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Abstract:
We reformulate and extend the standard AS-AD growth model of the Neoclas-

sical Synthesis (Stage I) with its traditional microfoundations. The model still has
an LM curve in the place of a Taylor interest rate rule, exhibits sticky wages as well
as sticky prices, myopic perfect foresight of current inflation rates and adaptively
formed medium run expectations concerning the investment and inflation climate
in which the economy is operating. The resulting nonlinear 5D model of labor and
goods market disequilibrium dynamics avoids striking anomalies of the standard
model of the Neoclassical synthesis (Stage I). It exhibits instead Keynesian feed-
back dynamics proper with in particular asymptotic stability of its unique interior
steady state for low adjustment speeds and with cyclical loss of stability – by way
of Hopf bifurcations – when some adjustment speeds are made sufficiently large,
even leading to purely explosive dynamics sooner or later. In such cases downward
money wage rigidity can be used to make the dynamics bounded and thus viable.
In this way we obtain and analyze a baseline DAS-AD model with Keynesian feed-
back channels whose rich set of stability features is the source of business cycle
fluctuations. These outcomes of the model stand in contrast to those of the cur-
rently fashionable New Keynesian alternative (the Neoclassical Synthesis, Stage
II) that we suggest is more limited in scope.
———————
Keywords: DAS-AD growth, wage and price Phillips curves, real interest effects,
real wage effects, (in)stability, persistent business cycles, inflation and deflation.
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1 Introduction

In this paper we reformulate and extend1 the standard AS-AD growth dynamics of
the Neoclassical Synthesis (Stage I) with its traditional microfoundations, as it is for
example treated in detail in Sargent (1987, Ch.5). However our extension has not yet
replaced the LM curve with a now standard Taylor rule, as is done in the New Keynesian
approaches. The model has sticky wages as well as sticky prices, underutilized labor as
well as capital stock, myopic perfect foresight of current wage and price inflation rates
and adaptively formed medium run expectations concerning the investment and inflation
climate in which the economy is operating. The resulting nonlinear 5D model of labor
and goods market disequilibrium dynamics (with a traditional LM treatment of the
financial part of the economy) avoids the striking anomalies of the conventional model
of the Neoclassical synthesis, stage I. 2 Instead it exhibits Keynesian feedback dynamics
proper with in particular asymptotic stability of its unique interior steady state solution
for low adjustment speeds of wages, prices, and expectations. The loss of stability
occurs cyclically, by way of Hopf bifurcations, when these adjustment speeds are made
sufficiently large, even leading eventually to purely explosive dynamics.

Locally we thus obtain and prove the existence in general of damped, persistent or
explosive fluctuations in the rates of capacity utilization of both labor and capital,
and of wage and price inflation rates accompanied by interest rate fluctuations that
(due to the conventional working of the Keynes-effect) move in line with the goods
price level. Our modification and extension of traditional AS-AD growth dynamics, as
investigated from the orthodox point of view in Sargent (1987), thus provides us with
a Keynesian theory of the business cycle. This is so even in the case of myopic perfect
foresight, where the structure of the traditional approach dichotomizes into independent
supply-side real dynamics – that cannot be influenced by monetary policy – and a
subsequently determined inflation dynamics that are purely explosive if the price level
is taken as a predetermined variable. In our new type of Keynesian labor and goods
market dynamics we therefore can treat myopic perfect foresight of both firms and wage
earners without the need for the methodology of the rational expectations approach to
unstable saddlepoint dynamics.

If this model loses asymptotic stability it does so in a cyclical fashion, by way of so-called
Hopf-bifurcations, which may give rise to persistent fluctuations around the steady state.
However, this particular loss of stability (generated if some of the speed of adjustment
parameters become sufficiently large) is only of a local nature, since eventually purely
explosive behavior is the generally observed outcome, as can be checked by means of
numerical simulations. The considered model type therefore cannot be considered as
being complete in such circumstances, since some mechanism is required to bound the
fluctuations to economically viable regions. Downward money wage rigidity is the mech-
anism we use for this purpose. Extended in this way we therefore obtain and study a

1The essential idea of the model presented here was first proposed in Chiarella, Flaschel, Groh and
Semmler (2003) in a short response to the comments of Velupillai (2003)on our earlier work. Due to
brevity the model could not be investigated there.

2These anomalies include in particular saddle point dynamics that imply instability unless some
poorly motivated jumps are imposed on certain variables, here on both the price and the wage level.
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baseline model of the DAS-AD variety with a rich set of stability implications for the
various types of business cycle fluctuations that it can generate.

The dynamic outcomes of this baseline disequilibrium AS-AD model can be usefully con-
trasted with those of the currently fashionable microfounded New Keynesian alternative
(the Neoclassical synthesis, stage II) that in our view is more limited in scope, at least
as far as interacting feedback mechanisms and thereby implied dynamic possibilities are
concerned. This comparison reveals in particular that one does not always end up with
the typical (in our view strange) dynamics of rational expectation models, due to certain
types of forward looking behavior, if such behavior is coupled with plausible backward
looking behavior for the medium-run evolution of the economy. Furthermore, our dual
Phillips curves approach to the wage price spiral indeed performs quite well 3, when
estimated empirically and in particular does not give rise to the situation observed for
the New (Keynesian) Phillips curve, found to be completely at odds with the facts in
the literature 4. In our approach standard Keynesian feedback mechanisms are coupled
with a wage price spiral having a considerable degree of inertia, with the result that
these feedback mechanisms work as is known from partial analysis in their interaction
with the added wage and price level dynamics.

In the next section we briefly reconsider the fully integrated Keynesian AS-AD model
of the Neoclassical Synthesis, stage I, and show that it gives rise to an implausible
real/nominal dichotomy – with an appended nominal dynamics of purely explosive type
– when operated under myopic perfect foresight with respect to the price rate of inflation.
Furthermore, money wage levels must then be allowed to jump just as the price level, de-
spite the presence of a conventional money wage Phillips curve, in order to overcome the
observed nominal instability by means of the rational expectations solution methodology.
We conclude from this that this model type is not suitable for a Keynesian approach to
economic dynamics. In section 3 we then briefly discuss the New Keynesian approach
to economic dynamics and find there too, that it raises more questions than it helps
to answer. Section 4 therefore proposes a new and nevertheless traditional approach to
Keynesian dynamics proper, by taking note of the empirical facts that both labor and
capital can be under- or overutilized, that both wages and prices can be sticky and that
there are certain climate expressions surrounding the current state of the economy which
add sufficient inertia to the considered dynamics.

The resulting 5D model type is analyzed with respect to its stability features in section
5 and shown to give rise to local asymptotic stability when certain Keynesian feedback
chains – to some extent well-known to be destabilizing from a partial perspective –
are made sufficiently weak, including a real wage adjustment mechanism that is not so
well established in the literature. The presented informal analysis is made rigoros in
an appendix to this paper, where the calculation of the Routh-Hurwitz conditions for
the involved Jacobians is considered in great detail and where the occurrence of Hopf
bifurcations, i.e., in particular cyclical loss of stability is also proved. Section 6 of the

3See Flaschel and Krolzig (2004), Flaschel, Kauermann and Semmler (2004) and Chen and Flaschel
(2004).

4In this connection, see for example Mankiw (2001) and with much more emphasis Eller and Gordon
(2003), whereas Gali, Gertler and Lopez-Salido (2003) argue in favor of a hybrid form of the New
Phillips Curve.
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paper concludes and provides an outlook on numerical and empirical analyses of the
model of this paper to be undertaken in two companion papers to the present one.

2 Traditional AS-AD under myopic perfect foresight.

The ‘rational expectations’ supply side solution

In this section we briefly discuss the traditional AS-AD growth dynamics with prices
set equal to marginal wage costs, and nominal wage inflation driven by an expectations
augmented Phillips curve. Introducing myopic perfect foresight (i.e., the assumption of
no errors with respect to the short-run rate of price inflation) into such a Phillips curve
will alter the dynamics implied by the model in a radical way, in fact towards a globally
stable neoclassical growth dynamics with real wage rigidity and thus fluctuating rates of
under- or over-employment. Furthermore, price level dynamics no longer feed back into
these real dynamics and are now unstable in the large. The accepted approach in the
literature is then to go on from myopic perfect foresight to ‘rational expectations’ and
to construct a purely foreword looking solution (which incorporates the whole future of
the economy) by way of the so-called jump-variable technique of Sargent and Wallace
(1973). This represents in our view however not a reasonable solution to the dynamic
results obtained in this model type under myopic perfect foresight, as we shall show in
this paper.

The case of myopic perfect foresight in a dynamic AD-AS model of business fluctuations
and growth has been considered in very detailed form in Sargent (1987, Ch.5). The
model of Sargent’s (1987, Ch.5) so-called Keynesian dynamics is given by a standard
combination of AD based on IS-LM, and AS based on the condition that prices always
equal marginal wage costs, plus finally an expectations augmented money wage Phillips
Curve or WPC. The specific features that characterize this textbook treatment of AS-AD
are that investment includes profitability considerations besides the real rate of interest,
that there is not immediately a reduced form PC employed in this dynamic analysis,
and most importantly that expectations are rational (i.e., myopic perfect foresight in
the deterministic context). Consumption is based on current disposable income in the
traditional way, the LM curve is of standard type and there is neoclassical smooth
factor substitution and the assumption that prices are set according to the marginal
productivity principle and thus optimal from the viewpoint of the firm. These more
or less standard ingredients give rise to the following set of equations that determine
the statically endogenous variables: consumption, investment, government expenditure,
output, interest, prices, taxes, the profit rate, employment and the rate of employment
C, I, G, Y, r, p, T, ρ, Ld, V l and on this basis the dynamically endogenous variables: the
capital stock, labor supply and the nominal wage level K, L, w, for which laws of motion
are provided in the equations shown below.
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C = c(Y + rB/p − δK − T ) (1)

I/K = i(ρ − (r − π)) + n, ρ =
Y − δK − ωLd

K
, ω =

w

p
(2)

G = gK, g = const. (3)

Y
IS
= C + I + δK + G (4)

M
LM
= p(h1Y + h2(r0 − r)W ) (5)

Y = F (K, Ld) (6)

p
AS
= w/FL(K, Ld) (7)

ŵ
PC
= βw(V l − V̄ l) + π, V l = Ld/L (8)

π
MPF
= p̂ (9)

K̂ = I/K (10)

L̂ = n (= M̂ for analytical simplicity) (11)

We make the simplifying assumptions that all behavior is based on linear relationships in
order to concentrate on the intrinsic nonlinearities of this type of AS-AD growth model.
Furthermore, following Sargent (1987, Ch.5), we assume that t = (T−rB/p)/K is a given
magnitude and thus, like real government expenditure per unit of capital, g, a parameter
of the model. This excludes feedbacks from government bond accumulation and thus
from the government budget equation on real economic activity. We thus concentrate
on the working of the private sector with minimal interference from the side of fiscal
policy, which is not an issue considered in this paper. The model is fully backed-up by
budget equations as in Sargent (1987): pure equity financing of firms, money and bond
financing of the government budget deficit and money, bond and equity accumulation
in the sector of private households. There is flow consistency if the new inflow of money
and bonds is always accepted by private households. Finally, Walras’ Law of Stocks and
the perfect substitute assumption for government bonds and equities ensure that equity
price dynamics remain implicit. The LM–curve is thus the main representation of the
financial part of the model, which is therefore still of a very simple type at this stage of
its development.

The treatment of the resulting dynamics turns out to be not very difficult. In fact,
equations (8) and (9) imply a real–wage dynamics of the type:

ω̂ = βw(ld/l − V̄ l), ld = Ld/K, l = L/K.

