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planning in dynamic optimization problems with the structure of a
standard one-sector growth model if agents have incomplete knowl-
edge about the production function. Agents know the output and
rate of return at the current capital stock and use an estimation of the
production function based on this knowledge to determine current con-
sumption. For standard utility functions without wealth-effects both
long and short planning horizons yield convergence to the steady state
– however at a faster rate than optimal –, or fluctuations around the
steady state, and in both cases, long horizon planning yields a policy
which locally at the steady state is closer to the optimal one than short
horizon planning. On the other hand, for preferences with wealth ef-
fects where the intertemporal optimal path exhibits fluctuations, long
horizon planning destabilizes the path and short horizon planning can
generate paths which are qualitatively closer to the optimal one and
yield higher discounted utility.
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1 Introduction

Problems of intertemporal optimization appear frequently in numerous fields
of economic activity and there is a large amount of economic research dedi-
cated to the analysis of such decision problems. Among the most prominent
intertemporal optimization models studied is the standard one sector growth
model introduced by Ramsey (1928) and extensively studied since. Typi-
cally, in the analysis of this type of model – which is a representative agent
model – it is assumed that the decision maker has complete knowledge about
all aspects of the problem, in particular about the production technology,
and that he solves the resulting problem using dynamic programming tech-
niques. It is well known that intertemporally optimal capital accumulation
paths are monotonous in the standard one-sector model. To explain em-
pirically observable fluctuations of capital stocks the standard model has to
be modified by either introducing stochastic shocks (see e.g. Kydland and
Prescott (1982)), the existence of wealth effects (see e.g. Majumdar and Mi-
tra (1994)) or non-concavities in the utility function (see e.g. Dawid and
Kopel (1997) ).

Recently, Noussair and Matheny (2000) have carried out laboratory ex-
periments with U.S. and Japanese subjects who had to determine their con-
sumption paths in the framework of the standard one-sector growth model.
They find systematic deviations from the intertemporally optimal paths in
all their experiments, in particular too fast approaches towards the long run
state and fluctuating paths. They also identify several heuristic decision
rules of the subjects which seem to be based on myopic short run consider-
ations rather than long horizon intertemporal optimization considerations.
This is also in accordance with findings by Rust (1994) who studies a large
set of different classes of dynamic optimization problems and compares the
optimal solutions of the problems with different data sets. He finds that espe-
cially for problems with a continuous decision space the explanatory power
of the optimal policies is very weak and argues that [C]onsiderations of
computational complexity may also force individuals to adopt simple heuris-
tic decision rules that might be very different than the optimal decision rules
calculated by dynamic programming.[. . . ] people make decisions similar to
the way a good AI program plays chess: it assigns more or less heuristic
weights to provide summary evaluations of board positions many moves in
the future, while using ”brute force” calculations to systematically evaluate
the consequences of intermediate moves. Certainly computational complex-
ity is an important motivation for heuristic decision making and the use of
short planning horizons (see e.g. Simon (1982)), however we will argue in
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this paper that in situations, where the decision maker is not able to fully
understand his environment and re-estimates a simplifying model of his en-
vironment every period, a case for short horizon planning can be made even
without taking into account costs of computational complexity1. The in-
tuitive argument here might be that if the decision maker’s model of his
environment is only locally correct, he might aggregate and magnify estima-
tion errors when trying to predict future payoffs over a long time horizon and
hence decrease rather than increase his actual payoff stream when planning
far into the future. The purpose of this paper is to make this intuition more
precise and characterize scenarios where it is valid and short run planning
actually can be beneficial for the decision maker even if computational costs
are ignored.

To do this we adopt the framework used in Day (2000). He considers
a standard one-sector growth model and assumes that the decision makers
do not have perfect knowledge about the production function but have to
rely on linear estimations based on the current rate of return. Furthermore,
the decision maker in Day’s model is not willing or able to solve the infinite
horizon dynamic optimization problem. Rather, he considers the effect of
current consumption on current utility and the next period capital stock
and uses a function to evaluate the future value of this capital stock (much
in the spirit of Rust’s quote above). However, this evaluation function is not
the value function generated by infinite horizon optimization but a heuristic
based on the assumption that the capital stock stays constant in the future.
Day (2000) calls this kind of behavior adaptive economizing and shows that
such behavior generates persistent oscillations in the standard one-sector
Ramsey model. In this paper we take this adaptive economizing model as a
representative example of a two-period horizon heuristic2 and pose the ques-
tion for which characteristics of the preferences and the production function
the capital accumulation paths generated by this heuristic are ’closer’ to the
intertemporally optimal ones than the ones generated by infinite horizon
planning every period. Whereas a comparison of global properties by ana-
lytical means is not feasible, locally at the steady states both the adaptive
economizing policy and the policy generated by infinite horizon optimization

1It should be pointed out here that in the experiments by Noussair and Matheny (2000),
the subjects did not have information about the actual functional form of the production
function but could only observe discrete points on the production function.

2Clearly, there are many other sensible heuristics with this planning horizon and this
choice is in some sense arbitrary. This is a general problem of the bounded rationality
approach and our motivation here is that this is a model which has been well analyzed in
the literature.

3



can be analytically characterized and compared. We do this for a general
class of production function estimation functions which include the linear
estimation functions considered in Day (2000). Furthermore, we present a
numerical example which illustrates the theoretical findings and shows that
adaptive economizing might indeed generate higher discounted utility values
than infinite horizon planning.

The paper is organized as follows. In section 2 we introduce the model
and the different types of strategies we consider. In section 3 we characterize
the steady states of the policies considered and compare the stability prop-
erties of the different policies in the absence of wealth effects in section 4.
We consider the model with wealth effects and discuss a numerical example
in section 5 and close with a discussion of the results in section 6. All proofs
are given in the Appendix.

2 General Framework

We consider an intertemporal optimization problem of the standard one-
sector growth model type. Whereas we will interpret the problem in the
growth theory framework it should be pointed out that models of this type
appear in several different fields of economics, like resource economics or
international economics (see e.g. Clark (1971) or the discussion in Noussair
and Matheny (2000)). Every period output is produced using the current
capital stock as the single input factor. Output can either be consumed or
reinvested. The objective is to choose a consumption path which maximizes
the discounted infinite horizon utility stream. Neglecting population growth
we express all variables in per capita terms. The capital stock at time t is
denoted by kt and ct is consumption. We have a continuous production
function f : IR+

0 7→ IR+
0 which is twice continuously differentiable on (0,∞)

with the standard properties

f ′(k) > 0, f ′′(k) < 0 ∀k > 0

f(0) = 0, limk→0 f ′(k) = ∞, limk→∞ f ′(k) = 0.
(1)

Capital accumulates according to

kt+1 = (1 − δ)kt + f(kt) − ct k ≥ 0, (2)

where δ is the depreciation factor of capital. It is assumed that investment
is irreversible and only current output can be consumed, i.e.: 0 ≤ ct ≤ f(kt).
Standard arguments show that there is a unique capital stock km > 0 with
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km = (1 − δ)km + f(km) which would be the limit point of the trajectory
of capital stocks without consumption. In what follows we only consider
the state space [0, km]. Per period utility may in general depend both on
current consumption ct and the current capital stock kt. The utility function
u(kt, ct), which maps IR+

0 ×IR+
0 into IR+

0 , is assumed to be twice differentiable
and everywhere satisfies the following standard conditions:

u1 ≥ 0, u11 ≤ 0, u2 > 0, u22 < 0

u11u22 − u2
12 ≥ 0, limc→0 u2(k, c) = ∞.

