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Abstract

Recently, Campbell and Viceira (2002) have introduced an intertempo-
ral framework for asset allocation problem where the interest rate and the
asset price dynamics are varying with the time. This paper follows up their
work and try to explain the asset allocation puzzle of Canner, Mankiw
and Weil(1997). We consider the bond prices systematically by integrat-
ing the no-arbitrage bond pricing models in the intertemporal framework.
We employ the method of Dynamic Programming to solve the intertem-
poral consumption and portfolio decisions numerically because usually
this intertemporal decision problems cannot be solved analytically. The
numerical example considers the Vasicek bond price and the Markowitz
stock price. Various properties of the consumption and portfolio decisions
will be demonstrated in the numerical example. Our numerical results
can explain the asset allocation puzzle.
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1 Introduction

The term ”strategic asset allocation” has been introduced by the book of Camp-
bell and Viceira (2002). It refers to an asset allocation decision in a long term
model where the consumption path is optimized in a time-varying investment
environment. It may reflect better the real world investment opportunities.
Also, academic work has been questioned since the static portfolio model of
Markowitz cannot explain the asset allocation puzzle: Canner, Mankiw and
Weil (1997) find that the financial advisors suggest more conservative investors
to hold a larger proportion of bonds to stocks. However, according to the static
model, the proportion of bond to stock investments of conservative investors
should be as same as aggressive investors.

Much research has been undertaken to find a suitable model to explain this
puzzle. The framework is laid out by Merton (1973) and considers long term
portfolio decisions in a time-changing environment. He employs a continuous-
time framework and decomposes the long-term decision into a static portfolio
decision and an intertemporal hedging term. In the part of the static portfolio
decision, the risky assets have the same proportion (mutual fund) whatever risk
aversion investors have. Therefore, the intertemporal term should provide the
explanation for the different investment proportion in the risky assets. Many
recent researchers have contributed to model the intertemporal terms properly.
In a finite-time framework, Kim and Omberg (1996) consider a mean-reverting
market price of risk, in the work of Brennan, Schwartz and Lagnado (1997) the
time-varying factors are modeled by the short-term interest rate, a long-term
bond yield and dividends of a stock and Brennan and Xia (2002) account for in-
flation risk. Liu (2001) gives the conditions for analytical solutions for this long-
term decision problem. The recent work of Munk, Sørensen and Vinther (2004)
considers both inflation risk and a mean-reverting equity premium and they
calibrate the model to empirical data. In an infinite-time framework, Cambpell
and Viceira employ recursive utility. Their work explores the intertemporal
decision problem in models with stochastic interest rates (2001) , with AR(1)
equity premium (1999,2001) and labor incomes (2002) .

For bond pricing we consider in this paper no-arbitrage bond pricing. The rea-
son is: the bonds of different maturities can substitute each other. Therefore,
the interest rate and the bond yields of different maturities should satisfy some
constraint in order to rule out arbitrage opportunity by constructing bond port-
folios. The first arbitrage-free bond pricing model has been provided by Vasicek
(1977) . Then, many other models followed, for example, Cox, Ingersoll and
Ross (1985), Brennan and Schwartz(1979), Hull and White (1990,1994), and so
on. Health, Jarrow and Morton (1992) unify all the no-arbitrage bond pricing
models in their framework. Our paper will apply a tractable subclass of no-
arbitrage pricing models : the yield-factor model of interest rate provided by
Duffie and Kan (1996). It can accommodate many prominent term structure
models, for example, Vasicek (1977), Cox, Ingersoll and Ross(1985), the Hull
and White (1990) one-factor model and the Hull and White(1994) two-factor
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model.

The investment opportunities in this paper including bonds and stocks and the
plan horizon is infinite. When considering bonds for an infinite horizon the
following questions will arise. What we should do if the bonds mature? Which
maturity of bonds should be chosen and whether the consumption and portfolio
decisions depend on the bond maturities? Besides, the price dynamics of the
bonds change along the time toward maturity dates. 1 So, as the time goes
forwards, three things are varying: the utility of consumption is discounted,
the interest rate evolves and the price dynamics are changing. As an intertem-
poral optimizer, the agents have to consider the interdependence due to the
time between the discounting effect of the utility, the price changing effect and
the evolution of the interest rate. As a result, the intertemporal decisions will
depend on time in a complicated way. In this paper we will show that if a
complete arbitrage-free bond market is considered, the consumption decision is
independent of the bond choice. The portfolio decision depends on the bond
choice but the wealth dynamics under the optimal portfolio decision are inde-
pendent of the bond choice. Therefore, when a bond matures, we can continue
its position with an arbitrage bond without affecting the consumption decision
and the wealth dynamics under optimal portfolio decision. Also, in this case,
the time has only a discounting effect.

To solve the intertemporal optimization problem we employ the method of dy-
namic programming. Numerical procedures are developed based on the discrete-
time scheme. This is necessary, because even for a simple example2 such in-
tertemporal optimization problems cannot be solved analytically yet. The nu-
merical procedures are implemented on several examples and the numerical
performance will be checked. The focus of the numerical study is to find out
how strong are the intertemporal effects and how much the risk aversion of the
investors affects the long term portfolio decisions.

The remainder of the paper is organized as follows. Section 2 introduces the
intertemporal model and the arbitrage-free bond pricing model in a continuous-
time framework. We solve the intertemporal optimization decisions using the
method of dynamic programming. A proof of the time independence by consid-
ering a complete arbitrage-free bond market is also included. Section 3 studies
the discrete-time counterpart of the model in Section 2. Section 4 presents a
numerical study. Section 5 concludes the paper.

1The volatility of bond prices decreases.
2See later studies in this paper.
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2 Continuous-Time Framework

2.1 The Model

In our intertemporal model there is an arbitrary number of identical agents who
want to maximize the expected utility of lifetime consumption. The model is a
continuous-time model so the agents can make decisions at any time 0 ≤ t <∞.
The agents have initial wealth W0 = w. Let Wt denote the agents’ wealth at
time t. The agents devote a fraction of the wealth ψt, 0 ≤ ψt ≤ 1 to consumption
and the rest to buying a portfolio of assets. The utility function of consumption
is assumed to be given by

U(ψtWt) =
(ψtWt)

1−γ

1− γ
, (1)

for every t ∈ [0,∞).

For the investment opportunity there are n+1 assets: n of them are risky assets
and the other one is the borrowing and lending. The returns of the n risky assets
are described by diffusion processes

dPit
Pit

= µitdt+ σitdZit, (2)

for i = 1, 2, · · · , n, where Pit > 0 denotes the price of the i-th asset at time t and
(Z1t, · · · , Znt) is a n-dimensional vector of Brownian motions with instantaneous
covariance (ρij) where ρijdt = E[dZitdZjt] for i, j = 1, · · · , n. The asset indexed
by 0 and representing the borrowing and lending is called the market money
account. Its return is the short term (instantaneous) interest rate rt, so that

dP0t
P0t

= rtdt. (3)

The difference between the money market account and the risky assets can be
observed by comparing the return processes (2) and (3). The return rt of the
money market account is known at the current time while the return of the
risky assets are exposed to uncertainty represented by the noise σitdZiz in (2).