From K̇ = I = S = Y − δK − C − G and L̇ = nL we furthermore get

l̂ = n − (y − δ − c(y − δ − t)− g) = n − (1 − c)y − (1 − c)δ + ct − g,

with y = Y/K = F (1, ld) = f(ld).
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Finally, by eq. (7) we obtain

ω = f ′(ld), i.e. , ld = (f ′)−1(ω) = h(ω), h′ < 0

Thus the real dynamics of the model may be expressed by the autonomous 2D dynamical
system:

ω̂ = βw(h(ω)/l − V̄ l)

l̂ = n − (1 − c)δ − g + ct − (1 − c)f(h(ω))

It is easy to show, see e.g. Flaschel (1993), that this system is well–defined in the
positive orthant of the phase space, has a unique interior steady–state, which moreover
is globally asymptotically stable in the considered domain. In fact, this is just a Solow
(1956) growth dynamics with a real–wage Phillips curve (real wage rigidity) and thus
classical underemployment (or over-employment dynamics if V̄ l < 1!). There may be a
full–employment ceiling in this model type, but this is an issue of secondary importance
here.

The unique interior steady state of the considered dynamics is given by

yo =
1

1 − c
[(1 − c)δ + n + g − ct] =

1

1 − c
[n + g − t] + δ + t

ldo = f−1(yo), ωo = f ′(ldo), lo = ldo/V̄
l

mo = h1yo, p̂o = 0, ro = ρo = f(ldo) − δ − ωol
d
o

Keynes’ (1936) approach is nearly absent in this type of analysis, which seems to be Key-
nesian in nature (AS–AD), but which – due to the neglect of short–run errors in inflation
forecasting – has become in fact of very neoclassical type. The marginal propensity of
consume, the stabilizing element in Keynesian theory, is still present, but neither invest-
ment nor money demand plays a role in the real dynamics we have obtained from eq.s
(1) – (11). Volatile investment decisions and financial markets are thus simply irrelevant
for the real dynamics of this AS–AD growth model when myopic perfect foresight on the
current rate of price inflation is assumed. What, then, remains for the role of Keynesian
”troublemakers“, investment efficiency and liquidity preference? The answer again is,
in technical terms, a very simple one:

We have for given ω = ω(t) = (w/p)(t) as implied by the real dynamics (due to the
I = S assumption):

(1 − c)f(h(ω)) − (1 − c)δ + ct − g = i(f(l) − δ − ωh(ω) − r + p̂) + n, i.e.

p̂ =
1

i
[(1 − c)f(h(ω) − (1 − c)δ + ct − g − n] − (f(l)− δ − ωh(ω)) + r = g(ω, l) + r

with an added reduced-form LM-equation of the type

r = (h1f(h(ω)) −m)/h2 + r0, m =
M

pK
.
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The foregoing equations imply

m̂ = l̂(ω) − g(ω, l) − ro +
m− h1f(h(ω))

h2

as the non-autonomous5 differential equation for the evolution of real money balances in
general and as the reduced form representation of the nominal dynamics.6 Due to this
feedback chain, m̂ depends positively on the level of m and in traditional approaches
the jump–variable technique needs to be implemented in order to tame such explosive
nominal processes; see Flaschel (1993), Turnovsky (1995) and Flaschel, Franke and
Semmler (1997) for details. Advocates of the jump–variable technique, therefore are
led to conclude that investment efficiency and liquidity preference only play a role in
appended purely nominal processes and this solely in a stabilizing way, though with
accelerating components in the case of anticipated monetary and other shocks. A truly
neoclassical synthesis.

By contrast, we believe that Keynesian IS-LM growth dynamics proper (demand driven
growth and business fluctuations) must remain intact if (generally minor) errors in in-
flationary expectations are excluded from consideration in order to simplify the analysis
of the dynamical system to be considered. A correctly formulated Keynesian approach
to economic dynamics and fluctuating growth should not give rise to a dichotomized
system with classical real and IS-LM inflation dynamics, here in fact of the most basic
jump variable type, namely

m̂ =
m − h1yo

h2
[p̂ = −

(M/K)o
1
p
− h1yo

h2
],

if it is assumed for simplicity that the real part is already at its steady state. This
dynamic equation is of the same kind as the one for the Cagan monetary model and can
be treated with respect to its forward-looking solution in the same way, as it is discussed
in detail for example in Turnovsky (1995, 3.3/4), i.e., the nominal dynamics assumed to
hold under the jump-variable hypothesis is then of a very well-known type.

However a first hint that the model is not a consistently formulated one and also not
consistently solved is given by the fact that nominal wages must here jump with the
price level p (w = ωp), since the real wage ω is now moving continuously in time
according to the derived real dynamics. The level of money wages is thus now capable of
adjusting instantaneously, which is in contradiction to the assumption of only sluggishly
adjusting nominal wages according to the assumed money wage PC.7 Furthermore, a
properly formulated Keynesian growth dynamics should – besides allowing for un- or
over-employed labor – also allow for un- or over- employment of the capital stock, at
least in certain episodes. Thus the price level, like the wage level, should adjust somewhat
sluggishly; see also Barro (1994) in this regard. We will come back to this observation
after the next section which is devoted to new developments in the area of Keynesian
dynamics, the so-called New Keynesian approach of the macrodynamic literature.

5Non-autonomous since the independent section of the (ω, l) block will feed into the RHS as time
function.

6Note that we have g(ω, l) = −ρo in the steady state.
7See Flaschel (1993) and Flaschel, Franke and Semmler (1997) for further investigations along these

lines.

7



3 New Keynesian AS–AD dynamics. A continuous-

time comparison

The baseline model of New Keynesian macrodynamics (see e.g. Gali (2000)) is, when
transferred to continuous time, basically given by the following set of equations, if myopic
perfect foresight is now assumed with respect to ’next period’s’ rate of inflation in a non–
stochastic environment:

Y
IS
= Y (r − p̂), Y ′ < 0

r − p̂
TR
= (r − p̂)0 + βr1(π − π̄) + βr2(Y − Ȳ ),

where

Ȳ
NAIRU

= Y ((r − p̂)0),

is the natural rate of employment, and

π̇
PC
= (1 − β)π − βp(Y − Ȳ ), π = p̂.

The model consists of an IS–curve, a Taylor interest rate policy rule (TR) and a Phillips
curve (PC), centered around the natural level dynamics of output Ȳ to which the steady
state level of the real rate of interest (r − p̂)0 is corresponding.

We have simplified the New Keynesian baseline model further by using the short–term
real rate of interest in the IS–curve in the place of a long–term one as in Gali (2000).
Furthermore we do not explicitly pay attention to marginal costs and substitution in
the formulation of the PC of the model. The IS– and the PC–curve are reduced–form
equations with a price–level oriented motivation for the PC–curve (indicated by the
subscript p of the adjustment speed). The model is far from being as explicit as the
model of the previous section, but can nevertheless be usefully compared with it with
respect to its dynamical features and its reliance on the jump-variable technique.

In the TR, here we have explicitly employed inflation- as well as output-gaps (as is often
done), and have assumed that these gaps drive a wedge between the actual real and the
steady state real rate of interest by the nominal interest rate steering of the monetary
authority. For the PC, we see that the discrete time formulation of the New PC of New
Keynesian Theory reduces in continuous time to the perfectly foreseen change in the rate
of inflation, up to a level term (1 − β)π, due to the discount factor on future inflation
that is employed in this type of approach. It therefore follows that a positive output gap
decelerates inflation in contrast to what more traditional Phillips curves and the data
suggest.

The employed TR can be reduced to (by insertion of the IS–curve):

g(r − p̂) := r − p̂ − βr2(Y (r − p̂) − Ȳ ) = (r − p̂)0 + βr1(π − π̄), i.e.

r − p̂ = g−1((r − p̂)0 + βr2(π − π̄)) =: h(π − π̄)

which is a well–defined representation, since g′ > 0 holds true. We thus get that the
actual real rate of interest is a well–defined and strictly increasing function of the inflation
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gap, due to the interest rate policy adopted and the working of the goods market.
Inserting this result into the New Keynesian PC gives

π̇ = −(1 − β)π − βp(Y (g(π − π̄) − Ȳ ) =: k(π), k′ > 0

with Y ′ < 0, g′ > 0. This latter equation implies a positive relationship between inflation
π and its rate of change if β is chosen sufficiently close to 1 (which is a meaningful
assumption for this comparison of the employed discount factor with the parameters
that characterize the real and the nominal dynamics).

Again, advocates of the jump–variable technique are able to tame the explosive dynamics
suggested by the above law of motion as in the preceding section, but now applied to the
rate of inflation π in the place of the price–level p (or real balances m). The price–level
is thus no longer allowed to jump in this type of approach (which is very reasonable from
the empirical perspective), but only its rate of change π, and this in the usual way, here
to its new steady state value in the case of unanticipated shocks, and through in time
accelerating adjustment to the new steady–state value in the case of anticipated shocks
(which have changed the steady state position of the economy). We thus have isolated
from the model the law of motion that drives price inflation, which now has to be used
to determine the dynamics of output and interest in addition.

In this New Keynesian dynamics we thus have an evolution of the inflation rate that
depends indeed again on the characteristics of the real sector, and that feeds back into
this sector according to the interdependent evolution of

Y = Y (r − π) and

r − π = h(π − π̄).

This is clearly an advantage in comparison to the dynamics considered in the preceding
section. However, the model of the preceding section is much more explicit and coherent
in its structural presentation, in particular with respect to long–run dynamics and the
role of wage formation in the employment and investment decisions of firms.

We are fairly skeptical as to whether the New PC – in particular due to its slope – is really
an improvement over traditional structural approaches which employ separate equations
for wage and price dynamics. We also notice that hybrid approaches with respect to
forward and backward looking behavior have now started to receive some attention by
researchers in this area. Based on these observations we are thus going to present an
alternative approach to New Keynesian macrodynamics that may be characterized still
as traditional, but of a mature Keynesian type (but in any case not really as ’new’).
This approach contains both forward and backward looking elements and allows for
persistence of inflation – without assuming adaptive expectations for the prediction of
future short run rates of inflation.

Remark: Assuming a dynamic adjustment rule for the nominal interest rate in the
place of the static one of this section, such as for example:

ṙ
TR
= βr1(ro − r) + βr2(π − π̄) + βr3(Y − Ȳ ),
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would imply together with

π̇
PC
= (1 − β)π − βp(Y − Ȳ ), π = p̂

a 2D saddlepoint dynamics to which the jump-variable technique can again be applied
in the usual way (if the interest rate smoothing parameter βr1 is not chosen too large).

4 Keynesian AS-AD Disequilibrium Dynamics: An

alternative baseline model

We have already observed that a Keynesian model of aggregate demand fluctuations
should (independently of whether justification can be found in Keynes’ General Theory)
allow for under- (or over-)utilized labor as well as capital in order to be general enough
from the descriptive point of view. As Barro (1994) for example observes IS-LM is (or
should be) based on imperfectly flexible wages and prices and thus on the consideration
of wage as well as price Phillips Curves. This is precisely what we will do in the following,
augmented by the observation that medium-run aspects count both in wage and price
adjustment as well as in investment behavior, here still expressed in simple terms by
the introduction of the concept of an inflation as well as an investment climate. These
economic climate terms are based on past observation, while we have model-consistent
expectations with respect to short-run wage and price inflation. The modification of the
traditional AS-AD model of section 2 that we shall introduce now thus treats expecta-
tions in a hybrid way, myopic perfect foresight on the current rates of wage and price
inflation on the one hand and adaptive updating of economic climate expressions8, with
exponential weighting scheme here especially, on the other hand.