(3)

Utility of consumption increases both with current consumption and the
current capital stock, where the utility function is jointly concave in k and
c and strictly concave in consumption.

The purpose of this study is to analyze the implications of myopic deci-
sion making if only limited information about the environment is available.
Hence, the model we use has two central aspects. First, the decision maker
does not know the exact form of the production function but estimates it
based on observable information. Second, given this limited information, the
decision maker might either use a heuristic based on a simplified two-period
optimization problem or solve the infinite horizon problem.

Let us discuss these two aspects in more detail. Assume the decision
maker does not only not know the exact form of the production function
f , but also misses sufficient structural insight into the production process
to be able to determine the correct functional form of the production func-
tion. On the other hand, he can observe the output for the current capital
stock and the current rate of return. Using this (and maybe some additional
information about the production process he receives) he constructs an es-
timation of the production function based on some (in general incorrect)
internal model. We denote by f̂(k1; k) the estimated output for a capital
stock of k1 if the current capital stock is k. For analytical convenience we
assume that f̂ is twice differentiable with respect to k1, differentiable with
respect to k and concave in k1. Since current output and current rate of
return can be observed, this estimation function fulfills

f̂(k; k) = f(k), f̂ ′(k; k) = f ′(k) ∀k ∈ [0, km]. (4)

Furthermore, we assume that the estimated output always lies between the
actual output and the linear estimation based on the current rate of return:

f(k1) ≤ f̂(k1; k) ≤ f(k) + f ′(k)(k1 − k). (5)
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This assumption is for example satisfied by all piece-wise linear approxima-
tions based on information on rates of returns at different capital stocks3.

The set of all twice differentiable estimation functions satisfying (4) and
(5) is denoted by F ⊆ C2[0, km]. Given these assumptions, it is easy to
derive the following properties of the estimation function by total differen-
tiation of the equalities in (4) (f̂k denotes the derivative of f̂ with respect
to the current capital stock):

f̂k(k; k) = 0, f̂ ′
k(k; k) = f ′′(k) − f̂ ′′(k; k) ∀k ∈ [0, km] (6)

Assumption (5) on the other hand implies:

f ′′(k) ≤ f̂ ′′(k; k) ≤ 0 ∀k ∈ [0, km].

The two extreme cases of this class of estimation functions are on one
side the linear approximation

f̂(k1; k) = f(k) + f ′(k)(k1 − k),

which uses only information about current output and rate of return, and

f̂(k1; k) = f(k1), ∀k, k1 ∈ [0, km]

where the decision maker has complete knowledge about the production
function.

The use of (local) linear approximations of unknown non-linear relation-
ships is a widely used practice in many real world planning problems. For ex-
ample, the standard approach in production planning textbooks (e.g. Sipper
and Bulfin (1997)) is to assume constant productivity of capital in long-run
planning models although the existence of actual non-linearities is acknowl-
edged. The productivity parameter estimations are regularly revised in the
planning process as new information comes in. Our framework is supposed
to capture such an approach in a very stylized way.

In our model the decision maker ’s estimation of the production function
depends only on current output and rate of return, which implies that no
information aggregation about the production function over time occurs.
This clearly is a restriction we inherit by adopting the framework of Day
(2000). If we allow f̂ to depend not only on current output and rate of
return but also on a fixed or increasing number of past observations, this

3To fulfill the differentiability conditions such an estimation function should be approx-
imated by an f̂ where the kinks are ’smoothed’.
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adds a large amount of complexity to the model and the theoretical analysis
carried out below would hardly be feasible anymore. We will argue below
that with respect to the main question addressed, namely the comparison
of stability of long and short horizon planning, the additional qualitative
insights that could be gained by this added complexity are limited. This is
confimred in the numerical example discussed at the end of section 5 where
we consider the effects of a longer memory as well.

We consider two types of intertemporal decision making of agents with
such limited information about the production function: adaptive econo-
mizing and repeated infinite horizon optimization. As pointed out in the
introduction, adaptive economizing agents use a rather simple heuristic pro-
cedure with a two-period planning horizon. They attach a capital stock in
the subsequent period a value which is determined by the utility of a future
consumption stream which keeps the capital stock constant. Put more for-
mally, if the current consumption decision of an agent with capital stock k

yields a capital stock k1 in the subsequent period then the agent values this
capital stock with

Ψu(k1, c1),

where c1 is determined by the condition

(1 − δ)k1 + f̂(k1; k) − c1 = k1.

The parameter Ψ is called the ’future weight’. This heuristic evaluation
of future utility from capital stock k1 coincides with the actual discounted
utility stream if the capital stock stays at the level k1 for all future and the
per period discount factor is α = Ψ

1+Ψ . This leaves the agent with a rather
simple optimization problem:

max
0≤c≤f(k)

u(k, c)+Ψu((1−δ)k+f(k)−c, f̂ ((1−δ)k+f(k)−c; k)−δ((1−δ)k+f(k)−c))

(7)
Given our assumptions it is straight forward to check that there exists a

unique solution to this problem for every k. The consumption which solves
(7) is always positive, it might however be at the upper boundary f(k).
We denote by g(k; f̂ ) the solution of (7). Note that this solution of course
depends on the estimation function f̂ the agent uses. It is easy to see that
g(k; f̂ ) is continuous on [0, km]. The capital accumulation path generated
by such a behavior is given by

kt+1 = θ(kt; f̂) := (1 − δ)kt + f(kt) − g(kt; f̂). (8)

We call θ(·; f̂) the adaptive economizing policy of the agent.
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In what follows we will compare the capital accumulation paths gener-
ated by adaptive economizing with the intertemporally optimal paths and
with the paths generated if the decision maker chooses current consumption
every period after solving the infinite horizon optimization problem using
the current estimation function. Given that the agent uses the estimation
function f̂ and the current capital stock is k0, the dynamic optimization he
faces if he has an infinite planning horizon reads:

max{ct}
∑∞

t=0 αtu(kt, ct)

s.t. kt+1 = (1 − δ)kt + f̂(kt; k0) − ct

0 ≤ ct ≤ f̂(kt; k0) ∀t ≥ 0

k0 = k0, α ∈ [0, 1), δ ∈ [0, 1)

Standard arguments (see Stokey and Lucas (1989)) establish that this prob-
lem has a unique optimal path {c̃t}

∞
t=0 which is generated by a continuous

policy function τ̃(k; f̂ , k0), k ∈ [0, km]. Even if agents successfully solve this
dynamic optimization problem, the actual consumption path will in general
differ from {c̃t}

∞
t=0. The estimation of the production function will change

over time and therefore in this setup the intertemporally optimal path de-
termined at time zero does not solve all dynamic optimization problems the
decision maker faces in subsequent periods. Accordingly, the decision maker
has to solve the dynamic optimization problem with the current estimation
of the production function every period. The actual capital accumulation
path is given by:

kt+1 = τ̂(kt; f̂) := τ̃(kt; f̂ , kt). (9)