In the model there are state variables which are exogeneously given and affect
the development of the process of the asset return. Examples of such state vari-
ables are macroeconomic factors or technology factors. We call our model a m-
factor model if the number of the state variables is m. Let Xt = (X1t, · · · , Xmt)
be a m-dimensional stochastic process representing the state factors. Their
dynamics are assumed to follow the diffusion processes

dXit = fi(Xt)dt+ gi(Xt)dQit, (4)

for i = 1, · · · ,m, where fi : R
m → R, gi : R

m → R, (Q1t, · · · , Qmt) is a
m-dimensional vector of Brownian motions with instantaneous covariance (νij)
where νijdt = E[dQitdQjt] for i, j = 1, · · · ,m. The influence of the state factors
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on the dynamics of the asset returns is modelled as follows. The short term
riskless interest rates (3), the drift coefficients µit and the diffusion coefficients
σit in the return dynamics (2) are functions of the state factors

dP0t
P0t

= r(Xt)dt (5)

dPit
Pit

= µi(Xt, t)dt+ σi(Xt, t)dZit, (6)

where µi, σi now are functions µi : R
m × R+ → R and σi : R

m × R+ → R. In
addition, the drift and diffusion coefficients are allowed to be functions of t be-
cause we will consider bonds as risky assets later. Their coefficients will depend
on the maturity date of the bonds. Moreover, the shocks to the state factors
dQit and the shocks to the risky asset returns dZit are allowed to be correlated
since they could affect each other. Let (ηij)dt be the instantaneous covariance
(ηij)dt = E[dQitdZjt] for i = 1, · · · , d and j = 1, · · · , n. In short, there are
time-varying state variables which change the driving force of the asset returns
and the asset returns affect interactively the development of the state variables.
These dynamical features of the state variables and the asset returns including
their interaction is the reason why we consider intertemporal models instead of
a static (one-period) one.

The agents live for an infinitely long time t ∈ [0,∞) and they decide their con-
sumption and portfolio plans at the time t = 0. The portfolio decision at time t
is denoted by a n+1-dimensional vector of real numbers αt = (α0t, α1t, · · · , αnt)
where αit is the investment proportion in the i-th asset so that

∑n
i=0 αit = 1

for all 0 ≤ t < ∞. Short sales are allowed so that αit can be negative. At
the time t = 0 the agents choose paths of consumption ratios ψt and portfolio
decisions αt for the whole life 0 ≤ t <∞ so that the expected lifetime utility is
maximized. The objective function for the agents is described by

max
ψt,αt,0≤t<∞

E
[
∫ ∞

t=0

e−δtU(ψtWt)dt
]
, (7)

where δ is the subjective discount factor representing how the agents discount
utility over time. Taking into account the asset returns (5) and (6) for a given
choice of αt and ψt at time t the agents’ wealth evolves according to3

dWt

Wt
=

(

rt − ψt +

n∑

i=1

αit(µit − rt)
)

dt+

n∑

i=1

αitσitdZit. (8)

3See P.377-380 Merton(1971)
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2.2 Solving the Intertemporal Decision Problem using Dy-

namic Programming

Let J(t, w, x) : R+ ×R++ ×R
m → R++ be the optimized objective function at

the time t, that is

J(t, w, x) = max
ψs,αs,s≥t

E
[
∫ ∞

t

e−δsU(ψsWs)ds
]
, (9)

with initial condition Wt = w and Xt = x. If the solution J(t, w, x) exists, it
should satisfy the the Hamilton-Jacobi-Bellman(HJB) equation 4

0 = max
ψt,αt

(

e−δtU(ψtw)dt+ Jtdt+ JwE[dWt] +

m∑

i=1

Jxi
E[dXit] (10)

+
1

2
Jww(dWt)

2 +

m∑

i,j=1

1

2
Jxixj

dXitdXjt +

m∑

i=1

Jwxi
dWtdXit

)

,

where Jt, Jw, Jxi
denote the partial derivatives w.r.t t, w, xi and Jww, Jxixj

, Jwxi

are second order partial derivatives. We shall drop the arguments of the function
J(t, w, x) in order to simply the notation if this does not lead to confusion.
Rewriting (10) by replacing dWt and dXt as given by (8) and (4), using the
rules of stochastic calculus 5 and cancelling the common factor dt the HJB
equation (10) becomes

0 = max
ψt,αt

{

e−δtU(ψtw) + Jt (11)

+Jw

[

r(x)− ψt +

n∑

i=1

(αit
(
µi(x, t)− r(x)

)
]

w +

m∑

i=1

Jxi
fi(x)

+
1

2
Jww

[
n∑

i=1

n∑

j=1

αitαjtσi(x, t)σj(x, t)ρij
]
w2

+
1

2

m∑

i=1

m∑

j=1

Jxixj
gi(x)gj(x)νij +

[
m∑

j=1

Jwxj
gj(x)

n∑

i=1

αitσi(x)ηij
]
w

}

.

In the following derivation we use the abbreviation σit = σi(x, t), µit = µi(x, t)
for i = 1, · · · , n, r = r(x) and gi = gi(x), fi = fi(x) for i = 1, · · · ,m so that
the notation is less burdensome.

Let Ω be the covariance matrix of the shocks of the asset returns,

Ωt =






σ1tσ1t · · · σ1tσntρ1n
...

. . .
...

σntσ1tρn1 · · · σntσnt




 .

4The HJB equation states that the optimal lifetime utility over [t,∞) should be equal to
the optimal momentum utility for a short time interval [t, t + dt) plus the optimal lifetime
utility over [t+dt,∞). See P.264-271 in Kamien and Schwartz (1991) for a heuristic discussion
and Chapter 11 in Øksendal(2000) for a rigorous derivation.

5See, for example, Chap. 9 in Campbell, Lo and MacKinlay(1997)
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Using the first order condition obtained from the equation (11) by differentiating
w.r.t α we can solve for α to obtain






α1t
...
αnt




 = −

Jw
Jww w

Ω−1t






µ1t − r
...

µnt − r




−

m∑

j=1

Jwxj

Jww w
Ω−1t






σ1tη1jgj
...

σntηnjgj




 . (12)

If gj(x) ≡ 0 for all j, then the factor are constant over the time. Then the
intertemporal model is reduced to a static model and the second term in (12)
is equal to zero. So, the first term is called the static portfolio decision and the
second term is called by Merton 6 the term of intertemporal hedging. It is also
the case when the factor noise and the asset return noise are uncorrelated.

The first order condition obtained by differentiating w.r.t ψ provides the equa-
tion

U ′(ψtw) = eδtJw , (13)

which implicitly gives the optimal consumption ratio ψ. We also know that the
extreme solutions α and ψ which satisfy the F.O.C above are indeed maximiz-
ers.7

Using the F.O.C’s (12) and (13) to rewrite (11), we obtain

0 = e−δtU(ψ∗w) + Jt + Jw(r − ψ
∗)w +

m∑

i=1

Jxi
fi (15)

−
1

2

J2w
Jww

(µt − r)
′Ω−1t (µt − r)−

m∑

j=1

JwJw,xj

Jww
(µt − r)

′Ω−1t Vjt

−
1

2

m∑

j,k=1

Jw,xj
Jw,xk

Jww
V ′jtΩ

−1
t Vkt +

1

2

∑

j,k=1

Jxj ,xk
gjgkνjk ,

where µt =
(
µ1t · · · µnt

)′
denotes the vector of the mean returns and

Vjt =






σ1tη1jgj
...

σntηnjgj






6See P.876 Merton (1973).
7Differentiating equation (11) twice w.r.t ψ we obtain

eδtU ′′(ψw)w < 0,

because of the concavity of U . Differentiating equation (13) w.r.t w we have

U ′′(ψw)ψ = eδtJww. (14)

Therefore Jww < 0. Differentiating equation (11) twice w.r.t α we have the Hessian matrix of
α is equal to JwwΩw2 which is positive definite. Therefore we know the solution of α given
in (12) and ψ given in (13) are maximizers of equation (11).
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denotes the covariance between the shocks of all assets and the j-th state factors.
Here ′ denotes the matrix transpose and ψ∗ = ψ∗(t, w, x) denotes the solution
of ψ satisfying equation (13).

The equation (15) is a non-linear partial differential equation for the optimized
value function J(t, w, x). We saw already in (12) and (13) that J(t, w, x) is
needed to solve the optimal portfolio weight vector α and the consumption ratio
ψ. Thus the main task at-hand is to develop ways to solve partial differential
equation (15).