In light of the foregoing discussion, we assume here two Phillips Curves or PC’s in the
place of only one. In this way we provide wage and price dynamics separately, both based
on a measure of demand pressure V l−V̄ l, V c−V̄ c, in the market for labor and for goods,
respectively. We here denote by V l the rate of employment on the labor market and by
V̄ l the NAIRU-level of this rate, and similarly by V c the rate of capacity utilization of
the capital stock and V̄ c the normal rate of capacity utilization of firms. These demand
pressure influences on wage and price dynamics, or on the formation of wage and price
inflation, ŵ, p̂, are here both augmented by a weighted average of cost-pressure terms
based on forward looking myopic perfect foresight and a backward looking measure of the
prevailing inflationary climate, symbolized by πm. Cost pressure perceived by workers
is thus a weighted average of the currently evolving price inflation p̂ and some longer-
run concept of price inflation, πm, based on past observations. Similarly, cost pressure
perceived by firms is given by a weighted average of the currently evolving (perfectly
foreseen) wage inflation ŵ and again the measure of the inflationary climate in which
the economy is operating. We thus arrive at the following two Phillips Curves for wage
and price inflation, which in this core version of the model are formulated in a fairly
symmetric way.

8Here with exponential weighting schemes.
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Structural form of the wage-price dynamics:

ŵ = βw(V l − V̄ l) + κwp̂ + (1 − κw)πm,

p̂ = βp(V
c − V̄ c) + κpŵ + (1 − κp)π

m.

Inflationary expectations over the medium run, πm, i.e., the inflationary climate in which
current inflation is operating, may be adaptively following the actual rate of inflation
(by use of some exponential weighting scheme), may be based on a rolling sample (with
hump-shaped weighting schemes), or on other possibilities for updating expectations.
For simplicity of exposition we shall make use of the conventional adaptive expectations
mechanism in the presentation of the full model below. Besides demand pressure we thus
use (as cost pressure expressions) in the two PC’s weighted averages of this economic
climate and the (foreseen) relevant cost pressure term for wage setting and price setting.
In this way we get two PC’s with very analogous building blocks, which despite their
traditional outlook will have interesting and novel implications. These two Phillips
curves have been estimated for the US-economy in various ways in Flaschel and Krolzig
(2004), Flaschel, Kauermann and Semmler (2004) and Chen and Flaschel (2004) and
found to represent a significant improvement over single reduced-form Phillips curves,
with wage flexibility being greater than price flexibility with respect to demand pressure
in the market for goods and for labor, respectively. Note that such a finding is not
possible in the conventional framework of a single reduced-form Phillips curve.

Note that for our current version, the inflationary climate variable does not matter for
the evolution of the real wage ω = w/p , the law of motion of which is given by:

ω̂ = κ[(1 − κp)βw(V l − V̄ l) − (1 − κw)βp(V
c − V̄ c)], κ = 1/(1 − κwκp)

This follows easily from the obviously equivalent representation of the above two PC’s:

ŵ − πm = βw(V l − V̄ l) + κw(p̂ − πm),

p̂ − πm = βp(V
c − V̄ c) + κp(ŵ − πm),

by solving for the variables ŵ − πm and p̂ − πm. It also implies the two across-markets
or reduced form PC’s given by:

p̂ = κ[βp(V
c − V̄ c) + κpβw(V l − V̄ l)] + πm,

ŵ = κ[βw(V l − V̄ l) + κwβp(V
c − V̄ c)] + πm,

which represent a considerable generalization of the conventional view of a single-market
price PC with only one measure of demand pressure, the one in the labor market.
This traditional expectations-augmented PC formally resembles the above reduced form
p̂-equation if Okun’s Law holds in the sense of a strict positive correlation between
V c − V̄ c, V c = Y/Y p and V l − V̄ l, V l = Ld/L, our measures of demand pressures on
the market for goods and for labor. Yet, the coefficient in front of the traditional PC
would even in this situation be a mixture of all of the β ′s and κ′s of the two originally
given PC’s and thus represent a composition of goods and labor market characteristics.
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With respect to the investment climate we proceed similarly and assume that this climate
is adaptively following the current risk premium ε = ρ− (r− p̂)), the excess of the actual
profit rate over the actual real rate of interest (which is perfectly foreseen). This gives9

ε̇m = βεm(ε − εm), ε = ρ + p̂ − r,

which is directly comparable to

π̇m = βπm(π − πm), π = p̂.

We believe that it is very natural to assume that economic climate expressions evolve
sluggishly in view of their observed short-run analogs. It is however easily possible to
introduce also forward looking components into the updating of the climate expressions,
for example based on the p∗ concept of central banks or potential output profitability
calculations. The investment function of the model of this section is now given simply
by i(εm) in the place of i(ε).

We have now covered all modifications needed to overcome the extreme conclusions of
the traditional AS-AD approach under myopic perfect foresight as they were sketched
in section 2. The model thus now simply incorporates sluggish price adjustment besides
sluggish wage adjustment and makes use of certain delays in the cost pressure terms of
its wage and price PC and in its investment function. In the Sargent (1987) approach
to Keynesian dynamics we have that βεm, βπm, βp are all set equal to infinity and Ūc

set equal to one, which implies that only current inflation rate and excess profitabilities
matter for the evolution of the economy and that prices are perfectly flexible so that full
capacity utilization, not only normal capacity utilization, is always achieved.

This brings us to one point that still needs definition and explanation, namely the
concept of the rate of capacity utilization that we will be using in this approach in
the presence of neoclassical smooth factor substitution, but Keynesian over- or under-
employment of the capital stock. Actual use of productive capacity is of course defined
in reference to actual output Y . As measure of potential output Y p we associate with
actual output Y the profit-maximizing output with respect to currently given wages and
prices. Capacity utilization V c is therefore measured relative to the profit maximizing
output level and thus given by10

V c = Y/Y p with Y p = F (K, Lp), ω = FL(K, Lp).

where Y is determined from the IS-LM equilibrium block in the usual way. We have
assumed in the price PC as normal rate of capacity utilization a rate that is less than
one and thus assume in general that demand pressure leads to price inflation, before
potential output has been reached, in line what is assumed in the wage PC and demand
pressure on the labor market. The idea behind this assumption is that there is imperfect
competition on the market for goods so that firms raise prices before profits become zero
on the margin.

9In our response to Velupillai (2003), see Chiarella, Flaschel, Groh and Semmler (2003), we have
used a slightly different expression for the updating of the investment climate, in this regard see the
introductory observation in section 6 below.

10In intensive form expressions the following gives rise to V c = y/yp with yp = f((f ′)−1(ω)) in terms
of the notation we introduced in section 2.
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Sargent (1987, Ch.5) therefore not only has myopic behavior throughout, but also always
the perfect – but empirically questionable – establishment of the condition that the price
is given by marginal wage costs. This ‘limit case’ of the dynamic AS-AD model of this
section is not a meaningful model, in particular since it is not at all closely related
in its dynamic properties to situations of very fast adjustment of prices and climate
expressions to currently correctly observed inflation rates and excess profitability.

There is still another motivation available for the imperfect price level adjustment we are
assuming instead. For reasons of simplicity, we here consider the case of a Cobb-Douglas
production function, given by Y = KαL1−α, solely. According to the above we have

p = w/FL(K, Lp) = w/[(1 − α)Kα(Lp)−α]

which for given wages and prices defines potential employment. Similarly, we define
competitive prices as the level of prices pc where

pc = w/FL(K, Ld) = w/[(1 − α)Kα(Ld)−α]

holds true. From these definitions we get the relationship:

p

pc
=

(1 − α)Kα(Ld)−α

(1 − α)Kα(Lp)−α
= (Lp/Ld)α

Due to this we obtain from the definitions of Ld, Lp and their implication Y/Y p =
(Ld/Lp)1−α an expression that relates the above price ratio to the rate of capacity uti-
lization as defined in this section:

p

pc
= (

Y

Y p
)

−α
1−α or

pc

p
= (

Y

Y p
)

α
1−α = (V c)

α
1−α .

We thus get that (for V̄ c = 1) upward convergence of the rate of capacity utilization
to full capacity utilization is positively correlated with downward convergence of actual
prices to their competitive value and vice versa. In particular in the special case α = 0.5
we would get as reformulated price dynamics the formula:

p̂ = βp(pc/p − 1) + κpŵ + (1 − κp)π
m.

which to some extent resembles the New Phillips curve of the New Keynesian approach
as far as the reflection of demand pressure forces are concerned. Price inflation is thus
increasing when competitive prices (and thus marginal wage costs) are above the actual
ones and decreasing otherwise (neglecting the cost-push terms for the moment). This
shows that our understanding of the rate of capacity utilization in the framework of
neoclassical smooth factor substitution is related to demand pressure terms as used in
New Keynesian approaches11 and thus further motivated in its adoption. Actual prices
will fall if they are above marginal wage costs to a sufficient degree. However, our
approach suggests that actual prices start rising before marginal wage costs are in fact

11Though we have shown that it is a price gap, the comparison of actual prices and marginal wage
costs, that enters the price PC []see also Powell and Murphy (1997) for a closely related approach, there
applied to an empirical study of the Australian economy].
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established, i.e. in particular, we have that actual prices are always higher than the
competitive ones in the steady state.

We note that the steady state of the now considered Keynesian dynamics is the same as
the one of the dynamics of section 2 (with εm

o = 0, V c
o = V̄ c, V l

o = V̄ l, yp
o = yo/V

c
o , lpo =

f−1(yp
o) in addition). Furthermore, the dynamical equations considered above have of

course to be augmented still by the ones that have remained unchanged by the modifica-
tions just considered. The intensive form of all resulting static and dynamics equations
is presented in the next section where we start the stability analysis of the baseline model
of this section.

The modifications of the AS-AD model of section 2 proposed in the present section imply
that it no longer dichotomizes and that the jump-variable technique can no longer be sen-
sibly applied. Instead, the steady state of the dynamics is locally asymptotically stable
under conditions that are reasonable from a Keynesian perspective, loses its asymptotic
stability by way of cycles (by way of so-called Hopf-bifurcations) and becomes sooner or
later globally unstable if (generally speaking) adjustment speeds become too high, i.e.,
in particular approach the limit case considered section 2.

We no longer have state variables in the model that can be considered as being not
predetermined, but in fact can reduce the dynamics to an autonomous system in the
five state variables real wage, real balances per unit of capital, full employment labor
intensity, and the expressions for the inflation and the investment climate. These and all
other dynamic state variables of the model move continuously in time. Thus if the model
is subject to explosive forces, it requires extrinsic nonlinearities in economic behavior
that would come into affect far off the steady state and bound the dynamics to an
economically meaningful domain in the 5D state space. Asada, Chiarella, Flaschel and
Hung (2004) provide details of such an approach and its numerical investigation.

Summing up we can state that we have arrived at a model type that is much more com-
plex, but also much more convincing, that the labor market dynamics of the traditional
AS-AD dynamics of the Neoclassical Synthesis (Stage I). We now have 5 in the place of
only three laws of motion, which incorporate myopic perfect foresight without any sig-
nificant impact on the resulting Keynesian dynamics. We can handle factor utilization
problems both for labor and capital without assuming a fixed propositions technology,
i.e., in AS-AD growth with neoclassical smooth factor substitution. We have sluggish
wage as well as price adjustment processes with cost pressure terms that are both for-
ward and backward looking, and that allow for the distinction between temporary and
permanent inflation shocks. We have a unique interior steady state solution of (one
must stress) supply side type, generally surrounded by business fluctuations of Keyne-
sian short-run as well las medium-run type. Our DAS-AD growth dynamics therefore
exhibits a variety of features that are much more in line with a Keynesian understand-
ing of the features of the trade cycle than is the case for the conventional modelling of
AS-AD growth dynamics.