We call this procedure rolling infinite horizon planning and τ̂ the rolling
planning policy4. The solution of the standard dynamic optimization prob-
lem, where the exact form of f is known, is included in this class of models
as a special case. We denote the optimal policy function of the intertem-
poral optimization problem with complete information by τ and obviously
τ(k) = τ̂(k, f) ∀k. In what follows we denote by τ̃k the derivative of τ̃(·; f̂ , k)
with respect to k. From the definition of τ̂ we get:

τ̂ ′ = τ̃ ′ + τ̃k

4The concept of finite horizon rolling planning has been introduced in different frame-
works with complete information. Asymptotic optimality properties of such plans as the
planning horizon goes to infinity have been established for example in Goldmann (1968),
Kaganovich (1985) or Bala et al. (1991).
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Thus, the effect of a change of the current capital stock on the subsequent
capital stock can be divided into the effect of the change of the capital stock
on the policy function given the current estimation of f and the effect on the
estimation function f̂ . This distinction will turn out to be useful in order
to understand the stability properties of τ̂ . It should also be noted that the
policy function τ̃(.; f̂ , k) for a given k might yield infeasible paths. On the
other hand, the adaptive economizing and rolling planning policies θ and
τ̂ always generate feasible paths (of course current plans for future periods
might be infeasible but they will be revised later on).

In our treatment of stability issues in the presence of wealth effects it will
be useful to consider the reduced form rather than the primitive form of the
optimization problem (with complete information). Denote by v(kt, kt+1) :=
u(kt, (1− δ)kt + f(kt)− kt+1) the reduced from utility function and by Ω =
{(kt, kt+1)|kt ∈ [0, km], (1 − δ)kt ≤ kt+1 ≤ (1 − δ)kt + f(kt)} the set of
feasible sequences of capital stocks. Standard arguments establish that the
reduced form utility function is (jointly) concave, increasing in the first and
decreasing in the second argument and that Ω is convex and compact. The
optimization problem in the reduced form model then reads

max{kt}
∑∞

t=0 αtv(kt, kt+1)

s.t. (kt, kt+1) ∈ Ω ∀t ≥ 0.

k0 = k0

3 Steady States

It is well known that, in cases where utility depends only on current con-
sumption, the optimal policy of the one sector optimal growth problem has
two fixed points, namely one at zero and one at the capital stock where
α(1−δ+f ′(k)) = 1. However, if current utility of consumption is influenced
by the current capital stock, there might be multiple positive fixed points.
In the following proposition we show that the maps τ, τ̂ and θ always have
the same fixed points. In all the comparisons of optimal and adaptive paths
we assume that the future weight used in the adaptive economizing policy
is compatible with the discount factor used for the calculation of intertem-
porally optimal paths, i.e. Ψ = α

1−α
. Given this, we have

Proposition 1 The set of fixed points of τ(·), τ̂(·, f̂) and θ(·, f̂) in [0, km]
coincides for all f̂ ∈ F .
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Note that this Proposition does not imply that all fixed points of τ̃(·; f̂ ; k)
are fixed points of τ . It is easy to see, that τ̃ may indeed have additional
fixed points. This means that, whereas individuals might expect a certain
capital stock to be a steady state given their current estimation of the pro-
duction function f̂ , they always revise their opinion if they actually reach
this capital stock unless this capital stock is a steady state of the optimal
policy. Having established now that the set of fixed points of all three maps
under consideration are identical we will discuss the local stability properties
of these fixed points. We start this discussion with the simpler case without
wealth effects.

4 Local Stability without Wealth Effects

Let us first assume that current utility depends only on current consumption,
i.e. u(k, c) = u(c). In most studies of optimal growth or renewable resource
exploitation problems this assumption is made and the optimal policy in such
a framework has been studied extensively (see e.g. Stokey and Lucas (1989)).
It is well known that the optimal policy is strictly increasing on [0, km) and
thus convergence towards the unique positive steady state of the optimal
policy is always monotonous. On the other hand, it was demonstrated in Day
(2000) that adaptive economizing with a linear estimation of the production
function f̂ may lead to persistent fluctuations around the steady state and
chaotic behavior. Here we will show that such fluctuations are mainly due
to the linear approximation with short memory of the production function
and may also occur if agents do infinite horizon planning and use the policy
τ̂(k; f̂ ) every period.

To make the point that the fluctuations observed in Day (2000) are
caused by limited information about f rather than by the short planning
horizon, we first show that if the agents know the exact form of the produc-
tion function no fluctuations can occur even under adaptive economizing.
Like in the optimal solution the capital stock converges monotonously to-
wards the steady state:

Proposition 2 If current utility does not depend on the current capital
stock and the agents have complete information about the production func-
tion, then the adaptive economizing policy θ(k; f) is strictly increasing in k

on [0, km].

This proposition shows that if agents estimate the production function cor-
rectly there is no qualitative difference between the intertemporally op-
timal paths and those generated by adaptive economizing. Both paths
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monotonously approach the positive steady state. Of course the speed of
convergence towards the steady state in general differs.

If the estimation function f̂ does not coincide with f this monotonicity
property of θ is lost. Fluctuations of the adaptive economizing path around
the steady state are possible in such a case. On the other hand, under
such circumstances it is also questionable whether the rolling planning path
created by period–per–period dynamic programming solutions is stable. The
following proposition addresses these questions. We characterize the slope of
the adaptive economizing function at the steady state and compare it to the
slope of the optimal and rolling infinite horizon planning policy functions.

Proposition 3 Let k∗ denote the unique positive steady state of the optimal
policy and c∗ = f(k∗) − δk∗ the corresponding consumption. Then

θ′(k∗; f̂) ≤ τ̂ ′(k∗; f̂) ≤ τ ′(k∗) ∀f̂ ∈ F, (10)

where the first inequality is strict if f̂ ′′(k∗; k∗) < 0 and the second inequality
is strict if f̂ ′′(k∗; k∗) > f ′′(k∗). The slope of the adaptive economizing policy
at k∗ is negative if

f̂ ′′(k∗; k∗) > f ′′(k∗) −
(1 − α)u′′(c∗)

α2u′(c∗)

and the steady state is unstable with respect to the adaptive economizing
policy if

f̂ ′′(k∗; k∗) >
1

2
f ′′(k∗) −

(1 − α)u′′(c∗)

α2u′(c∗)
.

This proposition shows that there are two effects at work if we compare
adaptive economizing behavior with the intertemporally optimal solution
and that both effects go in the same direction leading to excess sensitivity
of consumption with respect to capital stock. First, the use of an estimation
of the production function which is ’less curved’ than the actual function
leads to a policy function which at the steady state is flatter than the opti-
mal policy regardless whether the agent solves an infinite horizon dynamic
optimization problem every period or uses the adaptive economizing heuris-
tics. Both the adaptive economizing and the rolling planning policy become
flatter the less curved f̂ is at the steady state and the slope might be-
come negative if f̂ ′′ is sufficiently close to zero. Second, excess sensitivity of
consumption is also induced by the use of an adaptive economizing policy
rather than the solution of the infinite horizon problem regardless of the
beliefs about the production function. If the adaptive economizing policy
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is compared to the optimal policy these two effects add up implying that
adaptive economizing paths approach the steady state faster than optimal
and might even overshoot and fluctuate.