2.3 The Arbitrage-free Bond Pricing Model

Typical assets for investment are bonds and stocks. Bond assets give a fixed
payout at a specified maturity day. 8 So they are considered as safer assets than
stocks. Due to the fixed payout the dynamics of the bond returns change with
the time to maturity. Let T be the maturity date and t be the current time,
the drift and diffusion coefficient of the bond return process µi and σi are also
functions of the time to maturity T − t. Under the assumption of no transaction
costs, bonds can be substituted perfectly with each other. In order to exclude
arbitrage possibility by creating bond portfolio we employ arbitrage-free bond
pricing models.

Let P (r(Xt), t, T ) be the bond price at the time t maturing at T depending on
the interest rate r(Xt). For the given initial state of the factors Xt = x, using
Itô’s formula, the rate of bond return is given by 9

1

P (x, t, T )

dP (x, t, T )

dt
= µP (x, t, T )dt−

d∑

i=1

σP,i(x, t, T )dQit

where

µP (x, t, T ) =
1

P (x, t, T )

(
Pt(x, t, T ) +

d∑

i=1

fi(x)Pxi
(x, t, T ) +DP (x, t, T )

)

σP,i(x, t, T ) = −
1

P (x, t, T )
Pxi

(x, t, T )gi(x). (16)

The operator D is defined as 12
∑d
i,j=1 gi(x)gj(x)∂

2
xi,xj

. The no-arbitrage con-
straint gives a restriction between the drift and the diffusion coefficients of the
bond returns. If the bond market is arbitrage-free, then there exists d functions
λi(x, t) for i = 1, · · · , d which are independent of the maturity date T such that

µP (x, t, T )− r(x) =
d∑

i=1

λi(x, t)σP,i(x, t, T ). (17)

8In our model with infinite time horizon we assume as long as a bond matures, an other
bond with the same maturity duration will be introduced immediately in the opportunity set
so that the number of the assets remains the same. However, it does matter the solution of
ψt and αt in the HJB equation (11) since the solution is only for the current time t.

9See Chiarella (2004).
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λi is interpreted as the market price of risk for the state factor i. 10

For our model we consider a subclass of the arbitrage-free bond models: the
yield-factor model provided by Duffie and Kan(1996). The bond price of the
yield-factor model is exponential-affine

P (x, t, T ) = exp
(
−A(T − t)−

d∑

i=1

Bi(T − t)xi
)
, (18)

with x = (x1, · · · , xd).
11 The condition on the stochastic process of the factors

is that r(x), fi(x) for any i = 1, · · · , d and gi(x)gj(x) for any pair (i, j), i, j =
1, · · · , j in (4) are affine in x. 12

We assume a complete bond market in the model which means that the agents
are allowed to invest in all bonds. If no-arbitrage constraint holds, we need
only to consider d different bonds because we can derive the other bond price
through the d given bonds. 13 Let Tj with Tj > t be the next maturity date
for the j-th bond for j = 1, · · · , d. Then the return of the j-th bond can be
represented by

dPj(x, t, Tj)

Pj(x, t, Tj)
= µj(x, t)dt−

d∑

i=1

Bi(Tj − t)λi(x)dQit, (19)

with the expected return µj(x, t)

µj(x, t) = r(x) +
d∑

i=1

λi(x, t)Bi(Tj − t)gi(x)

.

2.4 Solving Intertemporal Decision Problem with Arbitrage-

Free Term Structure

By considering bonds in the investment set, a question arises naturally: which
bonds (which maturity date) should we choose for the model? or whether the
choice of the bonds would affect the optimal decision of the agents? We will
show in the following that if we consider a complete no-arbitrage bond market,
then the choice of bonds does not affect our intertemporal decision problem.

Assume here that

A1 the market prices of risk λi(x, t) = λi(x) depends only on x and

A2 the coefficients of the stock return depend also only x.

10It implies a synthetical portfolio with zero risk should have the same return with riskless
asset. See Chiarella (2004).

11A(T − t) and Bi(T − t) depend also on the parameters in r(x), fi(x) and gi(x).
12It means a · x+ b.
13See Chap. 22.10 P.352 Chiarella (2004).
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dPd+1,t
Pd+1,t

= µd+1(x)dt+ σd+1(x)dZt, (20)

Then we can show

Theorem 1 If the assumptions A1, A2 are satisfied, the bond price is exponen-
tial affine as in (18) and the bond market is complete, then

(i) the solution J(t, w, x) for the HJB equation (15) is independent of the
maturity dates of the chosen bonds.

(ii) Solving the HJB equation (15) with the investment set including the stock
(20) and the bonds (19) is equivalent to solving the HJB equation with the
investment set including the same stock (20) and the following assets

dP̃j(x, t)

P̃j(x, t)
=
(
r(x) + λj(x)gj(x)

)
dt− gj(x)dQjt , (21)

which replace the bonds in the original model.

Proof See the Appendix.

The intuition for the statement (i) is that for any other bond with maturity
date T̃ , using the completeness and the no-arbitrage of the bond market, we can
generate a synthetic portfolio which has the same payout and the same price.
So, any other bond set with maturity dates T̃1, · · · , T̃m can be generated by the
original bond set T1, · · · , Tm. Then, both investment environments should be
equivalent. Therefore, the optimized utility J(t, w, x) should not be different.

The intuition for the statement (ii) is that by rewriting the no-arbitrage bond
return (19) in the form

dPj(x, t, Tj)

Pj(x, t, Tj)
= r(x)dt+

m∑

i=1

Bi(Tj − t)
(
λi(x, t)gi(x)dt− gi(x)dQit

)
,

we see the excess return of the bond with the maturity date Tj is the sum of the
”factor returns” (21) with the weights Bi(Tj − t) for i = 1, · · · ,m. Therefore
the ”factor assets” with the returns (21) can be considered as the generators of
the bonds.

From Theorem 1 we know J(t, w, x) is also the solution for the intertemporal
optimization problem with the new equivalent investment set (19) and (21).
Noticing that the return dynamics of the new assets are not depend on t. Then
the optimization problem (9) is an ”autonome” problem which means the opti-
mization depends only the initial states but not the initial time. Therefore

Corollary 1.1 If the assumptions in Theorem 1 are satisfied, then the objective
function (9) can be transformed in

J(t, w, x) = max
ψs,αs,s≥t

Et
[
∫ ∞

t

e−δsU(ψsWs)ds
]

(22)

= e−δt max
ψs,αs,s≥0

E0
[
∫ ∞

0

e−δsU(ψsWs)ds
]
= e−δtJ(0, w, x),(23)
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where the initial condition for (22) is Wt = w and Xt = x while the initial
condition for (23) is W0 = w and X0 = x.

Corollary 1.2 If all assumptions in Theorem 1 are satisfied, then the optimal
consumption is independent of the choice of bonds.

Proof Recall that the optimal consumption has to satisfy (13). It is indepen-
dent of the choice of bonds because J(t, w, x) is independent of the choice of the
bonds.
Q.E.D.

Corollary 1.3 Let

Bt =






B1(T1 − t) · · · Bd(T1 − t)
...

. . .
...

B1(Td − t) · · · Bd(Td − t)




 . (24)

If all assumptions in Theorem 1 are satisfied, then
(i) Btαt is independent of the chosen bonds where αt is the optimal portfolio
decision.
(ii) The wealth dynamics (8) under the optimal portfolio decision is independent
of the bond choice. Furthermore, we can decompose the wealth change (8) into
three parts: the part contributed by the stock market, by the fixed income market
(including the bonds and the money) and by the consumption. All three parts of
the wealth changes are independent on the bond choice.

Proof See the Appendix.

Following the discussion above we seek the solution J(t, w, x) of the form 14

J(t, w, x) = e−δtH(x)γU(w) (25)

where U is the utility function defined in (1). Then the optimal consumption
ratio is solved as

ψ∗(t, w, x) = H(x)−1 (26)

and it depends only on the initial state x. The optimal portfolio weight becomes






α1
...
αn




 =





B
−1
t 0

0 1





(
1

γ
Ω̃−1(µ̃− r) +

d∑

j=1

Hxj

H
Ω̃−1Ṽj

)

, (27)

where µ̃, Ω̃ and Ṽi are defined in the Appendix. 15

14For the product form H(x)γU(w) of the solution form see later the discussion on the
discrete-time version of the model.