Taken together the model of this section consists of five laws of motion for real wages,
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real balances, the investment climate, labor intensity and the inflationary climate:

ω̂ = κ[(1 − κp)βw(ld/l − V̄ l) − (1 − κw)βp(y/yp − V̄ c)] (12)

m̂ = −p̂ − iεm (13)

ε̇m = βεm(ρ + p̂ − r − εm) (14)

l̂ = −iεm (15)

π̇m = βπm(p̂ − πm) (16)

with p̂ = κ[βp(y/yp(ω) − V̄ c) + κpβw(ld/l − V̄ l)] + πm.

We here already employ reduced-form expressions throughout and consider the dynamics
of the real wage, ω, real balances per unit of capital, m, the investment climate εm, labor
intensity, l, and the inflationary climate, πm on the basis of the simplifying assumptions
that natural growth n determines also the trend growth term in the investment function
as well as money supply growth. The above dynamical system is to be supplemented by
the following static relationships for output, potential output and employment (all per
unit of capital) and the rate of interest and the rate of profit:

y =
1

1 − c
[iεm + n + g − t] + δ + t (17)

yp = f((f ′)−1(ω)), F (1, Lp/K) = f(lp) = yp, FL(1, Lp/K)) = f ′(lp) = ω (18)

ld = f−1(y) (19)

r = ro + (h1y − m)/h2 (20)

ρ = y − δ − ωld (21)

which have to be inserted into them in order to obtain an autonomous system of 5
differential equations that is in a natural or intrinsic way nonlinear. We note however
that there are many items that reappear in various equations or are similar to each
other implying that stability analysis can exploit a variety of linear dependencies in the
calculation of the conditions for local asymptotic stability. This dynamical system will
be investigated in the next section in somewhat informal terms and, with modifications,
in the section thereafter in a rigorous way.

5 Feedback-guided β-Stability Analysis

In this section we illustrate an important method to prove local asymptotic stability
of the interior steady state through partial motivations from the feedback chains that
characterize this baseline model of Keynesian dynamics. Since the model is an extension
of the standard AS-AD growth model we know from the literature that there is a real rate
of interest effect typically involved, first analyzed by formal methods in Tobin (1975),
see also Groth (1992). There is the stabilizing Keynes-effect based on activity-reducing
nominal interest rate increases following price level increases, which provides a check to
further price increases. Secondly, if the expected real rate of interest is driving investment
and consumption decisions (increases leading to decreased aggregate demand), there is
the stimulating (partial) effect of increases in the expected rate of inflation that may

15



lead to further inflation and further increases in expected inflation under appropriate
conditions. This is the so-called Mundell-effect that works opposite to the Keynes-effect,
but also through the real rate of interest rate channel as just seen.

The Keynes-effect is the stronger the smaller the parameter h2 characterizing the interest
rate sensitivity of money demand becomes, since the reduced-form LM equation of our
model simply reads:

r = ro + (h1y − m)/h2, y = Y/K, m = M/(pK).

The Mundell-effect is the stronger the faster the inflationary climate adjusts to the
present level of price inflation, since we have

π̇m = βπm(p̂ − πm) = βπmκ[βp(V
c − V̄ c) + κpβw(V l − V̄ l)]

and since both rates of capacity utilization depend positively on the investment climate
εm which in turn is driven by excess profitability ε = ρ + p̂ − r. Excess profitability –
as shown – in turn depends positively on the inflation rate and thus on the inflationary
climate as the reduced-form price Phillips curve shows in particular.

There is a further potentially (at least partially) destabilizing feedback mechanism as
the model is formulated. Excess profitability depends positively on the rate of return on
capital ρ and thus negatively on the real wage ω. We thus get – since consumption does
not depend on the real wage – that real wage increases depress economic activity (though
with the delay that is caused by our concept of an investment climate transmitting excess
profitability to investment behavior). From our reduced-form real wage dynamics

ω̂ = κ[(1 − κp)βw(V l − V̄ l) − (1 − κw)βp(V
c − V̄ c)].

we thus obtain that price flexibility should be bad for economic stability due to the
minus sign in front of the parameter βp while the opposite should hold true for the
parameter that characterizes wage flexibility. This is a situation as it was already in-
vestigated in Rose (1967). It gives the reason for our statement that wage flexibility
gives rise to normal and price flexibility to adverse Rose effects as far as real wage
adjustments are concerned. Besides real rate of interest effect, establishing opposing
Keynes- and Mundell-effects, we thus have also another real adjustment process in the
considered model where now wage and price flexibility are in opposition to each other,
see Chiarella and Flaschel (2000) and Chiarella, Flaschel, Groh and Semmler (2000) for
further discussion of these as well as other feedback mechanisms in Keynesian growth
dynamics.

There is still another adjustment speed parameter in the model, the one that determines
how fast the investment climate is updated in the light of current excess profitability.
This parameter will play no decisive role in the stability investigations that follow, but
will become important in the alternative stability analysis to be considered in the next
section. In the present stability analysis we will however focus on the role played by
h2, βw, βp, βπm in order to provide one example of asymptotic stability of the interior
steady state position by appropriate choices of these parameter values, basically in line
with the above feedback channels of partial Keynesian macrodynamics.
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This adds to the description of the dynamical system (12) – (16) whose stability proper-
ties are now to be investigated by means of varying adjustment speed parameters. With
the feedback scenarios considered above in mind, we first observe that the inflationary
climate can be frozen at its steady state value, here πm

o = M̂ − n = 0, if βπm = 0 is
assumed. The system thereby becomes 4D and it can indeed be further reduced to 3D if
in addition βw = 0 is assumed, since this decouples the l-dynamics from the remaining
system ω, m, εm.

We intentionally will consider the stability of these 3D subdynamics – and its subsequent
extensions – in informal terms here, reserving rigorous calculations for an alternative
scenario to be presented and investigated in the next section. In this way we hope to
show to the reader how one can proceed from low to high dimensional analysis in such
stability investigations. This method has been already applied to various other often
much more complicated dynamical systems, see Asada, Chiarella, Flaschel and Franke
(2003) for a variety of typical examples.

Proposition 1:

Assume that the parameters h2, βp are chosen sufficiently small and that the
κw, κp parameters do not equal 1. Then: The interior steady state of the
reduced 3D dynamical system

ω̂ = −κ(1 − κw)βp(y/yp(ω) − V̄ c)

m̂ = −iεm − κβp(y/yp(ω) − V̄ c)

ε̇m = βεm(ρ + κβp(y/yp(ω) − V̄ c) − r − εm)

is locally asymptotically stable.

Sketch of proof: Assuming h2, βp sufficiently small gives for the Jacobian J at the
steady state the sign structure:

J =

⎛
⎝ − 0 −

− 0 −
− + −

⎞
⎠ .

Furthermore, the entries J23, J33 can be made as large as desired by choosing h2, the
carrier of the Keynes-effect, sufficiently small. This immediately implies that all principal
minors of order 2 are then nonnegative (their sum a2 is positive), while trace J < 0 is
directly visible (= −a1). And for detJ = −a3 one easily gets by way of the linear
dependencies present in the Jacobian of the considered 3D dynamics:

0 > detJ > −J11J23J32

which – taken together – implies that all coefficients a1, a2, a3 of the Routh Hurwitz
polynomial are positive and in addition fulfill a1a2 − a3 > 0.

17



Proposition 2:

Assume in addition that the parameters βw is now positive and chosen suffi-
ciently small. Then: The interior steady state of the implied 4D dynamical
system (where the law of motion for l has now been integrated)

ω̂ = κ[(1 − κp)βw(ld/l − V̄ l) − (1 − κw)βp(y/yp − V̄ c)]

m̂ = −iεm − κ[βp(y/yp − V̄ c) + κpβw(ld/l − V̄ l)]

ε̇m = βεm(ρ + κ[βp(y/yp(ω) − V̄ c) + κpβw(ld/l − V̄ l)] − r − εm)

l̂ = −iεm

is locally asymptotically stable.

Sketch of proof: Exploiting the many linear dependencies shown in the considered
dynamical system one can easily reduce the right hand side of the Jacobian of the
dynamics at the steady state to:

ω̂ = (1 − κp)βw(ld/l − V̄ l)

m̂ = −βp(y/yp(ω) − V̄ c)

ε̇m = βεm(ρ − r − εm)

l̂ = −iεm

without any change in the sign of its determinant. Continuing in this way one can then
even obtain:

ω̂ = (1 − κp)βw(ldo/l − V̄ l)

m̂ = −βp(yo/y
p(ω) − V̄ c)

ε̇m = −βεm

h1yo − m

h2

l̂ = −iεm,

again without change in the signs of the determinants to be calculated at each step. The
sign of the determinant of the now corresponding Jacobian is however easily shown to
be positive. The eigenvalue zero of the situation where the 4D system is considered for
βw = 0 thus must become negative if the change in βw is sufficiently small, since the
other three eigenvalues must then continue to have negative real parts.

Proposition 3:

Assume in addition that the parameters βπm is now positive and chosen suf-
ficiently small. Then: The interior steady state of the full 5D dynamical
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system (where the state variable πm is now moving)

ω̂ = κ[(1 − κp)βw(ld/l − V̄ l) − (1 − κw)βp(y/yp − V̄ c)]

m̂ = −πm − iεm − κ[βp(y/yp − V̄ c) + κpβw(ld/l − V̄ l)]

ε̇m = βεm(ρ + κ[βp(y/yp(ω) − V̄ c) + κpβw(ld/l − V̄ l)] + πm − r − εm)

l̂ = −iεm

π̇m = βπm(κ[βp(y/yp(ω) − V̄ c) + κpβw(ld/l − V̄ l)])

is locally asymptotically stable.

Sketch of proof: As for proposition 2, by now simply making use of the rows corre-
sponding to the laws of motion for l and m in order to reduce the row corresponding to
the law of motion for πm to the form (0, 0, 0, 0,−), again without change in the sign of
the determinants of the accompanying Jacobians. The fifth eigenvalue must therefore
change from zero to a negative value if the parameter βπ is made positive (but not too
large).

We note that – due to the unchanged sign of the calculated determinants – loss of
stability can only occur by way of so-called Hopf-bifurcations, i.e. in particular, by way
of economic fluctuations.

We observe that the parameters βp and βπm have been chosen such that adverse Rose
and destabilizing Mundell-effects are both week and accompanied by a strongly stabi-
lizing Keynes-effect. Due to our reliance on the continuity of eigenvalues with respect
to parameter changes we however had to choose in addition that also βw should be suf-
ficiently small. This is possibly not really necessary, since wage flexibility is stabilizing
from the partial perspective. Note however that the size of the parameter εm is not at all
restricted in the present approach to β−stability. This will be different in the stability
analysis that follows in the next section.

We finally observe that loss of stability can only occur – according to the above – by
way of Hopf-bifurcations, i.e., in particular through the generation of cycles in the real-
nominal interactions of the model. Such loss of stability is here possible if prices become
sufficiently flexible compared to wage flexibility, leading to an adverse type of real wage
adjustment, and if the inflationary climate expression is updated sufficiently fast, i.e., if
the system looses the inertia we have built into it to a sufficient degree. These are typical
feedback structures of a properly formulated Keynesian dynamics that may give rise to
local instability and thus the need to add further extrinsic or behavioral nonlinearities
to the model in order to bound the generated business fluctuations. Such issues will
be explored in companion papers from the numerical and the empirical perspective, see
Asada, Chiarella, Flaschel and Hung (2004) and Chen, Chiarella and Flaschel (2004).