Rolling infinite horizon planning stabilizes the capital accumulation path,
compared to rolling planning with a two period horizon, and leads to paths
which are qualitatively closer to the intertemporally optimal ones than the
adaptive economizing paths. Strictly speaking this holds only true if the es-
timated production function is not linear at k∗. For a linear f̂ the adaptive
economizing and rolling infinite horizon planning policy have the same slope
at k∗.

Corollary 1 For f̂ ′′ = 0 we have

θ′(k∗; f̂) = τ̂ ′(k∗; f̂) = 1 −
α2u′f ′′

(1 − α)u′′
.

Surprisingly, if a linear estimation of the production function is used,
the qualitative properties of the adaptive economizing policy and the rolling
planning policy – which of course needs significantly more computational
effort – completely coincide at least locally at the steady state. Together,
the previous proposition and this corollary imply that with linear estima-
tion functions the steady state might be unstable not only with respect to
adaptive economizing paths but also for infinite horizon planning. Simple
examples show that in the our formulation we might indeed have limit cycles
of paths generated by θ and τ̂ . It follows, however, from standard results in
growth theory and from the arguments in the proof of proposition 2 that for
any fixed estimation of the production function the policies τ̂ and θ have to
be monotonously increasing in the absence of wealth effects. Accordingly,
limit cycles of order k are only possible if the memory size is below k, and
the fact that we might have 2-cycles here is an implication of our assump-
tion of memory of length one5. The two main qualitative insights about the
de-stabilizing effects of the use of linearized estimation functions and the
de-stabilizing effect of adaptive economizing should however be robust with
respect to an increase in the memory size (see also the discussion in section
5).

The proposition also shows that fluctuations of the adaptive economizing
policy are facilitated by a large discount factor. In light of the well known
turnpike results (e.g. McKenzie (1986)) and research on complex optimal
paths (e.g. Mitra (1996), Nishimura and Yano (1996)) this might be surpris-
ing. Hoewever, it has to be realized that in our framework the incomplete

5We are grateful to a referee for pointing this out.
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information about f implies that the value function proxies used are in-
correct, both with adaptive economizing and infinite horizon planning, and
change from period to period. The larger the discount factor the larger is the
weight assigned to these proxies in the decision process and the more likely
it is that changes in the value function estimations translate into fluctations
of the derived decision.

Summarizing, we have shown that in the absence of wealth effects rolling
infinite horizon planning yields paths closer to the optimal ones than adap-
tive economizing with a two period planning horizon, as long as the estima-
tion function f̂ is not linear. For linear estimation functions the two policy
functions coincide locally around the steady state. These results and also
numerous numerical examples suggest that rolling infinite horizon planning
generates a larger discounted payoff stream than the adaptive economizing
policy if there are no wealth effects. Unfortunately, no general analytical
proof could be found for this conjecture.

5 Models with Wealth Effects

We now return to the general case and assume that current utility depends
on current consumption and the current capital stock. Even under standard
concavity assumptions the optimal policy in such problems may have several
positive fixed points and the optimal paths may exhibit persistent fluctu-
ations or chaotic behavior (see Majumdar and Mitra (1994)). It has also
been shown that the optimal policy at a positive steady state is downward
sloping if and only if the cross derivative of the reduced form utility function
v12(k

∗, k∗) = −u12(k
∗, c∗)− (1− δ + f ′(k∗))u22(k

∗, c∗) is negative (Benhabib
and Nishimura (1985)). Here we will concentrate on this case since the case
where the optimal policy is increasing at the steady state is qualitatively
very similar to the case without wealth effects we have discussed above6.
In the next proposition we show that for v12 < 0 the slope of the adaptive
economizing policy at the steady state is negative but larger than that of
the optimal policy if f̂ ′′ is sufficiently close to f ′′.

Proposition 4 Assume that v12(k
∗, k∗) < 0 at a fixed point k∗ of the opti-

mal policy. Then θ′(k∗; f̂) is negative for all f̂ ∈ F and θ′(k∗; f̂) is smaller
the larger f̂ ′′(k∗) is. The slope of the adaptive economizing policy is larger

6Note that in the absence of wealth effects the concavity of u implies v12 > 0.
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than that of the optimal policy if

f̂ ′′(k∗; k∗) < f ′′(k∗) −
v12(k

∗, k∗)

u2(k∗, c∗)
. (11)

An implication of this proposition is that, if the agents correctly estimate
the second derivative of the production function and τ ′ < 0, adaptive econo-
mizing always leads to a policy function which is less steep than the optimal
one. Hence adaptive economizing has a stabilizing effect and – as in the case
without wealth effects – implies that the steady state is reached faster than
optimal. In particular, this means that, in cases where the slope of the opti-
mal policy is only slightly smaller than -1, the steady state is unstable with
respect to the optimal policy whereas adaptive economizing with complete
knowledge about f leads to dampening fluctuations and (local) convergence
towards the steady state. If v12 < u2f

′′ such a scenario even occurs for the
linear estimation functions used in Day (2000). Thus, the assertion that
short horizon planning is more likely to lead to fluctuations and less stable
behavior than would be optimal does not necessarily hold in the general case
with wealth effects.

Concerning the rolling planning policy, we can derive the following result
about the slope of the function τ̃(·; f̂ , k∗) at a steady state k∗.

Proposition 5 Let k∗ be a steady state of τ with v12(k
∗, k∗) < 0. Then we

have
τ̃ ′(k∗; f̂ , k∗) ≤ τ ′(k∗) < 0 ∀f̂ ∈ F ,

where the inequality is strict if f̂ ′′(k∗) 6= f ′′(k∗).

If an agent would stick to his consumption policy determined using the
initial estimation of the production function the generated path of capital
stocks would also fluctuate and be less stable than the optimal one in a sense
that instability of k∗ with respect to τ always implies instability with respect
to τ̃ but not vice versa7. Under condition (11) this implies also that the slope
of τ̃ is smaller than that of θ and there are situations where τ̃ ′ < −1 < τ ′ <

θ′, which means that given the estimation f̂ adaptive economizing leads to a
path which is qualitatively similar to the intertemporally optimal path with
complete knowledge about the production function – namely convergence
towards the steady state in dampening fluctuations – whereas rolling infinite

7This statement makes only sense locally around an interior steady state since in general
there is no guarantee for feasibility of τ̃ and external bounds would have to be added to
convert it into a feasible strategy. Due to continuity such bounds are not binding locally
at the interior steady state.
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horizon planning yields expanding fluctuations and no convergence towards
the steady state.

The situation is less clear if we assume that agents every period solve the
dynamic optimization problem anew using their current estimation of the
production function. As pointed out above such behavior leads to a policy
function τ̂(k; f̂) and we have τ̂ ′ = τ̃ ′ + τ̃k. Concerning τ̃k at a steady state
k∗ we get from differentiating (12) with respect to k0:

τ̃k =
αu2(f

′′ − f̂ ′′)

−αu11 + α(1 − δ + f ′ − τ̃ ′)v12 + (α(1 − δ + f ′) − 1)u22 − αu2f̂ ′′
.

Whereas the numerator is always negative it is a priori not clear whether the
denominator is positive or negative. Contrary to the case without wealth
effects we are not able to give general analytical conditions which determine
whether the slope of τ̂ at k∗ is larger or smaller than that of τ . However,
below we provide an example where adaptive economizing gives a policy
function which is qualitatively closer to the optimal one than that created
by rolling infinite horizon planning and also yields a larger discounted utility.