15The optimal portfolio can be found in (65). The definitions of µ̃, Ω̃ and Ṽi are founded in
(61,) (62) and (63).
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The HJB equation (15) reduces to

0 =
γ

H
+
(
− δ + r(1− γ) +

1− γ

2γ
(µ̃− r)′Ω̃−1(µ̃− r)

)
(28)

+

m∑

i=1

Hxi

H

(
γfi + (1− γ)(µ̃− r)′Ω̃−1Ṽi

)

+
1

2

m∑

i,j=1

Hxixj

H
gigjνij

+
1− γ

2γ

m∑

i,j=1

Hxi
Hxj

H2
(
Ṽ ′i Ω̃

−1Ṽj − gigjνij
)

and the problem now reduces to solving for H. At most cases, H cannot be
solved analytically.16 Later we develop numerical algorithm to solve it.

16It can be solved for finite plan horizon, see Liu (2001) , Kim and Omberg (1996).
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3 Discrete-Time Models and the Iteration Method

3.1 Discrete-Time Version of the Continuous-Time Model

We consider here one discrete-time approximation for the continuous-time in-
tertemporal consumption-portfolio problem described in the Section 2.1. The
agents can in the discrete-time model consume and make portfolio decisions only
at the given discrete time points t0, t1, t2, · · · . We assume in this paper that the
time points are equi-distant td = d ∗ h with step size h > 0 and d = 0, 1, 2, · · · .
The discrete-time aspect can help to understand intuitively properties of the
optimal decisions of the continuous-time model. Moreover, it lays the process
of the numerical method for solving the optimal decisions later.

In the discrete-time model, the dynamics of the underlying factors (4) are ap-
proximated by the Euler method

Xt+∆t −Xt = f(Xt)∆t+ g(Xt)(Qt+∆t −Qt). (29)

17 The price processes are approximated by

P0(td+1)− P0(td)

P0(td)
= r(X(td))h , (30)

Pi(td+1)− Pi(td)

Pi(td)
= µi(X(td), td)h+ σi(X(td), td)∆Zi(td+1) (31)

for i = 1, · · · , n, where ∆Zi(td+1) = Zi(td+1) − Zi(td) is the increment of the
Brownian motion Zi given in (6).

The agents decide the consumption ratio and portfolio right after the prices
Pi(td) are announced. The consumption ratio and portfolio weights decided at
td are denoted by ψ(td) and αi(td) for i = 0, · · · , n and

∑n
i=0 αi(td) = 1.

The agents maximize the lifetime expected utility of consumption. The current
time is 0. The agents can choose the level of consumption and the portfolio
weights after a specified time tk with given initial wealth Wtk = w, initial state
Xtk = x. The mathematical representation of the agents’ decision problem is
given by

J(tk, w, x) := max
ψ(td),α(td),d≥k

Etk

[ ∞∑

d=k

e−δtdU(ψ(td)W (td))

]

. (32)

The conditional expectation Etk represents the expectation of the wealth devel-
opment after tk given Wtk = w and Xtk = x.

The wealth dynamics in the discrete-time model is described by 18

W (td+1) =W (td)(1− ψ(td)h)
(
1 +

n∑

i=0

αi(td)
Pi(td+1)− Pi(td)

Pi(td)

)
. (33)

17Alternatively, we can employ higher order approximation method, for example, the Mil-
stein method, see Kloeden and Platen(1994) .

18See the Appendix.
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The wealth change is equal to the weighted sum of each asset return ∆P/P
times the wealth after consumption. Placing the asset returns (31) into (33), we
see that the wealth change is a function of the initial wealth, consumption ratio,
portfolio weights, current states, current time and the shocks in this period. So
we denote the wealth change dynamics by

W (td+1) =: ϕW
(
W (td), ψ(td), α(td), X(td),∆Z(td), td

)
(34)

= W (td)(1− ψ(td)h)Π(α(td), X(td),∆Z(td+1), td), (35)

where

Π(α, x,∆Z, t) (36)

= 1 + r(x)h+

n∑

i=1

αi

[

(µi(x, t)− r(x))h+ σi(x, t)∆Zi

]

.

Π can be interpreted as the portfolio return for one period. It is independent of
the consumption decision and the wealth level.

3.2 Solving the Discrete-Time Optimization Problem by

Iteration

The Bellman equation for J(t, w, x) in the discrete-time version is given by

J(t, w, x) = max
ψt,αt

{
e−δtU(ψtw)h+ Et[J(t+ h,Wt+h, Xt+h)]

}
(37)

= max
ψt,αt

{
e−δtU(ψtw)h+ Et[J

(

t+ h, ϕW (w,ψt, αt, x,∆Zt+h, t), ϕX(x,∆Qt+h)

)

],

where w = Wt, x = Xt are initial states. Let T be defined as the operator on
J(t, w, x) such that

T (J)(t, w, x) (38)

= max
ψt,αt

{

e−δtU(ψtw)h+ Et[J

(

t+ h, ϕW (w,ψt, αt, x,∆Zt+h, t), ϕX(x,∆Qt+h)

)

]

}

.

Then the solution of (37) is the fixed point of the operator T

T (J)(t, w, x) = J(t, w, x). (39)

We can start with some function J0 and apply the operator iteratively

Jk(t, w, x) :=

k-times
︷ ︸︸ ︷

T ◦ · · · ◦ T ◦J0(t, w, x) (40)

denotes the k-th step iteration.

Under certain conditions19 the solution of (40) exists and is unique and
limk→∞ Jk(t, w, x) converges to this solution.20 We call this solution method

19The conditions are (i)f , g in (29), r in (30), µi and σi in (31) are bounded and Lipschtz-
continuous |F (x1)−F (x2)| < LF |x1 −x2|, (ii) U is bounded and Hölder continuous |U(x1)−
U(x2)| < LU |x1 − x2|θ (iii) h < 1/δ .

20See Camilli and Falcone(1995).
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the iteration method.

3.3 No-Arbitrage Term Structure in Discrete-Time Mod-

els

Applying the Euler approximation method to the bond price dynamics (19) we
obtain

P (x, t+ h, T )− P (x, t, T )

P (x, t, T )
(41)

=

(

r(x) +
m∑

i=1

λi(x)Bi(T − t)gi(x)

)

h−
m∑

i=1

Bi(T − t)gi(x)∆Qi,t+h.

These approximate bond returns satisfy the no-arbitrage constraint (17) and
are arbitrage-free.21 So, analog to the continuous time framework under the
assumption of a complete arbitrage-free bond market, we consider a new invest-
ment set including the same stock and m assets with the following return

P̃j(x, t+ h)− P̃j(x, t)

P̃j(x, t)
=
(
r(x) + λj(x)gj(x)

)
h− gj(x)∆Qj,t+h , (42)

for j = 1, · · · ,m who replace the bonds.

The new investment set provides the same return as the original one because

Π(α, x,∆Z, t) = 1 + r(x)h+

m∑

i=1

αi

m∑

j=1

Bi(Tj − t)

(

λj(x)gj(x)h− gj(x)∆Qj,t+h

)

+αm+1

(

(µs(x)− r(x))h+ σs(x)∆Zt+h

)

(43)

= 1 + r(x)h+
m∑

j=1

α̃j

(

λj(x)gj(x)h− gj(x)∆Qj,t+h

)

+αm+1

(

(µs(x)− r(x))h+ σs(x)∆Zt+h

)

=: Π̃(α̃, x,∆Z), (44)

where

α̃j =

m∑

i=1

Bi(Tj − t)αi for j = 1, · · · ,m (45)

α̃m+1,t = αm+1,t. (46)

We can interpret α̃j as the investment weight in the j-factor-asset for the new
investment set.

