(V(z), z), see (24).
We solve this ODE using some iterative method starting at the three steady-
states x,x s, and xg, taking as initial values:

1 1
V(mi):;[xi—ﬁx?— 2752], T =T, Ty, IR (40)

Step 3: Find the global value function. The different solutions V¥, V™ and
V1 obtained by solving (39)-(40) are candidate value functions for the problem
of interest. Notice that (39) implies that starting at any steady-state x; there
are two possible solutions for the ODE and thus two candidate value functions.
The true value function is given by the upper envelope of these candidates:

V =sup [V, VM VH]. (41)
The candidate solutions V' and V% that define the upper envelope for the
problem of interest are shown in the left graph of Figure 9.° Thus, the candidate
value function V' starting at 2, = 0 coincides with the true value function until
it intersects the candidate VE at the Skiba point z° ~ 0.102. The candidate
VI is the (prolongation of the) true value function from this point on. The
Skiba point z° lies in the vicinity of zp; = 0.112702, but does not coincide with
it. There is a discontinuity in the optimal control at the Skiba point. This
discontinuity is clearly seen on the right graph of Figure 9, that is a blow up of
the left graph around z*.

v A VA
value function 0.0092
value function
0138 - 0.0067
0.0042 1
0.019
0.0017 .
optimal control
optimal control _
-0.100 ! : > -0.0870 — : s >
0 0.2 X 0.087 0.102 0.118 X

Figure 9: Value function and optimal control.

The figures confirm that the unstable steady-state xzj; = 0.112702 is not
optimal and do not coincide with z°. The other steady-states 27, = 0 and

- . - = - . . .

5The candidate value functions V£ and V¥ and the Skiba point where computed using a
dynamic programming algorithm with flexible grid size, see Griine and Semmler (2002) and
earlier remarks.
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xr = 0.887298, on the other hand, are optimal attractors. This last result, of
course, can be trivially inferred from the fact that our simple example admits
exactly three steady-states, namely, one unstable steady-state z,; between the
two stable steady-states z; and xg.

5 Economic applications

The recognition that multiple steady-states and history dependence can readily
arise in economic models is not new. However, for a long time, interest for
such multiple equilibria has been fairly subdued. To put it crudely, multiple
steady-states were politically incorrect in the 1960s and 1970s. Much effort was
therefore done by authors such as Brock (1973, 1974 e.g. ) to delineate sufficient
conditions that would exclude them. Only in the 1980s did dynamic models with
multiple steady-states and history dependence became fashionable, motivated
by the contributions of Skiba (1978) and Dechert and Nishimura (1983) and,
more importantly perhaps, by the influential but inexact assertion of Arthur
(1989, 1994b) that increasing returns to scale lead to outcomes highly sensitive
to initial conditions while decreasing returns ensure uniqueness.

Multiple equilibria and history dependence can occur in a wide variety of
formal frameworks. In the following, we give a brief review of economic models
that correspond formally to our basic control problem without externalities
P (zg), and that exhibit multiple equilibria.

5.1 Intertemporal optimization under convex-concave tech-
nologies

In the case of efficient economies the assumption of local non-concavities is by far
the most common cause for multiple steady-states. One of the simplest examples
is given by the one-dimensional models of capital accumulation with a convex-
concave production function that can be found, among others, in the theory
of economic development. In this context, the hypothesis of a convex-concave
production function is usually justified by the presence of social inputs such as
institutions or human capital. This hypothesis is responsible for the existence
of a Skiba point between a stable high and a stable low income steady-state.
Thus, these models can explain the coexistence of countries with low and of
countries with high per capita income as resulting solely from different initial
conditions. A widely used version of a convex-concave production function can
be found in Skiba (1978) and Azariadis and Drazen (1990).5 Similarly, multiple
steady-states can arise in a one-capital-good model if nonlinear adjustment costs
of investment are assumed as in Blanchard (1983), see Semmler and Sieveking
(1999). Multiple steady-states can also arise in a one-capital-good model when
the adjustment cost is a nonlinear function of the change of investment as, for
example, in Haunschmied et al. (2003). This last model is a two-state-variables

6 Econometric tests of such models with threshold effects are undertaken in Durlauf and
Johnson (1995) and Bernard and Durlauf (1995).
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model, significantly complicating the determination of the threshold, which is
now two-dimensional.