Before we discuss the example it is helpful to get a better intuitive under-
standing of these results. Again, we like to distinguish between the effects
of adaptive economizing per se and that of incomplete information. Let us
first focus on the effect of adaptive economizing under complete information.
Assume that f̂ = f and consider a steady state k∗ with v12(k

∗) < 0. Fur-
thermore, consider a current capital stock with kt > k∗ but sufficiently close
to k∗ such that (1−δ)kt < τ(kt) < k∗. The optimal period t+1 capital stock
is defined by v2(kt, kt+1) + αW ′(kt+1) = 0, where W is the value function.
For adaptive economizing the condition reads v2(kt, kt+1) + αR′(kt+1) = 0,
where R(kt+1) = 1

1−α
v(kt+1, kt+1) is the adaptive economizing proxy of the

value function. Obviously, we have W (k) ≥ R(k) for all k with equality
at k∗, which implies that the proxy of the value function touches the ac-
tual value function from below at k∗. Accordingly, at least close to k∗ the
proxy is more concave than the actual value function. With other words,
by looking at a two-period rather than an infinite horizon, adaptive econ-
omizing induces an overestimation of the marginal effect on future utility
of a decrease of kt+1 below k∗. On the other hand, the current marginal
effect of an increase in period t consumption is evaluated correctly. Hence,
an adaptive economizer under-estimates the marginal effect of an increase
of current consumption on total discounted utility at capital stocks below
k∗ which implies that there is too little consumption and a capital stock
in [τ(kt), k

∗] is chosen. For capital stocks above k∗ this marginal effect is
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overestimated, too much is consumed and therefore θ(kt) ∈ [k∗, τ(kt)] if
τ(kt) > k∗. This explains nicely why under perfect information adaptive
economizing leads to faster approach towards the steady state than opti-
mal. It also explains why adaptive economizing under full information leads
to overshooting if and only if the optimal paths exhibit local overshooting
at the steady state. In particular, the arguments given above show that (11)
guarantees for v12(k

∗, k∗) > 0 that the slope of the adaptive policy is larger
than that of τ (which of course is positive in such a case).

Now let us consider the effect of incomplete information. For the es-
timated production function f̂(·; kt) we have f ′(k; kt) ≤ f ′(k) for k < kt

which should translate into Ŵ ′(k; kt) < W ′(k) for k < kt where Ŵ ′ denotes
the value function of the dynamic optimization problem with production
function f̂ . In other words, the ’less curved’ estimation of the production
function induces a ’less curved’ value function and an underestimation of
the marginal effect of a decrease in next period’s capital stock for k < kt.
By an analogous argument to that given in the previous paragraph this im-
plies that as long as τ(kt) < kt we have τ̂(kt) < τ(kt). It follows from the
discussion in the previous paragraph that under adaptive economizing the
underestimation of the marginal effect of a decrease of the capital stock is
less pronounced for τ(kt) < k∗. At least close to k∗ the proxy of the value
function, R̂(·; kt), is closer to the actual value function W than Ŵ (·; kt)
not only with respect to value, but, more importantly, also with respect
to slope. Here with infinite horizon planning the estimation errors are in-
deed magnified (as discussed in the introduction) and the linearization of
the production function estimate leads to a stronger lineraitzation of the
value function proxy than under adaptive economizing. The simplifying as-
sumption about future actions made in the adaptive economizing heuristic
leads to a better proxy of the value function, a less extreme underestimation
of the negative future effects of current consumption and to decisions that
are closer to the optimal ones than intertemporal optimization does. On
the other hand, if τ(kt) > k∗ the incomplete information about f induces
an overestimation of the negative marginal effect of current consumption on
discounted future utility. Here application of adaptive economizing leads to
a proxy for the value function R̂ that is again closer to W than Ŵ with
respect to value but further with respect to slope, which means that the
induced policy is further away from τ than τ̂ . This discussion is illustrated
in figure 1 where we depict W,Ŵ ,R and R̂. Note that at k∗ the graph of
R touches W from below and R̂ touches Ŵ from below at a state close to
k∗ (the fictitious steady state under the estimated growth function f̂). Fur-
thermore, R touches R̂ from below at kt. The slope of R̂ lies between that
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of Ŵ and W or even above that of W for kt < k∗ whereas it is even smaller
than that of Ŵ for k ∈ [k∗, kt]. This implies directly that with fluctuating
optimal policies (τ(kt) < k∗) adaptive economizing leads to decisions closer
to the optimal ones than τ̂ . On the other hand, for monotonous optimal
policies (τ(kt) ∈ [k∗, kt]) the outcome of adaptive economizing is further
away from τ(kt) than τ̂(kt).

Insert figure 1 here

The discussion above suggests that the exact specification of the way the
production function is estimated is not crucial for our qualitative findings.
The basic tradeoff pointed out should always exist as long as the optimal
policy exhibits fluctuations and the estimated production function is less
concave than the actual one.

Numerical examinations we have have carried out with different speci-
fications for utility and production functions confirm the conclusions from
this discussion. Indeed typically at steady states where v12 < 0 we have
τ̂ ′ < τ ′ which means that infinite horizon planning leads to a too slow con-
vergence towards the steady state or even destabilizes the fixed point. This
suggests that, in cases where capital and consumption are complementary
goods (u12 sufficiently large), adaptive economizing might generally lead to
long run behavior which is qualitatively closer to the optimal path than that
of the rolling planning policy and also yield larger discounted utility. We
close the section with the discussion of one such numerical example.

Example: We consider a model with wealth effects where the production
function is given by8

f(k) = 1 − (1 − x)β

and the concave utility function is of the Cobb-Douglas form

u(k, c) = kγcε, γ, ε ∈ (0, 1), γ + ε = 1.

Further, we choose δ = 1 – which implies km = 1 and β = 9, γ = 0.8, ε =
0.2. Simple calculations show that the cross derivative of the resulting re-
duced form utility v12 becomes negative for large capital stocks. We consider
the case where the discount factor is α = 0.175. The positive steady state
then is k∗ = 0.414 and at this steady state we have f ′′ − v12

u2
= 0.0026. This

8Although this production function violates limk→0 f ′ = ∞, this is irrelevant for the
results reported here since in our examples maximal consumption is never optimal.
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implies by proposition 4 that the adaptive economizing policy is flatter than
the optimal one for all estimation functions f̂ ∈ F . To illustrate this point,
we first show in figure 2 the optimal policy and the adaptive economizing
policy for f̂ = f .

Insert figure 2 here

The slopes at k∗ are τ ′(k∗) = −0.995 and θ′(k∗) = −0.539. As demonstrated
in figure 3 (initial value k0 = 0.43) both optimal and adaptive paths con-
verge in dampening fluctuations towards the steady state where the speed of
convergence is much faster for the adaptive economizing path, as predicted
by our theoretical findings.

Insert figure 3 here

In the other extreme case where the decision maker does not know the
production function and estimates it with a linear function f̂ we get figure
4.