21See the footnote for (17).
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3.4 Separation Theorem

For the iteration (40) we start the iteration with the function

J0(w, x) = e−δtU(w). (47)

We claim

Theorem 2 (Separation Theorem) If the arbitrage-free and complete bond
market is considered and the initial function for the iteration is given above,
then for every iteration step k = 0, 1, · · · Jk has the factorized form:

Jk(t, w, x) = e−δtU(w)Sk(x), (48)

where U is defined in (1).

Remark The optimized utility function J(t, w, x) can be decomposed into three
multiple parts.

Proof
The proof is obtained by the mathematical induction. Assume that at the k-th
step Jk(t, w, x) has the factorized form

Jk(t, w, x) = e−δtU(w)Sk(x), (49)

then at the k + 1-st step, for 0 < γ < 1:

Jk+1(t, w, x) (50)

= max
ψ,α

{

e−δtU(ψw)h+ e−δ(t+h)Et[U
(
ϕW (wt, α, ψ, x,∆Z))Sk

(
ϕX(x,∆Q)

)
]

}

= e−δtU(w)max
ψ,α

{

ψ1−γh+ e−δh(1− ψh)1−γEt[Π(α, x,∆Z, t)1−γSk
(
ϕX(x,∆Q)

)
]

}

= e−δtU(w)max
ψ

{

ψ1−γh+ e−δh(1− ψh)1−γ max
α

Et[Π(α, x,∆Z, t)1−γSk
(
ϕX(x,∆Q)

)
]

}

= e−δtU(w)max
ψ

{

ψ1−γh+ e−δh(1− ψh)1−γ max
α̃

Et[Π̃(α̃, x,∆Z)1−γSk
(
ϕX(x,∆Q)

)
]

}

.

For γ > 1, we change all max with min because U(w) < 0.

The second equality is due to the property of the utility function (1)

U(ψw) = ψ1−γU(w)

and the wealth dynamics (35).

The intuition for the third equality is that the consumption decision ψ does not
appear in the term Et[Π(α, x,∆Z, t)1−γSk

(
ϕX(x,∆Q)

)
]. The precise proof is

provided in the Appendix. 22

22Theorem 3 [Separation Theorem for the agents’Decisions].
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The fourth equality is based on the algebraic transformation of the portfolio
return (44). Because of the equivalence Π(α, x,∆Z, t) ≡ Π̃(α̃, x,∆Z), then we
can have

max
α

Et[Π(α, x,∆Z, t)1−γSk
(
ϕX(x,∆Q)

)
]

≡ max
α̃

Et[Π̃(α̃, x,∆Z)1−γSk
(
ϕX(x,∆Q)

)
]

and the maximization solutions α∗ and α̃∗ are related with each other by the
one-to-one relationship (45). The purpose of this step is that we can rewrite
Jk+1(t, w, x) into the separable form

Jk+1(t, w, x) = e−δtU(w)Sk+1(x)

where

Sk+1(x) = max
ψ

{

ψ1−γh+e−δh(1−ψh)1−γ max
α̃

Et[Π̃(α̃, x,∆Z)1−γSk
(
ϕX(x,∆Q)

)
]

}

(51)
is not a function of t.

For γ > 1 the iteration Sk+1(x) is defined analogously

Sk+1(x) = min
ψ

{

ψ1−γh+e−δh(1−ψh)1−γ min
α̃

Et[Π̃(α̃, x,∆Z)1−γSk
(
ϕX(x,∆Q)

)
]

}

.

(52)
Q.E.D.

Remark 1 From the proof above, we saw that the time schedule dependence of
the wealth dynamics does not affect the maximization result. However, it indeed
affects the investment weights on the bonds. To see that, we solve at first the
optimization problem with the new investment set and obtain the maximizer
α̃∗. Then the optimal portfolio α∗ of the original model is obtained as








α∗1t
α∗2t
...

α∗d,t







≡








B1(T1 − t) B1(T2 − t) · · · B1(Td − t)
B2(T1 − t) B2(T2 − t) · · · B2(Td − t)

...
...

. . .
...

Bd(T1 − t) Bd(T2 − t) · · · Bd(Td − t)








−1






α̃∗1t
α̃∗2t
...

α̃∗d,t








For a different set of the maturity dates we will have a different optimal choice
for bond investment.

Remark 2 If the limit of limk→∞ Sk(x) = S(x) exists and is unique, then S(x)
is the fixed point of the iteration (51) for 0 < γ < 1 (or (52) for γ > 1) and
J(t, w, x) = e−δtU(w)S(x) is the solution of the Bellman equation (37). The
solution S(x) is independent of the choice of the initial function (47).
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4 Numerical Study

Recall that the objective is to solve the optimal portfolio decision αt and ψt sat-
isfying (12) and (13) and the main problem is that J(t, x, w) cannot be solved
analytically. In this section we develop computational algorithm based on the
iteration method described in Section 3.2. The focuses of this numerical study
is to explain how strong the intertemporal hedging term in (12) is and how the
parameter of the risk aversion, γ, affects the portfolio decision αt.

Using Separation Theorem 1, Jk(t, w, x) of the iteration method can be de-
composed into the multiple form Jk(t, w, x) = e−δtU(w)Sk(x). The iteration
process for Sk(x) is described in (51). It is advantageous to use the multiple
form because we can reduce the iteration by two dimensions. For example, if
the underlying factor is one-dimensional, we will implement one-dimensional it-
eration for S(x) instead of three-dimensional problem for J(t, w, x).

The numerical solutions ψt and αt will be compared with the solutions in the
continuous-time model (27) and (26).

4.1 Numerical Implementation

The Brownian Motion increments ∆Zi and ∆Qi in Section 3.2 are approximated
by the random walks.23 The process the underlying factors (29) is constrained
on a compact set. Although the underlying factors are stochastic processes, for
our numerical examples later we can find a compact set large enough such that
the stochastic processes will ”almost” always stay within this set. Then, this
constraint is still acceptable.

For each iteration we have to know Sk(x) on the compact set. We use the stan-
dard numerical method: taking a grid on the compact set of the state variables,
evaluating Sk(x) evaluated on the grid points and approximating other values
by the bilinear form, for details see Grüne (1997) and Grüne (2001).

The numerical procedure is programmed with the programming language ”GAUSS”.24

To find the maximizer in (51) the BFGS method25 is used.

4.2 Examples

Here we consider the investment set which includes

23The one-dimensional random walk is

P
(
B(td+1)−B(td) =

√
h
)
= P

(
B(td+1)−B(td) = −

√
h
)
=

1

2
.

For n-dimensional Brownian Motion increments with given correlation we take the correspond-
ing linear combination of n independent Random Walks to obtain the specified correlations.

24Commercial software from Aptech Systems (www.aptech.com).
25See ”www.aptech.com/papers/qnewton.pdf”.
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• money market account with the return process26

dP0t
P0t

= drt = κ(θ − rt)dt+ g0dQt, (53)

where κ,θ and g0 are positive constants. This process is also called a
mean-reverting process. 27

• A bond matures at T for T > t with return28

dP1t
P1t

=
(
rt + λB(T − t)g0

)
dt−B(T − t)g0dQt, (54)

where λ represents the market price of interest rate risk and B(τ) is the
function

B(τ) =
1− exp(−κτ)

κ
.

• A stock with return
dP2t
P2t

= µsdt+ σsdZt. (55)

The correlation between the two Brownian motions dQt and dZt is η.

The control variable is the consumption proportion ψt, the investment propor-
tion of the bond α1t and the stock α2t. The state variable is the interest rate
rt.

The parameters employed in the simulation example are:

for the interest rate: θ = 0.04, g0 = 0.0016, κ = 0.46,
for the bond: λ = 0.005, T = 1,
for the stock: µs = 0.045, σs = 0.25,
the correlation: η = −0.6, 0 and 0.6,
the risk aversion γ = 0.1, 0.5, 0.9.