The nowadays popular idea that increasing returns to scale can be respon-
sible for multiple equilibria and history dependence can be traced in numerous
applications beyond the narrow core of economics. To name a few, Altmann
(2000) applies this idea to sociology, Cowan and Gunby (1996) to pest control,
and Krugman (1995) and Fujita et al. (1999) to economic geography.

5.2 Per capita variables

The use of ratios between primitive variables may lead to multiple equilibria.
Thus, Schelling (1967, 1973) assumes that the probability that an agent engages
into an illegal transaction increases with the total number of agents that engage
in the transaction. This results in three equilibrium points, two stable boundary
ones — corresponding respectively to a "clean” and to a ”dirty” society — and
an unstable interior one. In this context, Andvig (1991) introduces what he
calls a Schelling diagram to explain observed variations in corruption frequency,
and gives several other examples of multiple equilibria in the context of the eco-
nomics of crime. While these considerations are essentially static, Feichtinger et
al. (2002) obtain a similar structure of long-run equilibria in an intertemporal
model of law enforcement based on the model of Caulkins (1993). The level of
enforcement depends on the law enforcement effort relative to the size of the
population of offenders, that is, on the per capita enforcement effort — a mech-
anism that has been named enforcement swamping in the context of illicit drug
consumption — see Kleiman (1993), Caulkins et al. (2000), Tragler et al. (2001).
This dependency implies multiple steady-states, unstable nodes or focuses, and
Skiba thresholds. The result is fairly general. The use in the objective function
of ”per capita” quantities, generically defined as a control variable divided by a
state variable, usually generates a convexity of the Hamiltonian with respect to
the state and may easily lead to multiple equilibria. See Borisov et al. (2000),
Kort et al. (1998), and Feichtinger and Tragler (2002) for related works in the
context of law enforcement. Another interesting field of application of the ”per
capita” threshold generating mechanism are relative adjustment costs, see the
framework in Feichtinger et al. (2001) and Hartl and al. (2003). As mentioned
in Section 3.4, the thresholds in this model can fall in the concave as well in the
convex domain. The model thus provides a link between the different thresh-
old generating mechanisms. Formally related is Gould’s (1970) second diffusion
model, an early forerunner of a model exhibiting a Skiba point.

5.3 Regulatory economics

Dynamic convex-concave models with history dependent outcomes can also be
found in regulatory economics. Brock and Dechert (1985) investigate dynamic
Ramsey pricing, with the interesting result that the maintenance of a public
service — say, of a railroad network — depends on the initial conditions (pas-
senger trains almost disappeared in Australia and the United States but are
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omnipresent in Europe). Furthermore, the viability of a service does not imply
that a private firm will maintain the service. Profit maximization may imply lig-
uidation in the long-run although a viable and stable steady-state exists. These
properties stem from convex-concave functions, with the convexity resulting
from locally increasing returns. Along similar lines, Dechert (1984) considers
the familiar Averch-Johnson effect. Brock (1983) investigates a positive prob-
lem, lobbying, within a convex-concave setting. Their models assume (locally)
increasing returns to scale and thus support the familiar results of multiple
steady-states and Skiba points.

5.4 Models of addiction

In the context of addiction, the possible occurrence of thresholds (’cold turkeys’)
separating multiple steady-states was already noted by Becker and Murphy
(1988). However, the linear-quadratic framework used by these authors pre-
cluded their materialization. Not so in the more recent models of Orphanides
and Zervos (1998), who use a generalized non-linear framework with convex-
concave preferences. Here, three steady-states exist, the middle one being un-
stable. At the lower steady-state, there is no drug consumption. At the higher
one, there is addiction. Due to small shocks in drug consumption or to the
impact of enforcement policies, the system can converge towards the one or
the other of these last two steady-states. The threshold separating the optimal
trajectories leading to either the lower or the higher stable steady-state does
not necessarily coincide with the middle unstable one. For a recent related
contribution, see Gavrila et al. (2003).

5.5 Monetary policy models

Some recent monetary policy models exhibit similar properties, such as Ben-
habib et al. (1998). In this model, consumers’ welfare is affected positively by
consumption and cash balances and negatively by the labor effort and an infla-
tion gap from some target rates. The model admits an unstable steady-state
surrounded by two stable ones with high respectively low inflation rate. More-
over, there can be indeterminacy in the sense that any initial condition in the
neighborhood of one of the unstable steady-states is associated to an optimal
path. The same kind of dynamics is found in Greiner and Semmler (1999).