Insert figure 4 here

We have to compare three different policies τ, τ̂ and θ. The slope of the adap-
tive economizing policy θ now is steeper than in the case with f̂ = f but
still flatter than the optimal policy (θ′(k∗) = −0.732). On the other hand,
the rolling planning policy is much steeper than the optimal one. Since the
slope is given by τ̂ ′(k∗) = −1.486 we even have to expect divergence of the
rolling horizon planning paths from the steady state. Looking at the capital
accumulation paths (again for k0 = 0.43) this is indeed confirmed (see figure
5). The optimal and the adaptive economizing paths converge towards the
steady state whereas the rolling infinite horizon planning path diverges from
the steady state and ends up in a period-four cycle oscillating around the
steady state.

Insert figure 5 here

The impression that the adaptive economizing path is qualitatively closer
to the optimal one than the rolling infinite horizon planning path is con-
firmed by looking at the discounted utility values generated by the three
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paths. Whereas the optimal policy generates utility of Uτ = 0.550376 we
get Uθ = 0.550373 and Uτ̂ = 0.550368. So, the adaptive economizing policy
generates a strictly higher discounted utility value where the difference is
quite significant in the sense that the difference to the optimal utility value
is less than half the gap created by rolling infinite horizon planning.

In figure 6 we depict the slopes of the three policies at the positive steady
state for discount factors between 0.1 and 1 (in this model there is a unique
positive steady state for all these discount factors) and a linear estimation
function f̂ . It can be clearly seen that infinite horizon planning always leads
to a steeper policy than optimal and therefore destabilizes the paths at the
steady state. On the other hand, two period planning destabilizes the paths
only for very small α and for the largest part of the range has a stabilizing
effect. The reason that τ ′ and τ̂ ′ get very close for large α is that the steady
state wanders to the right and for large k the production function is almost
linear which means that the deviation of f̂ from f in the neighborhood of
k∗ becomes very small.

Insert figure 6 here

One might wonder how important the rather strong assumption that
individuals only have a memory of length one is for the relatively bad per-
formance of rolling infinite horizon planning in our example. To check this
aspect we extend the framework considered so far and assume that indi-
viduals have a longer memory. First, we consider the case with memory of
length two. The prediction of the production function f̂ is now given by the
piece-wise linear estimation based on output values and rates of return in
the previous two periods. This means that at period t the estimation reads

f̂(k; {kt, kt−1}) = min[f(kt) + f ′(kt)(k − kt), f(kt−1) + f ′(kt−1)(k − kt−1)].

In such a setting the permanent significant changes in the estimation of the
production function, which occur in runs with oscillating trajectories and
memory length one, should be avoided. The policy functions under adaptive
economizing and rolling infinite horizon planning are mappings from [0, km]2

into [0, km] and we refrain from presenting graphical representations of these
mappings here. However, in figure 7 we show the three different trajectories
again for k0 = 0.43 but now for memory length two. Qualitatively the pic-
ture is similar to that of figure 5.
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Insert figure 7 here

The adaptive economizing path again converges –like the optimal one – in
dampening fluctuations towards the steady state whereas the rolling infinite
horizon planning path exhibits persistent fluctuations. Here no convergence
towards a cycle can be observed although the trajectory is quite close to
forming a period-two cycle. The changes of the production function estima-
tion along this trajectory are insignificant. The estimation functions used
between periods 20 and 40 are all within a range of 3 ∗ 10−4 where the
distances are measured according to the supremum norm. The discounted
utility generated by the rolling infinite horizon planning trajectory increases
to Uτ̂ = 0.550372 but is still slightly below that of the adaptive economizing
path.

Extending the memory to four periods has virtually no additional effect.
We get a a rolling infinite horizon planning trajectory very similar to that
with memory two (see figure 8) and exactly the same discounted utility of
Uτ̂ = 0.550372.

Insert figure 8 here

So, in this example the interplay between a ’linearized’ estimation of the
production function and the length of the planning horizon can be clearly
seen. If the decision maker indeed tries to plan over an infinite horizon this
leads to unstable trajectories even under (almost) constant production func-
tion estimations. As pointed out in the discussion preceeding this numerical
example, the reason for the instability is the strong ’linearization’ of the
value function proxy induced by the (piece-wise) linear estimation of the
production function under long horizon planning. Under the short horizon
heuristic this effect is less pronounced thereby generating a trajectory that
is qualitatively closer to the optimal one and also yielding higher discounted
utility. Hence, our theoretical results and also the economic intuition pro-
vided above is nicely confirmed.

6 Conclusions

This paper makes three basic points about the implications of short and long
horizon planning in one-sector growth models where individuals have incom-
plete information about the production function. First, in simple settings
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without wealth effects where the optimal policy is monotonous, fluctuating
paths, which have been observed in experiments, are rather due to the as-
sumption of short memory yielding repeated re-estimation of the production
function than to a short planning horizon. Second, in simple environments,
where the optimal policy is monotonous, long horizon planning is advanta-
geous even when the decision maker has an incorrect model of the world.
Third, in more complex settings, where fluctuating paths are optimal, the
profitability of long horizon planning is questionable if the model of the de-
cision maker does not exactly match the real world and he revises it over
time. We have argued that these results are due to the fact that, on the one
hand, depending on whether the future capital stock is below or above the
current one, ’linearized’ estimations of the production function lead to an
under- or overestimation of the future marginal effects of current consump-
tion whereas, on the other hand, adaptive economizing leads to an over- or
underestimation of these future marginal effects depending on whether the
future capital stock is below or above the steady state. Accordingly depend-
ing on whether the optimal path is monotonous or fluctuating at the steady
state the two effects might reinforce or weaken each other. Whereas we can
not show that generally adaptive economizing will do better than rolling
infinite horizon planning in scenarios with fluctuating optimal policies, we
have given an example where this is indeed true not only for a memory size
of one but also for longer memories. Taking into account the difference in
computational costs for the determination of the two policies, this makes a
strong case for short horizon planning in complex environments.
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Appendix

Proof of Proposition 1:

We first consider the steady states of τ̂ . Note that the concavity of u and
f̂ implies the concavity of the reduced form utility function v(kt, kt+1) =
u(kt, (1 − δ)kt + f̂(kt; k0) − kt+1) for all k0.
Together with the positivity of the state space and some standard assump-
tions which are fulfilled in our setup this implies that the Euler equation is a
sufficient and necessary optimality condition for optimal paths in our model
(see Stokey and Lucas, 1989). Accordingly, for a given f̂(·; k0) the equation

u2(k, (1 − δ)k + f̂(k) − τ̃(k)) − αu1(τ̃ (k), (1 − δ)τ̃ (k) + f̂(τ̃ (k)) − τ̃(τ̃ (k)))

−αu2(τ̃(k), (1 − δ)τ̃ (k) + f̂(τ̃(k)) − τ̃(τ̃ (k)))(1 − δ + f̂ ′(τ̃(k))
= 0

(12)
holds for all k and k0 where τ̃(k; f̂ , k0) > (1 − δ)k. A state k∗ is a steady
state of τ̂(·; f̂) if and only if k∗ = τ̃(k∗; f̂ , k∗). Thus, taking into account
(4), we see that k∗ is a steady state of τ̂(·; f̂) if and only if

u2(k
∗, f(k∗)−δk∗)−αu1(k

∗, f(k∗)−δk∗)−αu2(k
∗, f(k∗)−δk∗)(1−δ+f ′(k∗)) = 0.