And the parameters taken for numerical implementation are:

the current time: t = 0,
time discretization: h = 0.1
the compact set for the state variable: rt ∈ [0.01, 0.07],
the number of the grid points: = 61,
the width of the grid cells ∆r = 0.001.

Figure 1 shows a typical path of the interest rate process. The limit distri-
bution of this process is a normal distribution with mean 0.04 and standard
deviation 0.00167. Then the probability to move out of the given compact set
is 3.72 ∗ 10−72.

We consider two examples in our numerical experiments.

26See Vasicek (1977)
27θ is the ”mean” for the interest rate rt. κ represents the reversion speed to the mean θ.
28See Vasicek (1977)
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Figure 1: One Realization of the Vasicek Interest Rate

4.2.1 An Example excluding Bonds

The bond is not included in the investment set at first. The control variable
is ψ the consumption ratio and α the investment weight on the stock so that
1 − α is the investment on money market account. The state variable is the
instantaneous interest rate.

Using the result of (27), the optimal stock investment is given by

α =
1

γ

µs − rt
σ2s

+
H ′(r)

H(r)

g0
σs
η. (56)

The first term is the static portfolio and the second term is the intertemporal
hegding term. In this case the function H(r) cannot be solved analytically.

If η = 0, then the optimized stock investment is equal to the static stock invest-
ment. We employ this fact to check the performance of our numerical proce-
dures. We compare the numerical and the static optimal portfolio choices and
summarize their average absolute errors in the following:

γ = 0.1 γ = 0.5 γ = 0.9
0.0409 0.0014 0.0044

.

The error for γ = 0.1 is larger than those for γ = 0.5, 0.9. This is because the
more risk-friendly agents also take larger positions on the risky assets.
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Figure 2: Numerical Optimal Portfolio Choice

In Figure 2 we observe the numerical solutions for the optimal stock invest-
ment. As we can observe for the same risk aversion γ, the portfolios are close
for different correlation η. This means that the intertemporal hedging terms do
not contribute much to the portfolio choice. We analyze the intertemporal ef-
fects further. In Figures 3 and 4 the curves denoted ”num”(numerical) plot the
difference between the numerical solution and the static stock investment and
”theo”(theoretical) plot the term H′(r)

H(r)
g0
σs
η using the numerical results for H(r).

The scale of the intertemporal effects depend on the slope of H(x). In Figures
5 and 6 we see the values of H(r). We observe in Figure 5 that the function
H(r) is increasing with r while in Figure 6 for γ = 0.1 the function H(r) is
decreasing for small r and increasing for large r. The economic explanation is
following. Usually, the higher interest rate r increases utility because r repre-
sents a ”minimal” return – the return just on the money market and without
investment strategies. However, the agents with small risk aversion γ = 0.1 are
willing to take more risk and construct extreme portfolio for potential higher
expected profit. When r is small, the opportunity cost is low, they can have
high utility for high expected return from risky assets. Therefore, the utility
H(r) decreases with r for small r. From Figures 5 and 6 we obtain information
about the intertemporal effects from the slope of H(r). The more aggressive the
risk attitude of the agents (smaller γ), the stronger is the intertemporal effect.
For small r and for γ = 0.1, the intertemporal effect is opposite to the effect
for large r due to the negative value of H ′(r). For example for η = 0.6, it is
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negative when r small and is positive when r is large.

The small size of the intertemporal terms in this example is due to the small
standard deviation ratio g

σ0
= 0.0064. Thus, the intertemporal terms would be

stronger when interest rates are more volatile.

Figure 3: Intertemporal Hedging Terms for γ = 0.5, 0.9
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Figure 4: Intertemporal Hedging Terms for γ = 0.1

Figure 5: Value of H(r) for γ = 0.5, 0.9
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Figure 6: Value of H(r)

4.2.2 The Example including the Bond

All three assets, money market account, the bond and the stock are now consid-
ered. There is one state variable: the interest rate and there are three control
variables: ψt, the investment weights on the bond α1t and the stock α2t. The
optimal portfolio weights α1t, α2t in the continuous-time model, using the result
(27), are

(
α1t
α2t

)

=

( 1
B(T−t) 0

0 1

)
( 1

γ
Ω̃−1(µ̃− r) +

H ′(r)

H(r)
Ω̃−1Ṽ

)
(57)

where

Ω̃ =

(
g20 −g0σsη

−g0σsη σ2s

)

(µ̃− r) =

(
λg0

µs − rt

)

Ṽ =

(
−g20
σsηg0

)

.

Notice that

Ω̃−1Ṽ =

(
−1
0

)
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due to the perfect correlation of the bond return noise and interest rate noise.
So the second term of the equation (57) reduces to

(
α1t
α2t

)

=
1

γ(1− η2)

(
η(µs−rt)+σsλ
g0σsB(T−t)
µs−rt+σsηλ

σ2
s

)

−

(
1

B(T−t)
H′(r)
H(r)

0

)

. (58)

The noticeable point here is, if the no-arbitrage bond market is considered, then
the intertemporal hedging for the stock investment is equal to zero, whatever
the correlations of the stock return noise and the interest rate noise are. This
is the insight of the three-fund theorem of Merton (1990) 29 that, if there is an
asset perfectly correlated with the shocks of the factors, then the intertemporal
impact of the factors on the other assets are absorbed by the perfect correlation.

This point is very convenient for checking the performance of the numerical
result because the stock investment is equal to the static stock investment which
depends only on the known parameters and can be calculated easily. The average
errors between the numerical and theoretical stock investment proportion are
listed in Table 1. We can see again that the numerical errors for more risk-
friendly agents (with γ = 0.1) are larger than the others. In Figures 7, 9 and
11 we can compare the numerical errors to their levels. The numerical result is
quite satisfactory.

γ = 0.1 γ = 0.5 γ = 0.9
η = 0.0 0.0407 0.0022 0.0012
η = 0.6 0.1088 0.0039 0.0042

η = −0.6 0.0988 0.0039 0.0407

Table 1: Average Error of Example 2 for Stock Investment

In Figures 8, 10 and 12 numerical results of the bond investment are dis-
played. The positions of bond holding are quite large. We can observe that the
sizes of static bond choice are already large. This can be explained by the small
g0 in the first row of the formula (58).

The intertemporal effect is not significant for η = 0.6 and −0.6. The intertem-
poral effect is only significant for η = 0 and γ = 0.1. Following (58) the

intertemporal effect is represented by the term −
H′(r)

H(r)B(T−t) . In Figure 8 we

can observe that the numerical result of the term −
H′(r)

H(r)B(T−t) can explain the

numerical intertemporal effect for the bond (the numerical optimal choice minus
the static portfolio choice) quite well. We can observe in Figures 8, 10 and 12
that the intertemporal effect for γ = 0.1 is positive for small r and negative for
large r. This can be explained by the form of the value function H(r) illustrated
in Figure 14. For small r, H(r) is decreasing, so −H ′(r) is positive.

29in Chap.15.7.
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Figure 7: Portfolio Choice for Stock, η = 0

Figure 8: Portfolio Choice for Bond, η = 0
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Figure 9: Portfolio Choice for Stock, η = 0.6

Figure 10: Portfolio Choice for Bond, η = 0.6
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Figure 11: Portfolio Choice for Stock, η = −0.6

Figure 12: Portfolio Choice for Bond, η = −0.6
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Figure 13: Value Function

Figure 14: Value Function
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Canner, Mankiw and Weil (1997) summarize the type of investment advice
given to the general public. They find higher Bond/Stock investment ratios
are recommended for more conservative investors. Figures 15 and 16 show this
ratio from our numerical exercises. The Bond/Stock ratio is even the largest for
γ = 0.1. This is because the intertemporal effect is positive for γ = 0.1 and is
negative for γ = 0.5 and γ = 0.9. It does not seem to support the observations
of Canner et al(1997) .