5.6 Renewable resources

Dynamic models of renewable resources with two state variables can easily ex-
hibit multiple steady-states. In the two-resources model of Sieveking and Semm-
ler (1997), the resource dynamics may have at least three steady-states depend-
ing on the type of interaction between the resources — competitive, predator-prey
or cooperative. Here again, the middle steady-state is unstable, while the outer
two are saddle-points. Similarly, multiple steady-states have been shown to exist
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in ecological management problems, see Lewis and Schmalensee (1982), Tahvo-
nen and Salo (1996), Tahvonen and Withagen (1996), and Rondeau (2001).
Recently, Brock and Starret (1999), Dechert and Brock (1999), 7 uses bifurca-
tion techniques to investigate the occurrence of thresholds in this ”shallow lake
model”. One of the interesting results of his very thorough investigation is that
an unstable steady-state can exist although there is no threshold — a possibility
that was previously totally ignored in the literature. While all above papers rely,
in the tradition of Skiba (1978), on a convex-concave maximization problem to
generate thresholds a few, e.g. Wirl (2003), use a strict concave framework to
obtain thresholds that others, such as Ayong Le Kama (2001), overlook.

5.7 Related models

The emergence of multiple equilibria in dynamic optimization models is even
more frequent if one relaxes the previously hypothesis that all potential external-
ities are properly internalized, if there are anticipations, and/or if one allows for
strategic interactions among multiple decision-makers — that is, if one considers
differential games rather than optimal control problems.

The externality route is, for example, followed in the endogenous growth
literature initiated by Lucas (1988) and Romer (1990) — see Chamley (1993),
Benhabib and Perli (1994), Xie (1994) and Ladron-de-Guevara et al. (1999),
Santos (1999), and many others. In these models, the multiple steady-states
provide an explanation for the possibility of different growth paths and the
occurrence of "poverty traps”. See Azariadis (1986), Marrewijk and Verbeek
(1983).

If there is an externality, rational agents will forecast its evolution. Depend-
ing upon the initial conditions, this can give rise to different expectations and
long-run outcomes. This point was first made in Krugman (1991). A recent ap-
plication to CO2 permits can be found in Liski (2001). Another related example
is Arthur’s (1994a) well-known El-Farrol problem.

In differential games, multiple feedback Nash equilibrium steady-states can
arise even in the case of a linear-quadratic game with one state variable. This
results from the fact that the differential equation implied by the Hamilton-
Jacobi-Bellman equation lacks a boundary condition. The multiplicity of equi-
libria was first noted in Tsutsui and Mino (1990). In an early application,
Dockner and Long (1993) argue that a proper choice of nonlinear strategies can
resolve in a non-cooperative way the tragedy of the commons. Less known is
the existence of multiple open-loop Nash equilibria, including the possibility of
limit cycles, see Wirl et al. (1997). Thus, differential games allow, in nonlinear
strategies in linear quadratic games, for an entire family of solutions. However,
there is no history dependence if one requires the strategies to be stable.

"Several of the previously mentioned "Shallow Lake" papers use a differential game frame-
work — Miéler et al. (2000), Wagener (2003) for instance.
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6 Conclusions

This paper has given a state-of-the art review of the conditions under which
multiple steady-states can arise in representative agents dynamic optimization
models. It has developed a typology of these conditions, clarified the properties
of steady-states and thresholds that may arise in the different cases, and pre-
sented numerical approaches to study the models’ global dynamics and Skiba
thresholds. One of its main contributions, furthermore, is to have stressed a
commonly ignored fact. Even if there is perfect foresight, no externalities, and
strict concavity (the economists’ workhorse in insuring uniqueness of optimal so-
lutions), history dependence is possible. Thus, it may be a much more pervasive
phenomenon in economics than usually assumed. Even in a very well behaved
world, the far future may be very different depending on the current conditions.
Since the latter are constantly subject to accidental events, otherwise similar
economies need not systematically take the same road.

The results presented here are valid for centrally planned or representative
agents economies. Partly, they are also valid for differential games. If there are
heterogenous agents, the relationship between individual optimal and aggre-
gate behavior can be different, and possibly more complicated, than described
here. While all evidence shows that taking into account agents’ heterogeneity in-
creases, if anything, the scope for multiple steady-states, their proper modeling
and analysis is the subject matter of future research.
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