Obviously this condition thus not depend on f̂ , which implies that the set
of fixed points of all maps τ̂(·; f̂) coincide and in particular coincide with
the set of fixed points of τ(·) = τ̂(·; f).

On the other hand, if we consider the adaptive economizing process the
agents have to maximize

max
k1∈[(1−δ)k,(1−δ)k+f(k)]

u(k, (1−δ)k+f(k)−k1)+
α

1 − α
u(k1, (1−δ)k1+f̂(k1)−k1).

The first order condition for this problem yields (after multiplication with
(1 − α)) that

(1 − α)u2(k, (1 − δ)k + f(k) − θ(k)) − αu1(θ(k), f̂ (θ(k)) − δθ(k))

−αu2(θ(k), f̂(θ(k)) − δθ(k))(f̂ ′(θ(k)) − δ)
= 0

(13)

has to hold if θ(k) ∈ ((1− δ)k, (1− δ)k+f(k)). Straightforward calculations
show that the concavity of u guarantees that (13) is indeed a condition for
a maximum. Using (4) this yields that a capital stock k∗ is a fixed point of
θ(.) if and only if it satisfies

(1−α)u2(k
∗, f(k∗)−δk∗)−αu1(k

∗, f(k∗)−δk∗)−αu2(k
∗, f(k∗)−δ(k∗))(f ′(k∗)−δ) = 0.
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Obviously, this is exactly the same condition as the condition for a fixed
point of the optimal policy and we have shown the proposition. 2

Proof of Proposition 2:

Rewriting the first order maximization condition (13) for a utility function
u(c) shows that

−(1 − α)u′((1 − δ)k + f(k) − θ(k; f̂)) (14)

+ αu′(f̂(θ(k; f̂); k) − δθ(k; f̂))(f̂ ′(θ(k; f̂); k) − δ)

= 0

for all k ∈ [0, km] where θ(k; f̂) < (1 − δ)k + f(k). Total differentiation of
this expression, yields after collecting terms

θ′
[

(1 − α)u′′((1 − δ)k + f(k) − θ) + αf̂ ′′(θ; k)u′(f̂(θ; k) − δθ)

+ (f̂(θ; k) − δ)2u′′(f̂(θ; k) − δθ)
]

− (1 − α)(1 − δ + f ′(k))u′′((1 − δ)k + f(k) − θ)

+ αf̂ ′
k(θ; k)u′(f̂(θ; k) − δθ + α(f̂ ′(θ; k) − δ)f̂k(θ; k)u′′(f̂(θ; k) − δθ)

= 0. (15)

Under our assumption that f̂(k1; k) = f(k1) ∀k1 we get

θ′(k; f) =
(1 − α)u′′(1 − δ + f ′)

(1 − α)u′′ + αf ′′u′ + α(f ′ − δ)2u′′
,

where we have omitted all functional arguments to keep the expressions as
simple as possible. Given our assumptions about f and u it follows that
θ′(k; f) > 0 ∀k ∈ [0, km] where θ(k) < (1 − δ)k + f(k). This shows that θ

is increasing on the set of capital stocks where adaptive economizing leads
to positive consumption. Since θ is also increasing on all intervals where it
coincides with (1 − δ)k + f(k) we have shown the proposition. 2.

Proof of Proposition 3: Consider first the adaptive economizing policy.
Taking into account that θ(k∗) = k∗, f̂k(k

∗, k∗) = 0, f̂ ′
k(k

∗, k∗) = f ′′(k∗) −

f̂ ′′(k∗; k∗) and α(1 − δ + f ′(k∗)) = 1 we get from (15)

θ′(k∗) =
(1 − α)u′′(c∗) − α2u′(c∗)(f ′′(k∗) − f̂ ′′(k∗; k∗)

(1 − α)u′′(c∗) + α2u′(c∗)f̂ ′′(k∗; k∗)
. (16)
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The inequalities θ′ < 0 and θ′ < −1 immediately yield the conditions given
in the second part of the proposition.

Next, we characterize τ̃ ′ and τ̃k. The Euler equation for the dynamic
optimization problem given the estimation function f̂(.; k0) reads

−u′((1 − δ)k + f̂(k; k0) − τ̃(k; f̂ , k0)) + α(1 − δ + f̂ ′(τ̃(k; f̂ , k0); k0))

× u′((1 − δ)τ̃ (k; f̂ , k0) + f̂(τ̃(k; f̂ , k0); k0) − τ̃(τ̃(k; f̂ , k0); f̂ , k0))

= 0. (17)

This equality has to hold for all values of k and k0 such that τ̃ (k; f̂ , k0) <

(1 − δ)k + f̂(k; k0). In particular it has to hold for all values of k and k0 in
the neighborhood of k∗. Total differentiation of this equality with respect
to k yields for k = k∗, k0 = k∗

−u′′ + ((1 + α)u′′ + α2u′f̂ ′′)τ̃ ′ − αu′′τ̃ ′2 = 0 (18)

The left hand side is positive for τ̃ = 0 and convex. For τ̃ = 1 the left
hand side gives α2u′f̂ ′′, which is non-positive and negative for non-linear
estimation functions. Therefore, this quadratic equation has two positive
solutions where one of them is in (0, 1]. Since the slope of the policy func-
tion at the unique steady state cannot be larger than one this shows that
τ̃ ′(k∗; f̂ , k∗) ∈ (0, 1). Furthermore, if f̂ ′′ increases the constant and the coef-
ficient of τ̃ ′2 in the quadratic equation are unaffected whereas the coefficient
of τ̃ ′ – which is negative – increases. This implies that the solutions of (18)
in [0, 1] increases as f̂ ′′ increases. Hence,

τ̃ ′(k∗; f̂ , k∗) > τ̃ ′(k∗; f, k∗) = τ ′(k∗)

for all f̂ with f̂ ′′(k∗; k∗) 6= f ′′(k∗). Total differentiation of (17) with respect
to k0 yields

τ̃k(k
∗; f̂ , k∗) =

α2u′(f ′′ − f̂ ′′)

u′′(ατ̃ ′(k∗; f̂ , k∗) − 1) − α2u′f̂ ′′
.

In order to compare θ′ with τ̂ ′ we rewrite (16) as

θ′(k∗) =
(1 − α)u′′

(1 − α)u′′ + α2u′f̂ ′′
+

α2u′(f ′′ − f̂ ′′)

(α − 1)u′′ − α2u′f̂ ′′
.