Here we suggest another view to treat this problem. Bonds are preferred by
more conservative investors because their payouts are fixed on a desired ma-
turity date. Thus, we should not prescribe a special bond for investment and
should allow bonds of all possible maturity dates to be traded. In the one-factor
no-arbitrage bond pricing model of Vasicek (1977) every bond of a given matu-
rity date can be generated by the money market account and a fixed given bond.
Therefore, concerning the bond market investment we consider the total invest-
ment on the bond and on the money market account. Figures 17 – 20 are the
Bond/Stock ratios from the viewpoint of the ”general bond” portfolio.30 They
correspond with the conventional wisdom: the more conservative investors hold
more bonds. In Figures 18 and 20 the bond holdings are negative for large r due
to the negative excess return µs − r while the bond holdings are still positive.
In this case the general-bond/stock ratios still correspond to the conventional
wisdom in absolute value.

The reason for this result is quite simple. In this example, the General-Bond/Stock
ratio can be represented by 1−α2

α2
. Recall that α2 is the investment proportion

on stock and the sum of all investment proportions is equal to one. The higher
general-bond/stock ratio for larger γ is followed by the smaller holding propor-
tion in the stock which can be explained by the risk aversion effect: the factor
1
γ for the portfolio choice in (58).

30We have to separate the interest rate region for two parts because at the interest rate
level 0.045 there is no excess return for the stock, therefore there is no stock holding. Due to
this the bond/stock ratio behaves unstable in the neighborhood of 0.045.

30



Figure 15: Bond/Stock Ratio, η = 0.6

Figure 16: Bond/Stock Ratio, η = −0.6
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Figure 17: General-Bond/Stock Ratio, η = 0.6, first region

Figure 18: General-Bond/Stock Ratio, η = 0.6, second region
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Figure 19: General-Bond/Stock Ratio, η = −0.6, first region

Figure 20: General-Bond/Stock Ratio, η = −0.6, second region
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5 Conclusion

This paper studies the long-term consumption and portfolio decisions in the
context of infinite time horizon models. The focus is to investigate the invest-
ment allocation of stocks and bonds. The theoretical model is a continuous time
model. The instantaneous interest rate is an exogeneuous stochastic process and
the bond market obeys the no-arbitrage principle. Using the method of dynamic
programming we can separate formally the intertemporal portfolio choice into
a static portfolio choice and an intertemporal hedging term additively. The
static portfolio choice can be solved easily while the intertemporal term does
not have an analytical solution usually. A numerical method – namely, the it-
eration method – is developed to solve the intertemporal portfolio choice and
the intertemporal hedging term. The numerical performance can be checked for
some simple cases and it is quite satisfactory.

The results of our numerical exercise show that for most cases, the intertem-
poral effects are not significant and the static portfolio choices are dominant.
The numerical results explain the asset allocation puzzle not quite well. The
most conservative investors are willing to hold the largest position of bonds. For
future research we will further study whether these two results would hold for
more general models. The next step in extending the model would be, for ex-
ample, a model including inflation, multi-factor interest rates, the stock return
with mean-reverting excess return and stochastic volatility.

In this paper we suggest a new way to treat bond investment. In our example
using Vasicek’s model, we can generate bonds of all possible maturity with the
money market account and a given bond. Since we do not have reason to restrict
the bond investment to a special bond we should consider the bond investment
also to include money. The ratio of the aggregate bond investment to the stock
in our numerical exercise behaves the same way as often suggested by financial
advisors.
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6 Appendix

6.1 Proofs of Section 2

Proof Theorem 1
We write the excess returns of the assets in vector form

(µ(x, t)− r(x)) =






µ1(x, t)− r(x)
...

µd+1(x)− r(x)




 (59)

=









∑d
j=1 λj(x)Bj(T1 − t)gj(x)

...
∑d
j=1 λj(x)Bj(Td − t)gj(x)

µd+1(x)− r(x)









=








B1(T1 − t) · · · Bd(T1 − t) 0
...

. . .
...

...
B1(Td − t) · · · Bd(Td − t) 0

0 · · · 0 1















λ1(x)g1(x)
...

λd(x)gd(x)
µd+1(x)− r(x)







.

Let

(µ̃(x)− r(x)) =








λ1(x)g1(x)
...

λd(x)gd(x)
µd+1(x)− r(x).








and

Bt =






B1(T1 − t) · · · Bd(T1 − t)
...

. . .
...

B1(Td − t) · · · Bd(Td − t)




 . (60)

We can thus rewrite the equation (59) in

(µ(x, t)− r(x)) =

(
Bt 0
0 1

)

(µ̃(x)− r(x)) . (61)

The point of this rewriting is to decompose the excess return µ(x, t) into two
parts: the first part contains the information of maturity dates. The second part
gives the information of risk premium of each state factor and it is independent
of the maturity dates.

Similarly, for the covariance matrix of the asset returns of the vector of the
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random variables we have the decomposition

Ωt dt

= E
















−
∑d
i=1Bi(T1 − t)gi(x)dQit

...

−
∑d
i=1Bi(Td − t)gi(x)dQit

σd+1(x)dZt















−
∑d
i=1Bi(T1 − t)gi(x)dQit

...

−
∑d
i=1Bi(Td − t)gi(x)dQit

σd+1(x)dZt








′








=

(
Bt 0
0 1

)

Ω̃

(
Bt 0
0 1

)′

dt (62)

where Ω̃ is defined as the covariance matrix

Ω̃ dt = E















−g1(x)dQ1t
...

−gd(x)dQdt
σd+1(x)dZt















−g1(x)dQ1t
...

−gd(x)dQdt
σd+1(x)dZt








′






=








g21(x)ν11 · · · g1(x)gd(x)ν1d −g1(x)σd+1(x)η1
...

. . .
...

...
gd(x)g1(x)νd1 · · · g2d(x)νdd −gd(x)σd+1(x)ηd
−σd+1(x)g1(x)η1 · · · −σd+1(x)gd(x)ηd σd+1(x)

2







dt

which is independent of t.

For the covariance Vjt between the noises of the the asset return and the state
variable we rewrite it in the similar way. Following the definition of the Vjt we
obtain

Vjtdt = E













−
∑d
i=1Bi(T1 − t)gi(x)dQit

· · ·

−
∑d
i=1Bi(Td − t)gi(x)dQit

σd+1(x)dZt






gj(x)dQjt






.

Let

Ṽjdt = E















−g1(x)dQ1t
...

−gd(x)dQdt
σd+1(x)dZt







gj(x)dQjt







=








−g1(x)ν1j
...

−gd(x)νdj
σd+1(x)ηj







gj(x) dt .

So the relation between Vjt and Ṽj is given by

Vjt =

(
Bt 0
0 1

)

Ṽj . (63)

Going back to the HJB equation (15) we can see that three terms (µt−r)
′Ω−1t (µt−
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r) , (µt− r)
′Ω−1t Vjt and V

′
ktΩ

−1
t Vjt are involved in bond returns, hence they are

dependent on maturity dates. However, using the the decompositions (61), (62)
and (63) we can rewrite these terms in the way, for example,

(µt − r)
′Ω−1t (µt − r)

= (µ̃− r)′
(
Bt 0
0 1

)′(
Bt 0
0 1

)′−1

Ω̃−1
(
Bt 0
0 1

)−1(
Bt 0
0 1

)

(µ̃− r)

= (µ̃− r)′Ω̃−1(µ̃− r) ,

such that they are not dependent on the choice of bonds. Then, the HJB
equation (15) can be rewritten to

0 = e−δtU(ψ∗w) + Jt + Jw(r − ψ
∗)w +

m∑

i=1

Jxi
fi (64)

−
1

2

J2w
Jww

(µ̃− r)′Ω̃−1(µ̃− r)−

m∑

j=1

JwJw,xj

Jww
(µ̃− r)′Ω̃−1Ṽj

−
1

2

m∑

j,k=1

Jw,xj
Jw,xk

Jww
Ṽ ′j Ω̃

−1Ṽk +
1

2

∑

j,k=1

Jxj ,xk
gjgkνjk ,

which is independent of the chosen bond. Therefore the optimized utility func-
tion J(t, w, x) is independent of the choice of bonds.