6 Outlook

We have considered in this paper an extension and modification of the traditional ap-
proach to AS-AD growth dynamics that allows us to avoid the dynamical anomalies of
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the neoclassical synthesis, stage I, and also a strange feedback structure of New Keyne-
sian approach, the neoclassical synthesis (stage II), that both arise from the pure domi-
nance of the assumption of perfect foresight within these two frameworks. Conventional
wisdom in these approaches then avoids the stability problems of these model types by
just assuming global asymptotic stability through the adoption of non-predetermined
variables and the application of the so-called jump-variable technique.

This approach of the Rational Expectations School is however much more than just the
consideration of rational expectations, but in fact the assumption not only of hyper-
perfect foresight coupled with a solution method that avoids all potential instabilities
of macrodynamic economic systems. In the present context, this approach would im-
pose the condition that prices – and also nominal wages – must be allowed to jump in
a particular way in order to establish by assumption the stability of the investigated
dynamics.

By contrast, our alternative approach – which allows for sluggish wage as well as price
adjustment, in view of unbalanced labor as well as product markets, and also for certain
economic climate variables, representing the medium-run evolution of inflation and prof-
itability differentials – completely bypasses such stability assumptions. Instead it shows
in a very detailed way local asymptotic stability under certain assumptions (very plau-
sible from the perspective of a Keynesian theory), cyclical loss of stability when these
assumptions are violated (if speeds of adjustment become sufficiently high), and even
explosive fluctuations in the case of further increases of the crucial speeds of adjustment
of the model. In the latter case extrinsic nonlinearities have to be introduced in order
to tame the explosive dynamics as in some of the examples in Chiarella and Flaschel
(2000, Ch.6,7).

The stability features of our properly formulated Keynesian dynamics are based on
specific interactions of traditional Keynes- and Mundell-effects or real rate of interest
effects (here present only in the employed investment function) with so-called Rose
or real-wage effects, see Chiarella and Flaschel (2000) for their introduction, which in
the present framework simply means that increasing wage flexibility is stabilizing and
increasing price flexibility destabilizing, due to the fact that aggregate demand here
depends negatively on the real wage (due to the assumed investment function) and
due to the extended types of Phillips curves we have employed in our new approach to
traditional Keynesian growth dynamics. The interaction of these three effects is what
explains the obtained stability results under the not very demanding assumption of
myopic perfect foresight and thus gives rise to a traditional type of Keynesian business
cycle theory, not at all plagued by the anomalies of the textbook AS-AD dynamics.

The model of this paper will be numerically explored and estimated in two compan-
ion papers, Asada, Chiarella, Flaschel and Hung (2004) and Chen, Chiarella, Flaschel
and Semmler (2004) in order to analyze in greater depth and also with an empirical
background the interaction of the various feedback channels present in the considered
dynamics. At that point we will then also make use of Taylor interest rate policy rules
in the place of the traditional LM curve so far employed. Our work on related models
suggests that the interest rate policy rule may not be sufficient to tame the explosive
dynamics in all conceivable cases, and, we will then also make use of nonlinearities such
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as a kinked money wage Phillips curve – representing downward money wage rigidity –
and Blanchard and Katz type (2000) error correction mechanisms in order to make the
dynamics viable and thus economically meaningful in the cases where the steady state is
a repeller. Taking all this together our general conclusion will be that this framework not
only overcomes the anomalies of the Neoclassical Synthesis, stage I, but also provides a
coherent alternative to the New Keynesian theory of the business cycle, the Neoclassical
Synthesis, stage II, as sketched in Gali (2000).

l

l

ω

ω

ω

time

Figure 1: Stable depressions or persistent fluctuations through downwardly rigid money
wages.

The figure 1 briefly provides a typical outcome of the dynamics if downwardly rigid
money wages are added to an explosive sitution where the economy is not at all a viable
one and subject to immediate breakdown without such rigidity. If the money wage
Phillips curve is augmented by the assumption that money wages can rise as desribed
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by it, but cannot fall, we get a situation of a continuum of steady states (for M̂ = n),
due zero root hysteresis, and then the result that the economy converges rapidly to the
situation of a stable depression, which depends in its depth on the intitial shock the
economy is subject to. If, by contrast, money wages can fall, but will do so at most
at the rate of for example 0.01, the steady state remains uniquely determined and –
though surrounded by strongly explosive forces – and is not totally unstable, due to
the limit cycle situation that is then generated by the operation of the floor to money
wage declines. This type of floor makes depressions much longer than recoveries, but
avoids that the economy can be trapped in a stable depression. The two situations just
discussed are illustrated by the figure 1.

Our alternative Keynesian dynamics is based on disequilibrium in the market for goods
and for labor, on sluggish adjustment of prices as well as wages and on myopic perfect
foresight interacting with certain economic climate expression – creating the necessary
inertia – with a rich array of dynamic outcomes that provide great potential for fu-
ture generalizations. Some of these generalizations are considered in Chiarella, Flaschel,
Groh and Semmler (2000) and Chiarella, Flaschel and Franke (2004). Our overall ap-
proach, which may be called a disequilibrium approach to business cycle modelling,
provides a theoretical framework within which to consider the contributions of authors
such as Zarnowitz (1999), who also stresses the dynamic interaction of many traditional
macroeconomic building blocks and the feedback mechanisms they are generating.
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Mathematical Appendix: Rigorous stability analysis

The objective of this section is to consider, on the one hand, a modified version of the DAS-
AD dynamics of the preceding section as it was proposed in Chiarella, Flaschel, Groh and
Semmler (2003) in a reply to Velupillai (2003) and to demonstrate, on the other hand, in a
very detailed and also new way propositions on asymptotic stability and Hopf bifurcations by
a different approach to the use of the Routh-Hurwitz conditions for local asymptotic stability.
We thereby provide another set of sufficient conditions for such stability which supplement
the ones of the preceding section. The result here will be that we now have to choose the
parameters h1, βw, βπm sufficiently small and h2, βεm in a certain middle range in order to get
the stability propositions looked for. Astonishingly enough a condition on the parameter βp,
characterizing price flexibility, can be completely avoided now.

The model of the preceding section is here changed, since we now employ for the formation of
the investment climate the law of motion

ε̇m = βεm(ρ + p̂ − r − εm
o ), in the place of ε̇m = βεm(ρ + p̂ − r − εm).

This however simply means that the weights with which past excess profitability are aggregated
are now changed, as can be shown by way of integration of the two laws of motion, since

εm = ε(to)e−βεm (t−to) + βεm

∫ t

to

e−βεm (t−s)ε(s)ds

is now simply replaced by:

εm = βεm

∫ t

to

ε(s)ds

Instead of an exponential weighting scheme we now use an unweighted aggregate of past
observation as measure of the investment climate in which the economy is operating.

6.1 The model

In this section we analyze mathematically the five-dimensional macrodynamic model that is
obtained from the structural equations of the preceding section (including the above modifica-
tion of the model) and that has already been briefly investigated in Chiarella, Flaschel, Groh,
and Semmler (2003). This model is represented – in its initial format – by the following sets
of algebraic and dynamic equations which appropriately transformed will provide us with an
autonomous system of five interdependent differential equations. The local asymptotic stabil-
ity properties of the model will be investigated in great detail in this section by making use of
the fact that the various adjustment speeds of the considered model (in fact βw, βp, βπm, βεm)
allow to reduce the dynamics to cases (only one is considered here) where the Routh-Hurwitz
conditions can be considered and proved explicitly, while the higher dimensional cases are then
treated by continuity arguments with respect to the eigenvalues of the full dynamics. This
method of proof has been established in Chiarella and Flaschel (2000) and has since then been
used in a variety of other cases, see for example Chiarella, Flaschel, Franke and Semmler (2002)
for typical examples. We call this approach to the stability investigation of large(r) macro-
dynamical systems the β-stability method for obvious reasons. Note here also that this proof
strategy generally gives rise to Hopf-bifurcations when some β−adjustment speeds become so
large that local stability gets lost, giving rise to persistent fluctuations in such situations.
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The static part of the equations is represented as follows.

y = [i(εm) + g − t]/s + δ + t = y(εm) ; yεm = iεm/s > 0 (22)

r = r0 + (h1y − m)/h2 = r0 + (h1y(εm) − m)/h2 = r(εm, m)

; rεm = h1yεm/h2 > 0, rm = −1/h2 < 0 (2)

ρ = y − δ − ωld(y) = y(εm) − ωld(y(εm)) = ρ(εm, ω) ; ld = f−1(y) = ld(y),

ρεm = (1 − ωldy)yεm = {1 − ω/f ′(ld)}yεm > 0, ρω = −ld < 0 (23)

V l = ld/l = ld(y)/l = ld(y(εm))/l = V l(εm, l) ;

V l
εm = ldyyεm/l > 0, V l

l = −ld/l2 < 0 (24)

V c = y/yp(ω) = y(εm)/yp(ω) = V c(εm, ω) ; yp(ω) given by solving

ω = f ′(lp), yp = f(lp) ; V c
εm = yεm/yp > 0, V c

ω = −yyp
ω/(yp)2 > 0 (25)

where yεm = y′(εm), iεm = i′(εm), rεm = ∂r/∂εm, rm = ∂r/∂m etc. The meanings of
the symbols are as follows:

y = Y/K =actual gross output–capital ratio, i = I/K = K̇/K = rate of net investment (
rate of capital accumulation ), g = G/K = government expenditure – capital ratio ( fixed ),
t = T/K = tax – capital ratio ( fixed ), s = marginal propensity to save ( fixed, 0 < s < 1
), δ = rate of capital depreciation ( fixed, 0 <

= δ <
= 1 ), Y = actual real gross output ( real

gross national income ), K = real capital stock, I = K̇ = real net investment, G = real
government expenditure, T = real tax, εm = investment climate, r = nominal rate of interest,
m = M/(pK) = real money balance per capital, M = nominal money supply, p = price level,
ρ = net rate of profit, ω = w/p = real wage rate, w = nominal wage rate, ld = Ld/K =
employment – capital ratio, Ld = labor employment, l = L/K = full – employment labor
intensity, L = labor supply, V l = rate of employment, yp = full capacity gross output-capital
ratio, V c = rate of capacity utilization.

We can derive Eq. (2) as follows. We can express the equilibrium condition for money market
as m = h1y + h2(r0 − r), where the right hand side is the linear real money demand function
per capital stock ( h1 > 0, h2 > 0, r0 > 0 ). Solving this equation with respect to r, we have
Eq. (2).

It is assumed that output is demand-constrained, i.e., ld < lp, which means that f ′(ld) >
f ′(lp) = ω because of the assumption of decreasing marginal productivity of labor, f ′′(l) < 0.

This is the reason why we have ρεm > 0 in Eq. (23). In this case, we also have yp
ω =

f ′(lp)/f ′′(ld) <0, implying V c
ω > 0 in Eq. (25). In the short run, εm, m, ω and l are given

data. Correspondingly, y, r, ρ, V l, and V c are determined by the equations (22) – (25).
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The dynamic part of the equations is given as follows.

ŵ = ẇ/w = βw(V l − V̄ l) + κw p̂ + (1− κw)πm ; βw > 0, 0 < κw < 1 (26)

p̂ = ṗ/p = βp(V c − V̄ c) + κpŵ + (1− κp)πm ; βp > 0, 0 < κp < 1 (27)

π̇m = βπm(p̂ − πm) ; βπm > 0 (28)

ε̇m = βεmε, ε = ρ − (r − p̂) ; βεm > 0 (29)

l̂ = l̇/l = n − i(εm) (30)

m̂ = ṁ/m = M̂ − p̂ − K̂ = µ − p̂ − i(εm) (31)

where πm = medium-term inflation climate, ε = current risk premium on investment, n = L̂ =
rate of growth of labor supply ( natural rate of growth ) which is assumed to be constant, and
µ = M̂ = rate of growth of nominal money supply which is assumed to be constant.