Since τ̃ ′ < 1 for f̂ ′′ < 0 and τ̃ ′ = 1 for f̂ ′′ = 0, the second term of this sum
is always smaller or equal than τ̃k where equality holds only for f̂ ′′ = 0. To

26



show that the first term is smaller or equal than τ̃ ′ we insert it for τ̃ ′ into
the left hand side of (18). This gives

−α5u′2u′′f̂ ′′2

((1 − α)u′′ + α2u′f̂ ′′)2
≥ 0,

again with equality only for f̂ ′′ = 0. This implies

τ̃ ′ ≥
(1 − α)u′′

(1 + α − 2ατ̃ ′)u′′ + α2u′f̂ ′′

with equality only for f̂ ′′ = 0 and we have shown the first of the two in-
equalities in (10). Finally, we show the second inequality in (10). By the
means of implicit differentiation we get from (18)

∂τ̃ ′

∂f̂ ′′
= −

α2u′τ̃ ′

(1 − α)u′′ + α2u′f̂ ′′
> 0

Differentiating τ̂ ′ with respect to f̂ ′′ gives after collecting terms

dτ̂ ′

df̂ ′′

=
d(τ̃ ′ + τ̃k)

df̂ ′′

=

(

1 +
∂τ̃k

∂τ̃ ′

)

∂τ̃ ′

∂f̂ ′′
+

α2u′(u′′(1 − ατ̃ ′) + α2u′f ′′) + αu′2(f ′′ − f̂ ′′)

(u′′(1 − ατ̃ ′) + αu′f̂ ′′)2

≤
∂τ̃ ′

∂f̂ ′′
+

α2u′

u′′(1 − ατ̃ ′) + αu′f̂ ′′

= α2u′

(

τ̃ ′

(1 + α − 2ατ̃ ′)u′′ + α2u′f̂ ′′
+

1

u′′(1 − ατ̃ ′) + αu′f̂ ′′

)

where the inequality in line 4 is strict if f̂ ′′ > f ′′. It is easy to see that the
bracket in the last line is strictly negative for τ̃ ′ ∈ [0, 1) and zero for τ̃ ′ = 1.
We know that τ̃ ′ = 1 holds only for f̂ ′′ = 0 and hence we have shown that

dτ̂ ′(k∗; f̂)

df̂ ′′(k∗; k∗)
< 0 ∀f̂ ∈ F.

Keeping in mind that τ ′(k∗) = τ̂ ′(k∗; f) establishes the second part of (10).
2
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Proof of Corollary 1:

The expression for θ′ can be obtained by inserting f̂ ′′ = 0 into (16). From
(18) it follows that τ̃ ′ = 1 for f̂ ′′ = 0 and using this value we get τ̃ =

− α2u′f ′′

(1−α)u′′ . 2

Proof of Proposition 4: In what follows we again omit all functional
arguments with the understanding that all expressions are evaluated at k∗ =
θ(k∗) = τ(k∗). Total differentiation of (13) with respect to k gives

−θ′(αu11 + α2(f ′ − δ)u12 + (1 − α + α(f̂ ′ − δ)2)u22 + αu2f̂
′′)

+(1 − α)u12 + (1 − α)(1 − δ + f ′)u22 − αu2f̂
′
k

= 0

Using (6) yields

θ′ =
−(1 − α)v12 − αu2(f

′′ − f̂ ′′)

αu11 + 2α(f ′ − δ)u12 + α(f ′ − δ)2u22 + (1 − α)u22 + αu2f̂ ′′
.

Obviously the numerator is positive if v12 < 0. Concavity of u implies that
the sum of the first three terms in the denominator is negative which implies
that the whole denominator is negative. Thus, θ′ < 0. It is further easy to
see from this expression that θ′ decreases with increasing f̂ ′′.

Total differentiation of the Euler equation (12) of the dynamic optimiza-
tion problem with perfect knowledge about f shows that the slope of the τ

at the steady state k∗ has to be a root of

ξf
op(x) := −αv12x

2−(αu11−α(1−δ+f ′)v12+α(1−δ+f ′)u12+u22+αu2f
′′)x−v12

Concavity of u implies that the coefficient of x is positive and hence this
function has two negative roots for v12 < 0. The larger of the two converges
to 0 as v12 goes to zero and since we know that τ ′ > 0 for v12 > 0 a continuity
argument establishes that τ ′ is given by the larger of the two negative roots
of ξf

op. Furthermore, we have

ξf
op(θ

′)

= −[αu11 + 2α(f ′ − δ)u12 + (1 − α + α(f ′ − δ)2)u22 + αu2f̂
′′]θ′

+2αv12θ
′ − αu2(f

′′ − f̂ ′′)θ′ − v12 − αv12θ
′2

= −[−(1 − α)v12 − αu2(f
′′ − f̂ ′′)] + 2αv12θ

′ − αu2(f
′′ − f̂ ′′)θ′ − v12 − αv12θ

′2

= −αv12(1 − θ′)2 + αu2(f
′′ − f̂ ′′)(1 − θ′)
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Since we know that θ′ < 0 condition (11) guarantees that ξf
op(θ

′) > 0. Thus,

θ′ either has to be larger than the larger root of ξf
op or smaller than the

smaller root of this function. We know that for f̂ ′′ = f ′′ and v12 = 0 the
slope of θ is zero which implies by continuity that θ′ > τ ′ if (11) holds. 2

Proof of Proposition 5:

Similar calculations to those in the proof of proposition 4 show that given
an estimation function f̂(·; k∗) the slope of the policy function which solves
the corresponding dynamic optimization problem has to be the larger root
of

ξf̂ ,k
op (x) := −αv12x

2−(αu11−α(1−δ+f ′)v12+α(1−δ+f ′)u12+u22+αu2f̂
′′)x−v12.

Since we know that τ̃ ′ < 0 for v12 < 0, we know that this function has
at least one negative root and thus the coefficient of x is negative. The
coefficient of x decreases with increasing f̂ ′′ whereas the constant and the

coefficient of x2 are unaffected. Thus the largest root of ξf̂ ,k∗

op is smaller than

that of ξf
op if f̂ ′′(k∗) > f ′′(k∗). 2
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Figure Captions

Figure 1: Comparison of the actual value function W (bold line), the
proxy for the value function used in adaptive economizing R (sparsely dot-
ted line), the estimated value function Ŵ (dotted line) and the estimated
proxy R̂ (solid line) in the neighbourhood of k∗.(linear estimation function
f̂(·; kt), f(k) = 1 − (1 − k)4, u(k, c) = k0.8c0.2, kt = 0.8, δ = 1, α = 0.6).

Figure 2: Comparison of the optimal (solid line) and the adaptive econ-
omizing (bold line) policy in a model with wealth effects and a correct es-
timation function f̂ = f . The production function is given by the sparsely
dotted line.

Figure 3: Comparison of the capital accumulation paths generated by the
optimal (solid line) and the adaptive economizing (bold line) policies given
in figure 2. Initial capital stock is k0 = 0.43.

Figure 4: Comparison of the optimal (solid line), the rolling planning (dot-
ted line) and the adaptive economizing (bold line) policy in a model with
wealth effects and a linear estimation function f̂ . The production function
is given by the sparsely dotted line.

Figure 5: Comparison of the capital accumulation paths generated by
the optimal (solid line), the rolling planning (dotted line) and the adap-
tive economizing (bold line) policies given in figure 4. Initial capital stock
is k0 = 0.43.

Figure 6: Comparison of the slope of the optimal (solid line), the rolling
planning (dotted line) and the adaptive economizing (bold line) policies at
the positive steady state for linear estimation functions f̂ and α ∈ [0.1, 1].

Figure 7: Comparison of the capital accumulation paths generated by the
optimal (solid line) policy, rolling planning (dotted line) and adaptive econo-
mizing (bold line) policies for a memory of two periods. Initial capital stock
is k0 = 0.43.

Figure 8: Comparison of the capital accumulation paths generated by the
optimal (solid line) policy, rolling planning (dotted line) and adaptive econ-
omizing (bold line) policies for a memory of four periods. Initial capital
stock is k0 = 0.43.
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