For the statement (ii) it is straightforward to see that (64) is the HJB equation
for the new investment set including the stock (20) and the factor assets (21).
Q.E.D.

Proof of Corollary 1.3
Using (61), (62) and (63) to rewrite (12) we obtain







α1t
...
αdt
αd+1,t








= −
Jw

Jww W

(
Bt 0
0 1

)−1

Ω̃−1(µ̃− r)−

(
Bt 0
0 1

)−1 d∑

j=1

Jw,xj

Jww W
Ω̃−1gj Ṽj . (65)

It can be rewritten further in







Bt






α1t
...
αdt






αd+1,t








= −
Jw

Jww W
Ω̃−1(µ̃− r)−

d∑

j=1

Jw,xj

Jww W
Ω̃−1gj Ṽj . (66)

Sine the R.H.S. is independent of the bond choice, then Btαt on the L.H.S is
also independent of the bond choice.

For the statement (ii) the wealth dynamics (8) can be decomposed into

dWt

Wt
= −ψtdt+

dW
(B)
t

Wt
+
dW

(S)
t

Wt
, (67)
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where
dW

(B)
t

Wt
represents the change contributed by the fixed income market

dW
(B)
t

Wt
= r(x)dt+ (α1t, · · · , αdt)






∑

j=1 λj(x)Bj(T1 − t)gj(x)
...

∑

j=1 λj(x)Bj(Td − t)gj(x)




 dt

+(α1t, · · · , αdt)






−
∑

j=1Bj(T1)gj(x)dQjt
...

−
∑

j=1Bj(Td)gj(x)dQjt




 (68)

= r(x)dt+

(

Bt






α1t
...
αdt






)′






λ1(x)g1(x)
...

λd(x)gd(x)




 dt+

(

Bt






α1t
...
αdt






)′






−g1(x)dQ1t
...

−gd(x)dQdt






= r(x)dt+ (Btαt)
′






λ1(x)g1(x)
...

λd(x)gd(x)




 dt+ (Btαt)

′






−g1(x)dQ1t
...

−gd(x)dQdt




 . (69)

And
dW

(S)
t

Wt
:= αd+1,t

(
µd+1dt+ σd+1dZt

)
(70)

represents the change contributed by the stock market.

From (66) we know Btαt and αd+1,t are independent of the bond choice. Then
according (69), (70) and Corollary 1.2 the statement (ii) is proved.
Q.D.E.

6.2 Wealth Dynamics

We consider the wealth change in the interval [t, t + h). The timing is that
at t the prices Pi(t) are realized. Right after the realization the agents decide
the number of shares of i-th asset Ni(t) and the consumption C(t). The The
decisions has to satisfy the self-financing constraint

n∑

i=0

Ni(t)Pi(t) + C(t)h =

n∑

i=0

Ni(t− h)Pi(t).

Define the wealth as

W (t) =

n∑

i=0

Ni(t− h)Pi(t).

Then

W (t+ h)−W (t) =

n∑

i=0

Ni(t)( Pi(t+ h)− Pi(t) ) +

n∑

i=0

(Ni(t)−Ni(t− h) )Pi(t)

= (W (t)− C(t)h)
n∑

i=0

αi(t)
Pi(t+ h)− Pi(t)

Pi(t)
− C(t)h,
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where

αi(t) =
Ni(t)Pi(t)

∑n
j=0Nj(t)Pj(t).

Rearrange it we obtain

W (t+ h) =
(
W (t)− C(t)h

)
(1 +

n∑

i=0

αi(t)
Pi(t+ h)− Pi(t)

Pi(t)
).

6.3 Separation Theorem for the Agents’ Decision

Theorem 3 (Separation Theorem in Agents’ Decision) Let Θk(ψ, α, x) de-
note a term 31 in the iteration (50)

Θk(ψ, α̃, x) (71)

= ψ1−γh+ e−δh(1− ψh)1−γEt[Π(α, x,∆Z, t)1−γSk
(
ϕX(x,∆Q)

)
].

The optimization problem
max
ψ,α

Θk(ψ, α̃, x)

can solved sequentially. Concretely:

(i) for the case0 < γ < 1

max
ψ,α

{
ψ1−γh+ e−δh(1− ψh)1−γEt

[
Π(α, x,∆Z, t)1−γSk

(
ϕX(x,∆Q)

)] }

= max
ψ

{
ψ1−γh+ e−δh(1− ψh)1−γ

max
α

Et
[
Π(α, x,∆Z, t)1−γSk

(
ϕ2(x,∆Q)

)] }
. (72)

• For the case γ > 1,

min
ψ,α

{
ψ1−γh+ e−δh(1− ψh)1−γEt

[
Π(α, x,∆Z, t)1−γSk

(
ϕX(x,∆Q)

)] }

= min
ψ

{
ψ1−γh+ e−δh(1− ψh)1−γ

min
α

Et
[
Π(α, x,∆Z, t)1−γSk

(
ϕ2(x,∆Q)

)] }
. (73)

Proof We define

Hk(α, x) = Et

[
Π(α, x,∆Z, t)1−γSk

(
ϕX(x,∆Q)

)]
.

and rewrite

Θk(ψ, α, x) = ψ1−γh+ e−δh(1− ψh)1−γHk(α, x).

31We suppress the argument t here because t is just a constant in the optimization problem.
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It is straightforward to see that the first order condition for Θ(ψ, α, x) with
respect to α is identical to the first order condition for H(α, x) with respect to
α

∂Θk
∂α

= e−δh(1− ψh)1−γ
∂Hk

∂α
= 0.

Therefore we can optimize H(α, x) w.r.t α independently.

The remained problem is only to figure out which extreme value of Hk(α, x)
will maximize Θk(ψ, α, x).

Let
Θ(ψ,H) = ψ1−γhe−δh(1− ψh)1−γH.

The necessary and the sufficient condition for the extreme solution ψ is the first
order condition 32

(ψ)−γ

e−δh(1− ψh)−γ
= H. (74)

So, we can solve ψ in terms of H denote the solution as

ψ(H) =
(e−δhH)−1/γ

1 + h(e−δhH)−1/γ
. (75)

From (75) we observe that ψ(H) depends negatively on H.

Evaluating Θ(ψ,H) at the optimal solution ψ(H) we obtain

Θ
(
ψ(H), H

)
= ψ(H)1−γh+ e−δh(1− ψ(H)h)1−γH

= ψ(H)1−γh+ (1− ψ(H)h)1−γ
ψ(H)−γ

(1− ψ(H)h)−γ

= ψ(H)−γ . (76)

Then from (76) we observe that Θ
(
ψ(H), H

)
depends positively on H because

if H increase, ψ(H) decreases, then Θ
(
ψ(H), H

)
increases. Therefore, to max-

imize Θ(ψ,H) we have maximize H. The statement (72) is proved.

For the case γ > 1 the relationships (75) and (76) still holds. Thus Θ
(
ψ(H), H

)

depends still positively on H. The statement (73) is proved.

Q.E.D.

Corollary 3.1 The notations are as same as in Theorem 3. Let

H∗k(x) = max
α

Hk(α, x) for 0 < γ < 1

= min
α
Hk(α, x) for γ > 1.

The solution of the optimal ψk(x) is given by

ψ∗k(x) =
(e−δhHk(x))

−1/γ

1 + h(e−δhHk(x))−1/γ
(77)

32The second derivative w.r.t ψ is negative. This extreme value is a maximum.
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and the evolution of the dynamic part of the underlying factors is solved in

Sk+1(x) = (ψ∗k(x))
−γ . (78)
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