6.2 Five-dimensional dynamical system

The system in the previous section can be reduced to the following nonlinear five-dimensional
system of differential equations.

( i ) ω̇ = ω
1−κpκw

[(1− κp)βw{V l(εm, l)− V̄ l} − βp(1 − κw){V c(εm, ω)− V̄ c}]

≡ F1(ω, l, εm)

( ii ) l̇ = l{n − i(εm)} ≡ F2(l, εm)

( iii ) ṁ = m[µ − κpβw

1−κpκw
{V l(εm, l)− V̄ l} − βp

1−κpκw
{V c(εm, ω)− V̄ c} − πm − i(εm)]

≡ F3(ω, l, m, εm, πm)

( iv ) ε̇m = βεm[ρ(εm, ω)− r(εm, m) + κpβw

1−κpκw
{V l(εm, l)− V̄ l}

+
βp

1 − κpκw
{V c(εm, ω)− V̄ c} + πm] ≡ βεmG4(ω, l, m, εm, πm)

≡ F4(ω, l, m, εm, πm ; βεm)

( v ) π̇m = βπm [ κpβw

1−κpκw
{V l(εm, l)− V̄ l} + βp

1−κpκw
{V c(εm, ω)− V̄ c}]
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≡ βπmG5(ω, l, εm) ≡ F5(ω, l, εm ; βπm) (S1)

Next, let us consider how to derive these equations. First, we can rewrite equations (26) and
(27) in terms of the matrix notation as follows.

[
1 −κw

−κp 1

] [
ŵ

p̂

]
=

[
βw(V l − V̄ l) + (1 − κw)πm

βp(V c − V̄ c) + (1− κp)πm

]
(32)

Solving this equation, we obtain the following reduced form of ŵ and p̂.

ŵ =
∣∣∣∣ βw(V l − V̄ l) + (1− κw)πm −κw

βp(V c − V̄ c) + (1 − κp)πm 1

∣∣∣∣ /

∣∣∣∣ 1 −κw

−κp 1

∣∣∣∣

=
βw

1 − κpκw
(V l − V̄ l) +

βpκw

1 − κpκw
(V c − V̄ c) + πm (33)

p̂ =
∣∣∣∣ 1 βw(V l − V̄ l) + (1− κw)πw

−κp βp(V c − V̄ c) + (1 − κp)πw

∣∣∣∣ /
∣∣∣∣ 1 −κw

−κp 1

∣∣∣∣

=
κpβw

1 − κpκw
(V l − V̄ l) +

βp

1 − κpκw
(V c − V̄ c) + πm (34)

Substituting the equations (33) and (34) into the equality ω̂ = ŵ − p̂, we obtain Eq. (S1)( i ).
Eq. (S1)( ii ) follows from Eq. (30). Substituting Eq. (34) into the equations (31), (29) and
(28), we have Eq. (S1)( iii ), ( iv ), and ( v ) respectively.

6.3 Long run equilibrium solution

Next, let us investigate the properties of the stationary solution ( long run equilibrium solution
) of the system (S1) which satisfies ω̇ = l̇ = ṁ = ε̇m = π̇m = 0. Substituting ω̇ = π̇m = 0 into
the equations (S1)( i ) ( v ), we have the following system of equations.

[
(1 − κp)βw −βp(1 − κw)
κpβw βp

] [
V l − V̄ l

V c − V̄ c

]
=

[
0
0

]
(35)

The solution of this system of equations becomes V l − V̄ l = 0 and

V c − V̄ c = 0 because we have the following inequality.

∣∣∣∣ (1− κp)βw −βp(1− κw)
κpβw βp

∣∣∣∣ = (1− κp)βpβw + βpκpβw(1− κw) > 0 (36)

Therefore, we can characterize the long run equilibrium solution as follows.

( i ) V l(εm, l) = ld(y(εm))/l = V̄ l

( ii ) V c(εm, ω) = y(εm)/yp(ω) = V̄ c
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( iii ) i(εm) = n

( iv ) πm = µ − n

( v ) ρ(εm, ω)− r(εm, m) + µ − n = 0 (17)

We shall write the vector of the equilibrium values as (ω∗, l∗, m∗, εm∗, πm∗). πm∗ is uniquely
determined by Eq. (17)( iv ). Since iεm > 0, εm∗ is uniquely determined by Eq. (17)( iii ) if it
exists. We shall assume that εm∗ > 0 in fact exists. In this case, we obtain the unique l∗ > 0
substituting εm = εm∗ into Eq. (17)( i ). We can also determine unique ω∗ > 0 ( if it exists )
by substituting εm = εm∗ into Eq. (17)( ii ), since yp

ω < 0. Finally, we can determine unique
m∗ > 0 ( if it exists ) by substituting εm = εm∗ and ω = ω∗ into Eq. (17)( v ), since rm < 0.

The above analysis reveals that at most one long run equilibrium point exists. In other words,
there is no possibility of the existence of the multiple equilibria. In the next section, we
shall investigate the local stability / instability of the long run equilibrium point of this five-
dimensional system by assuming that an economically meaningful long run equilibrium point
exists.

6.4 A five-dimensional analysis of local stability

We can write the Jacobian matrix of the system (S1) which is evaluated at the equilibrium
point as follows.

J1 =

⎡
⎢⎢⎢⎢⎣

F11 F12 0 F14 0
0 0 0 F24 0
F31 F32 0 F34 F35

βεmG41 βεmG42 βεmG43 βεmG44 βεm

βπmG51 βπmG52 0 βπmG54 0

⎤
⎥⎥⎥⎥⎦ (37)

where F11 = ∂F1/∂ω = −ωβp(1−κw)
1−κpκw

V c
ω

(+)

< 0, F12 = ∂F1/∂l = ω(1−κp)βw

1−κpκw
V l

l
(−)

< 0, F14 =

∂F1/∂εm = ω
1−κpκw

{(1−κp)βw V l
εm

(+)

−βp(1−κw) V c
εm

(+)

}, F24 = ∂F2/∂εm = −l iεm

(+)
< 0, F31 =

∂F3/∂ω = − mβp

1−κpκw
V c

ω
(+)

< 0, F32 = ∂F3/∂l = − mκpβw

1−κpκw
V l

l
(−)

> 0, F34 = ∂F3/∂εm =

− m
1−κpκw

(κpβw V l
εm

(+)

+βp V c
εm

(+)

) < 0, F35 = ∂F3/∂πm = −m < 0, G41 = ∂G4/∂ω = ρω
(−)

+ βp

1−κpκw
V c

ω
(+)

,

G42 = ∂G4/∂l = κpβw

1−κpκw
V l

l
(−)

< 0, G43 = ∂G4/∂m = 1/h2 > 0, G44 = ∂G4/∂εm =

ρεm

(+)
−(h1 yεm

(+)
/h2) + 1

1−κpκw
(κpβw V l

εm

(+)

+βp V c
εm

(+)

), G51 = ∂G5/∂ω = βp

1−κpκw
V c

ω
(+)

> 0, G52 =

∂G5/∂l = κpβw

1−κpκw
V l

l
(−)

< 0, and G54 = ∂G5/∂εm = 1
1−κpκw

(κpβw V l
εm

(+)

+βp V c
εm

(+)

) > 0.

The sign pattern of the matrix J1 becomes as follows.
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signJ1 =

⎡
⎢⎢⎢⎢⎣

− − 0 ? 0
0 0 0 − 0
− + 0 − −
? − + ? +
+ − 0 + 0

⎤
⎥⎥⎥⎥⎦ (38)

The characteristic equation of this system can be written as

Γ1(λ) ≡ |λI − J1| = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5 = 0 (39)

where each coefficient is given as follows.

a1 = −traceJ1 = −F11
(−)

−βεm G44
(?)

≡ a1(βεm) (40)

a2 =sum of all principal second-order minors of J1

=
∣∣∣∣ F11 F12

0 0

∣∣∣∣+
∣∣∣∣ F11 0

F31 0

∣∣∣∣+βεm

∣∣∣∣ F11 F14

G41 G44

∣∣∣∣+βπm

∣∣∣∣ F11 0
G51 0

∣∣∣∣+
∣∣∣∣ 0 0

F32 0

∣∣∣∣+βεm

∣∣∣∣ 0 F24

G42 G44

∣∣∣∣

+βπm

∣∣∣∣ 0 0
G52 0

∣∣∣∣ + βεm

∣∣∣∣ 0 F34

G43 G44

∣∣∣∣ +
∣∣∣∣ 0 F35

0 0

∣∣∣∣ + βεmβπm

∣∣∣∣ G44 1
G54 0

∣∣∣∣

= βεm(−βπm G54
(+)

+ F11
(−)

G44
(?)

−F14
(?)

G41
(?)

−F24
(−)

G42
(−)

−F34
(−)

G43
(+)

) ≡ a2(βεm, βπm) (41)

a3 =– ( sum of all principal third-order minors of J1)

= −
∣∣∣∣∣∣

F11 F12 0
0 0 0
F31 F32 0

∣∣∣∣∣∣−βεm

∣∣∣∣∣∣
F11 F12 F14

0 0 F24

G41 G42 G44

∣∣∣∣∣∣−βπm

∣∣∣∣∣∣
F11 F12 0
0 0 0
G51 G52 0

∣∣∣∣∣∣−βεm

∣∣∣∣∣∣
F11 0 F14

F31 0 F34

G41 G43 G44

∣∣∣∣∣∣

−βπm

∣∣∣∣∣∣
F11 0 0
F31 0 F35

G51 0 0

∣∣∣∣∣∣ − βεmβπm

∣∣∣∣∣∣
F11 F14 0
G41 G44 1
G51 G54 0

∣∣∣∣∣∣ − βεm

∣∣∣∣∣∣
0 0 F24

F32 0 F34

G42 G43 G44

∣∣∣∣∣∣

−βπm

∣∣∣∣∣∣
0 0 0
F32 0 F35

G52 0 0

∣∣∣∣∣∣ − βεmβπm

∣∣∣∣∣∣
0 F24 0
G42 G44 1
G52 G54 0

∣∣∣∣∣∣ − βεmβπm

∣∣∣∣∣∣
0 F34 F35

G43 G44 1
0 G54 0

∣∣∣∣∣∣

= βεm{βπm(−F14
(?)

G51
(+)

+ F11
(−)

G54
(+)

−F24
(−)

G52
(−)

−F35
(−)

G54
(+)

G43
(+)

) − F12
(−)

F24
(−)

G41
(?)

+ F11
(−)

G42
(−)

F24
(−)

−F14
(?)

G43
(+)

F31
(−)

+ F11
(−)

G43
(+)

F34
(−)

−F24
(−)

G43
(+)

F32
(+)

} ≡ a3(βεm, βπm) (42)
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a4 =sum of all principal fourth-order minors of J1

= βεmβπm

∣∣∣∣∣∣∣∣

0 0 F24 0
F32 0 F34 F35

G42 G43 G44 1
G52 0 G54 0

∣∣∣∣∣∣∣∣
+ βεmβπm

∣∣∣∣∣∣∣∣

F11 0 F14 0
F31 0 F34 F35

G41 G43 G44 1
G51 0 G54 0

∣∣∣∣∣∣∣∣

+βεmβπm

∣∣∣∣∣∣∣∣

F11 F12 F14 0
0 0 F24 0
G41 G42 G44 1
G51 G52 G54 0

∣∣∣∣∣∣∣∣
+ βπm

∣∣∣∣∣∣∣∣

F11 F12 0 0
0 0 0 0
F31 F32 0 F35

G51 G52 0 0

∣∣∣∣∣∣∣∣

+βεm

∣∣∣∣∣∣∣∣

F11 F12 0 F14

0 0 0 F24

F31 F32 0 F34

G41 G42 G43 G44

∣∣∣∣∣∣∣∣

= βεm{βπm(F24

∣∣∣∣∣∣
F32 0 F35

G42 G43 1
G52 0 0

∣∣∣∣∣∣ − G43

∣∣∣∣∣∣
F11 F14 0
F31 F34 F35

G51 G54 0

∣∣∣∣∣∣ − F24

∣∣∣∣∣∣
F11 F12 0
G41 G42 1
G51 G52 0

∣∣∣∣∣∣)

+F24

∣∣∣∣∣∣
F11 F12 0
F31 F32 0
G41 G42 G43

∣∣∣∣∣∣}

= βεm{βπm(−F24
(−)

F35
(−)

G43
(+)

G52
(−)

−G43
(+)

F14
(?)

F35
(−)

G51
(+)

+ G43
(+)

F11
(−)

G54
(+)

F35
(−)

−F24
(−)

F12
(−)

G51
(+)

+ F24
(−)

F11
(−)

G52
(−)

) + F24
(−)

G43
(+)

(F11
(−)

F32
(+)

−F12
(−)

F31
(−)

)} ≡ a4(βεm, βπm) (43)

a5 = − detJ1 = −βεmβπm

∣∣∣∣∣∣∣∣∣∣

F11 F12 0 F14 0
0 0 0 F24 0
F31 F32 0 F34 F35

G41 G42 G43 G44 1
G51 G52 0 G54 0

∣∣∣∣∣∣∣∣∣∣

= −βεmβπmF24

∣∣∣∣∣∣∣∣

F11 F12 0 0
F31 F32 0 F35

G41 G42 G43 1
G51 G52 0 0

∣∣∣∣∣∣∣∣
= −βεmβπmF24G43

∣∣∣∣∣∣
F11 F12 0
F31 F32 F35

G51 G52 0

∣∣∣∣∣∣

= βεmβπm F24
(−)

G43
(+)

F35
(−)

(−F12
(−)

G51
(+)

+ F11
(−)

G52
(−)

) ≡ a5(βεm, βπm) > 0 (44)

Next, let us consider the conditions for local stability of the equilibrium point in this system.
It is well known that the Routh-Hurwitz conditions for stable roots in this five-dimensional
system can be expressed as follows ( cf. Gandolfo (1996) chap. 16 ).
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( i ) ∆1 ≡ a1 > 0

( ii ) ∆2 ≡
∣∣∣∣ a1 a3

1 a2

∣∣∣∣ = a1a2 − a3 > 0

( iii ) ∆3 ≡
∣∣∣∣∣∣

a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣ = a3∆2 + a1(a5 − a1a4) = a1a2a3 − a2
1a4 − a2

3 + a1a5 > 0

( iv ) ∆4 ≡

∣∣∣∣∣∣∣∣

a1 a3 a5 0
1 a2 a4 0
0 a1 a3 a5

0 1 a2 a4

∣∣∣∣∣∣∣∣
= a4∆3 − a5

∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 1 a2

∣∣∣∣∣∣

= a4∆3 + a5(−a1a
2
2 − a5 + a2a3 + a1a4)

= a4∆3 + a5(a1a4 − a5 − a2∆2)0

( v ) ∆5 ≡

∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 0 0
1 a2 a4 0 0
0 a1 a3 a5 0
0 1 a2 a4 0
0 0 a1 a3 a5

∣∣∣∣∣∣∣∣∣∣
= a5∆4 > 0 (26)

It is easy to see that two inequalities a1 > 0 and a5 > 0 are a set of necessary conditions for
the local stability of this system. The condition a5 > 0 is always satisfied because of Eq. (44).
However, a1 depends on the value of the parameter βεm because of Eq. (40). Furthermore, we
can see that G44 is an increasing function of the sensitivity of the money demand with respect
to the nominal rate of interest ( h2 ), and we have lim

h2→0
G44 = −∞, lim

h2→+∞
G44 > 0. The

following proposition follows from this fact.

Proposition 4

Suppose that h2 is so large that G44 > 0. Then, the equilibrium point of the system (S1) is
locally unstable if the inequality

βεm > −F11
(−)

/ G44
(+)

(45)

is satisfied.

Proof. If the inequality (45) is satisfied, we have a1 < 0, which violates one

of the Routh-Hurwitz conditions for stable roots.

This proposition implies that the system becomes dynamically unstable if the values of the
parameters h2 and βεm are sufficiently large. This proposition provides us a sufficient condition
for local instability. On the other hand, the following proposition provides us an interesting
set of sufficient conditions for the local stability.
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Proposition 5

Suppose that the following set of inequalities is satisfied at the parameter values βεm = β0
εm > 0

and βπm = 0.

a1(β0
εm) > 0, a3(β0

εm, 0) > 0,

a1(β0
εm)a2(β0

εm, 0)a3(β0
εm, 0)− a1(β0

εm)2a4(β0
εm, 0)− a3(β0

εm, 0)2 > 0 (46)

Then, a set of inequalities (26)( i ) – ( v ) is satisfied at βεm = β0
εm for all sufficiently small

βπm > 0.

Proof.

We have the following relationships at [βεm, βπm] = [β0
εm, 0] because a5(β0

εm, 0) = 0.

( i ) ∆1 = a1(β0
εm)

( ii ) ∆2 = a1(β0
εm)a2(β0

εm, 0)− a3(β0
εm, 0)

( iii ) ∆3 = a3(β0
εm, 0)∆2 − a1(β0

εm)2a4(β0
εm, 0)

= a1(β0
εm)a2(β0

εm, 0)a3(β0
εm, 0)− a1(β0

εm)2a4(β0
εm, 0)− a3(β0

εm, 0)2

( iv ) ∆4 = a4(β0
εm, 0)∆3 (29)

We can easily see from these relationships that four conditions ∆j > 0 (j = 1, 2, 3, 4) are
satisfied at [βεm, βπm] = [β0

εm, 0] if a set of inequalities (46) are satisfied, because we have
a4(β0

εm, 0) = β0
εm F24

(−)
G43
(+)

(F11
(−)

F32
(+)

−F12
(−)

F31
(−)

)0. It is clear that four inequalities ∆j > 0 ( j =

1, 2, 3, 4) are also satisfied at βεm = β0
εm for all sufficiently small βπm > 0, because each

coefficient is the continuous function of the parameter βπm . The inequality ∆5 > 0 is also
satisfied at βεm = β0

εm for all sufficiently small βπm > 0, because we have a5(β0
εm, βπm) > 0 if

βπm > 0.

Proposition 5 implies that the equilibrium point of the system (S1) is locally asymptotically
stable at βεm = β0

πm > 0 for all sufficiently small βπm > 0 if a set of inequalities (46) is satisfied.
In the next section, we shall show that these inequalities in fact correspond to the exact local
stability conditions of a degenerated four-dimensional system.

6.5 Local stability and Hopf Bifurcations in a degenerated four-

dimensional system, and implications for the 5D dynamics

It is easy to see that the characteristic equation (39) becomes as follows as βπm → 0.

lim
βπm→0

Γ1(λ) = lim
βπm→0

|λI − J1| = λ |λI − J2| = 0 (47)

where J2 is the following (4×4) submatrix of the (5×5) matrix J1.
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J2 =

⎡
⎢⎢⎣

F11 F12 0 F14

0 0 0 F24

F31 F32 0 F34

βεmG41 βεmG42 βεmG43 βεmG44

⎤
⎥⎥⎦ (48)

Eq. (47) has a root λ = 0, and other four roots are determined by the following equation.

Γ2(λ) ≡ |λI − J2| = λ4 + b1λ
3 + b2λ

2 + b3λ + b4 = 0 (49)

where each coefficient becomes as follows.

b1 = a1(βεm) = A − βεmB (50)

b2 = a2(βεm, 0) = βεmC (51)

b3 = a3(βεm, 0) = βπmD (52)

b4 = a4(βεm, 0) = βεmE (53)

In these expressions, A, B, C, D, and E are constants which are given as follows.

A = −F11
(−)

=
ωβp(1 − κw)

1 − κpκw
V c

ω
(+)

> 0,

B = G44
(?)

= ρεm

(+)
−(h1 yεm

(+)

/h2) +
1

1− κpκw
(κpβw V l

εm

(+)

+βp V c
εm

(+)

),

C = F11
(−)

G44
(?)

−F14
(?)

G41
(?)

−F24
(−)

G42
(−)

−F34
(−)

G43
(+)

= −ωβp(1 − κw)
1 − κpκw

V c
ω

(+)

{ρεm

(+)

−(h1 yεm

(+)

/h2) +
1

1 − κpκw
(κpβw V l

εm

(+)

+βp V c
εm

(+)

)}

− ω

1 − κpκw
{(1 − κp)βw V l

εm

(+)

−βp(1 − κw) V c
εm

(+)

}(ρω
(−)

+
βp

1 − κpκw
V c

ω
(+)

)

+
κpβw

1 − κpκw
V l

l
(−)

l iεm

(+)
+

m

1 − κpκw
(κpβw V l

εm

(+)

+βp V c
εm

(+)

)(1/h2),

D = −F12
(−)

F24
(−)

G41
(?)

+ F11
(−)

G42
(−)

F24
(−)

+ G43
(+)

(−F14
(?)

F31
(−)

+F11
(−)

F34
(−)

−F24
(−)

F32
(+)

)

=
βw

1 − κpκw
[ω(1− κp) V l

l
(−)

l iεm

(+)
(ρω
(−)

+
βp

1 − κpκw
V c

ω
(+)

) +
ωβp(1− κw)κp

1− κpκw
V c

ω
(+)

V l
l

(−)

l iεm

(+)
]
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+
βw

1 − κpκw
(1/h2)m[

ωβp

1− κpκw
{(1− κp) + (1− κw)κp} V l

εm

(+)

V c
ω

(+)

−κpl iεm

(+)
V l

l
(−)

]

≡ βw

1 − κpκw
H,

E = F24
(−)

G43
(+)

(F11
(−)

F32
(+)

−F12
(−)

F31
(−)

)

=
mωβpβw

(1− κpκw)2
(1/h2)l iεm

(+)
{−(1− κw)κp V c

εm

(+)

V l
l

(−)

−(1 − κp) V l
l

(−)

V c
ω

(+)

} > 0. (54)

In fact, Eq. (49) is identical to the characteristic equation of a degenerated four-dimensional
system, which we can construct by freezing the inflation climate πm at the equilibrium level
µ − n in the system (S1)( i ) – ( iv ). For simplicity, we shall call this degenerated four-
dimensional system as the system (S2).

We can express the Routh-Hurwitz conditions for stable roots in this four-dimensional system
as follows ( cf. Gandolfo (1996) chap. 16 ).

( i ) Φ1 ≡ b1 > 0

( ii ) Φ2 ≡
∣∣∣∣ b1 b3

1 b2

∣∣∣∣ = b1b2 − b3 > 0

( iii ) Φ3 ≡
∣∣∣∣∣∣

b1 b3 0
1 b2 b4

0 b1 b3

∣∣∣∣∣∣ = b3Φ2 − b2
1b4 = b1b2b3 − b2

1b4 − b2
3 > 0

( iv ) Φ4 ≡

∣∣∣∣∣∣∣∣

b1 b3 0 0
1 b2 b4 0
0 b1 b3 0
0 1 b2 b4

∣∣∣∣∣∣∣∣
= b4Φ3 > 0 (38)

A set of inequalities (38) is equivalent to the following set of conditions.

b1 > 0, b3 > 0, b4 > 0, Φ3 ≡ b1b2b3 − b2
1b4 − b2

3 > 0 (55)

Remark 1

A set of inequalities (55) automatically implies the inequality b2 > 0.

By the way, the inequality b4 > 0 is always satisfied for all βεm > 0. Therefore, the exact local
stability conditions of the system (S2) can be reduced to the following three inequalities as far
as βεm > 0.

b1 > 0, b3 > 0, Φ3 > 0 (56)

It is important to note that a set of inequalities (56) is exactly the same as a set of conditions
(46). Now, we can easily obtain the following proposition.
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Proposition 6

The equilibrium point of the system (S2) is locally unstable for all βεm > 0 if either of the
inequalities C < 0 or D < 0 is satisfied.

Proof.

If C < 0, we have b2 < 0 for all βεm > 0, which violates one of the Routh-Hurwitz conditions
for stable roots. If D < 0, we have b3 < 0 for all βεm > 0, which also violates one of the
conditions for stable roots.

This proposition implies that both of the inequalities C > 0 and D > 0 are necessary conditions
for the local stability of the system (S2). We can see from Eq. (54) that these conditions are
satisfied if the value of the parameter h2 ( sensitivity of the money demand with respect to
the changes of the nominal rate of interest ) is sufficiently small.

By the way, we have the following relationships from Eq. (54) ( A > 0 is independent of the
changes of the parameter βw ).

B(0) ≡ lim
βw→0

B = ρεm

(+)
−(h1 yεm

(+)
/h2) +

βp

1 − κpκw
V c

εm

(+)

(57)

C(0) ≡ lim
βw→0

C =
βp

1 − κpκw
[ω(1− κw){− ρεm

(+)

+(h1 yεm

(+)

/h2)− βp

1 − κpκw
V c

εm

(+)

+ V c
εm

(+)

(ρω
(−)

+
βp

1 − κpκw
V c

ω
(+)

)}+ m V c
εm

(+)

(1/h2)] (58)

We shall study the local stability of the equilibrium point of the four-dimensional system (S2)
under the following assumption.

Assumption 1.

B(0) > 0, C(0) > 0,and H > 0.

The condition B(0) > 0 implies that

1/h2 < (ρεm

(+)
+

βp

1 − κpκw
V c

εm

(+)

)/(h1 yεm

(+)
) ≡ Q. (59)

This means that the value of the parameter h2 is not too small. The conditions C(0) > 0 and
H > 0 imply the following two inequalities.

1/h2 > βp{ω(1 − κw) (ρεm

(+)

+
βp

1 − κpκw
V c

εm

(+)

) + V c
εm

(+)

(− ρω
(−)

− βw

1 − κpκw
V c

ω
(+)

)}/{ω(1− κw)h1 yεm

(+)

+m V c
εm

(+)

} ≡ T (60)
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1/h2 > {−ω(1− κp) V l
l

(−)

l iεm

(+)
(ρω
(−)

+
βp

1 − κpκw
V c

ω
(+)

)− ωβp(1 − κw)κp

1 − κpκw
V c

ω
(+)

V l
l

(−)

l iεm

(+)
}/ mωβp

1 − κpκw

{(1− κp) + (1− κw)κp} V l
εm

(+)

V c
ω

(+)

−mκpl iεm

(+)
V l

l
(−)

} ≡ W (61)

These two inequalities mean that the value of the parameter h2 is not too large. That is to
say, Assumption 1 is equivalent to the following set of inequalities.

max[T, W ] < 1/h2 < Q (62)

This set of inequalities is meaningless unless

max[T, W ] < Q. (63)

The inequality (63) will in fact be satisfied if the value of the parameter h1 ( sensitivity of the
money demand with respect to the changes of the real income ) is sufficiently small, since we
have lim

h1→0
Q = +∞, lim

h1→0
T < +∞, and W < +∞. The small h1 means the mild slope of the

LM curve ( see Eq. (2) ). To sum up, Assumption 1 will in fact be satisfied if h1 is relatively
small and h2 is at the intermediate level.

Under Assumption 1, we have

B > 0, C > 0,and D > 0 (47)

for all sufficiently small βw > 0. In this case, we can simplify a set of local stability conditions
as follows.

0 < βεm < A/B, Φ3 > 0 (64)

We can write the function Φ3 as follows.

Φ3(βεm) = (A − βεmB)β2
εmCD − (A − βεmB)2βεmE − β2

εmD2

= −B(CD + BE)β3
εm + {(AC − D)D + 2ABE}β2

εm − A2Eβεm (65)

Suppose that βw > 0 is so small that a set of inequalities (64) is satisfied. Since Φ3(0) = 0
and Φ′

3(0) = −A2E < 0, we have Φ3 < 0 for all sufficient small βεm > 0. This observation
implies that the equilibrium point of this system becomes locally unstable for all sufficient
small βεm > 0. On the other hand, we already know that the system becomes unstable for
all βεm > A/B. Therefore, we have the instability result for very small as well as very large
βεm . If βεm = 0, the investment climate does not move, i. e., εm = εm(0) for all time. In this
case the movement of l is governed by the equation l̇ = l{n− i(εm(0))}, so that l continues to
increase or continues to decrease unless n = i(εm(0)). Obviously, this means instability, and
this property applies also for sufficiently small βεm > 0. On the other hand, the instability of
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the system in case of the large adjustment parameter can be interpreted as an ‘overshooting’
phenomenon. Next, let us investigate whether the stable region exists at the intermediate
range of the adjustment parameter values or not.

The equation Φ3(βεm) = 0 has the following three roots.

( i ) β0
εm = 0

( ii ) β1
εm = {(AC−D)D+2ABE}−

√
{(AC−D)D+2ABE}2−4B(CD+BE)A2E

2B(CD+BE)

=
{(AC − D)D + 2ABE} − D

√
(AC − D)2 − 4ABE

2B(CD + BE)

( iii ) β2
εm = {(AC−D)D+2ABE}+D

√
(AC−D)2−4ABE

2B(CD+BE)
(50)

An interval with Φ3 > 0 exists in the region βεm ∈ (0, +∞) if and only if β1
εm and β2

εm are
real roots such that 0 < β1

εm < β2
εm. We can prove that in fact that is the case if the value of

the parameter βw > 0 under Assumption 1.

We can easily see that the following properties are satisfied.

D(0) ≡ lim
βw→0

D = 0 (66)

E(0) ≡ lim
βw→0

E = 0 (67)

lim
βw→0

(AC − D) = AC(0) > 0. (68)

In this case, β1
εm and β2

εm in Eq. (50) become to be the real roots such that 0 < β1
εm < β2

εm for
sufficient small βw > 0, because of the inequality (68) and the fact that lim

βw→0
(ABE) = 0. This

situation is illustrated in figure 2.

1
mεβ 2

mεβ
mεβ

3Φ

0

Figure 2: The parameter Φ3 as a function of βεm.

Furthermore, we can show that
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A/B − β2
εm =

D{(AC − D)− √
(AC − D)2 − 4ABE}

2B(CD + BE)
, (69)

which becomes to be positive for sufficiently small βw > 0.

We can obtain the following important proposition from the above observations.

Proposition 7

Suppose that βw > 0 is sufficiently small. Then, under Assumption 1, there exist the
parameter values β1

εm and β2
εm such that 0 < β1

εm < β2
εm which satisfy the following properties.

( i ) The equilibrium point of the degenerated four-dimensional system (S2) is locally asymptot-
ically stable for all βεm ∈ (β1

εm, β2
εm), and it is locally unstable for all βεm ∈ (0, β1

εm)∪(β2
εm, +∞).

( ii ) The equilibrium point of the original five-dimensional system (S1) is locally asymptotically
stable for all sufficiently small βπm > 0 if βεm ∈ (β1

εm, β2
εm).

( iii ) The equilibrium point of the original five-dimensional system (S1) is locally unstable for
all sufficiently small βπm > 0 if βεm ∈ (0, β1

εm) ∪ (β2
εm, +∞).

Proof.

( i ) We already know from the above observations that there exist the parameter values β1
εm

and β2
εm such that 0 < β1

εm < β2
εm with the following properties if the relevant assumptions

are satisfied. (22) For all βεm ∈ (β1
εm, β2

εm), we have both of Φ3 > 0 and 0 < βεm < A/B, so
that all of the Routh-Hurwitz conditions for stable roots of the system (S2) are satisfied. (2)
For all βεm ∈ (0, β1

εm)∪ (β2
εm, +∞), we have Φ3 < 0, so that at least one of the Routh-Hurwitz

conditions of the system (S2) is violated.

( ii ) If βεm ∈ (β1
εm, β2

εm), all of the inequalities (46) are satisfied, so that we can apply the
result of Proposition 5.

( iii )If βεm ∈ (0, β1
εm) ∪ (β2

εm , +∞), the characteristic equation (47) has at least one root with
positive real part. In this case, the characteristic equation (39) also has at least one root with
positive real part for all sufficiently small βπm > 0 by continuity.

By the way, at the points βεm = β1
εm and βεm = β2

εm , we have the following properties.

b1 > 0, b3 > 0, b4 > 0, Φ3 = 0, Φ′(βεm) �= 0 (70)

This means that at these points the ‘simple’ Hopf Bifurcations occur in the four-dimensional
system (S2) ( as for the mathematical proof, see Liu (1994), Yoshida and Asada (2001), or
Asada and Yoshida (2002) ). The ‘simple’ Hopf Bifurcation is the particular type of the Hopf
Bifurcation at which all the characteristic roots except a pair of purely imaginary ones have
negative real parts. In other words, at these points the characteristic equation (49) has a pair
of purely imaginary roots and two roots with negative real parts.

Furthermore, we can observe that there is no other Hopf Bifurcation point in this system
because of the following reason. Asada and Yoshida (2002) proved that both of the conditions
b4 �= 0 and Φ3 = 0 are necessary conditions for the occurrence of the Hopf Bifurcation,
whether it is simple or non-simple, in the four-dimensional system. The point βεm = 0 is the
only other point which satisfies Φ = 0, but at that point we have b4 = 0. Therefore, the
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point βεm = 0 is not the Hopf Bifurcation point. These analysis leads us to the following final
important proposition, which establishes the existence of the cyclical fluctuation in both of the
degenerated system and the original system.

Proposition 8.

( i ) There exist some non-constant periodic solutions of the degenerated four-dimensional
system (S2) at some parameter values βεm > 0 which are sufficiently close to βi

εm ( i = 1, 2 )
which are defined in Proposition 7.

( ii ) At the parameter values βεm0 which are sufficiently close to

βi
εm( i = 1, 2 ) which are defined in Proposition 7, the characteristic equation (39) of the

original five-dimensional system (S1) has a pair of complex roots for all sufficiently small
βπm > 0.

Proposition 8 ( ii ) follows from the continuity of the characteristic roots with respect to
the changes of the coefficients of the characteristic equation. This proposition establishes the
existence of the cyclical fluctuation in the original five-dimensional nonlinear dynamical system
(S1).

Remark 2.

If we can find a parameter value βεm = βεm∗ >0 at which all of the conditions ∆j > 0 (
j = 1, 2, 3 ), ∆4 = 0, ∆′

4(βεm) �= 0 are satisfied, we can establish the existence of a (simple)
Hopf Bifurcation in the original five-dimensional system ( cf. Liu (1994)). In this case, we can
establish the existence of the closed orbit in the original five-dimensional system. ( In fact,
we also need another condition a5 > 0, but this condition is always satisfied in this model. )
However, the existence of the closed orbit ( existence of a pair of purely imaginary roots ) is
not necessary for the existence of the cyclical fluctuation. Rather, the existence of a pair of
complex roots is enough for the existence of the cyclical movement.
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