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Abstract

This paper studies optimal monetary policy rules by the central
bank confronted by foreign investors’ state-dependent reactions and
self-fulfilling expectations. We extend Taylor type monetary policy
rules by allowing the central bank to give some weight to the level
of precautionary foreign reserve balances as one of its targets. We
show that a currency crisis scenario can easily be created when the
weight is zero, and it can be avoided when the weight is positive.
The impacts of the central bank’s monetary control on the output
level, the inflation rate, the exchange rate, and the foreign reserve
level are investigated as well. In solving our model variants we apply
both the Hamiltonian as well as the Hamilton-Jacobi-Bellman (HJB)
equation, the latter leading to a dynamic programming formulation
of the problem. The flexible use of both the Hamiltonian as well as
dynamic programming allows us to explore safe domains of attractions
in a variety of complicated model variants. Given the uncertainties
the central banks face, we also show of how central banks can enlarge
safe domains of attraction.
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1 Introduction

Many central banks around the world have reacted to the Asian financial
crisis by building up large precautionary reserve balances. By incorporating
a currency crisis scenario into a linear-quadratic monetary control problem,
we study Taylor type monetary policy rules that allow for foreign reserve
targets. We show that an anticipation of a depreciation of the domestic cur-
rency causes a decrease in the central bank’s foreign reserves. Additionally,
when foreign investors observe a shortage of foreign reserves, this may trigger
a panic caused by the fear of a termination of the currency conversion and in-
creases a risk premium of the currency. A sharp depreciation of the currency
gives incentives to foreign investors to pull their funds out of the country as
quickly as possible. The prediction therefore becomes self-fulfilling.1 This
can causes a scenario known as a currency crisis. On the other hand, this
particular type of currency run may not become so extreme when the central
bank has enough reserves. 2 This paper studies optimal monetary policy rules
by the central bank confronted by such foreign investors’ state-dependent re-
actions and self-fulfilling expectations. We presume that the monetary policy
rules may also depend on the weight that the central bank gives to the level
of precautionary foreign reserve balances as one of its targets. The model can
exhibit multiple steady states. The impacts of the central bank’s monetary
control on the output level, the inflation rate, the exchange rate, and the for-
eign reserve level are investigated as well. In solving our model variants we
apply both the Hamiltonian as well as the Hamilton-Jacobi-Bellman (HJB)
equation leading to a dynamic programming algorithm. The flexible use of
both the Hamiltonian as well as dynamic programming allows us to explore
a variety of model variants.

The remainder of the paper is organized as follows. Section 2 provides
some empirical backgrounds of our paper. Section 3 introduces the monetary
policy model. In Section 4 we explore the stabilization effects of monetary
policy when the central bank disregards the reserves in the welfare function.
Sections 5 and 6 include the control of the foreign reserves as one of its
targets.

1For more specifications of this mechanism, see Krugman (1979, 2000) and Aghion et
al. (2000).

2Of course, credit lines from the IMF will also reduce currency runs.

2



2 Currency Crises and the Aftermath

Financial liberalization as well the introduction of floating exchange rates
has actively been pursued by many governments since the 1980s. Yet, at
the same time in the last twenty years, many countries have experienced
major episodes of currency crisis and financial instability, some times with
devastating effects on economic activity. The major examples are the Mex-
ican (1994) and the Asian (1997-1998) currency and financial crises, where
the liberalization of financial markets has led to a currency crisis, sudden
reversal of capital flows followed by financial bankruptcies with consequently
declining economic activity and large output losses.3

The stylized facts, illustrating the causes and consequences of currency
and financial crises, are usually considered as the following ones.4

1. Before the currency crisis there is a deterioration of balance sheets
of the economic units (households, firms, banks, the government and
the country). The current account deficit to GDP ratio rises and the
external debt to reserve ratio rises.

2. The crisis is triggered by a sudden reversal of capital flows and unex-
pected depreciation of the currency. Domestic interest rates usually
jump up (partly initiated by central bank policy). Subsequently stock
prices fall and a banking crisis occurs with large loan losses by banks
and subsequent contraction of credit (sometimes moderated by a bail
out of failing banks by the government).

3. The subsequent financial crisis frequently entails a large output loss
due to large scale bankruptcies of firms and financial institutions and
the decrease of investment and consumption spending.

Yet, after the experience of those shocks countries have become more
cautious. In particular, those countries that were heavily exposed to currency
and financial crises, have attempted to build up large precautionary currency
reserves.

3For details, see Krugman (1979, 2000), Flaschel and Semmler (2003) and Stiglitz
(2002).

4For details, see Kaminsky and Reinhart (1999).
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Table 1 illustrates this tendency for some countries and regions.5 After
the financial crisis, emerging markets in particular in the Far East including
China, Indonesia, South Korea, Malaysia, Philippine, and Thailand, have
built up large stockpiles of international reserves. Aizenman and Marion
(2002) conducted a detailed statistical analysis using panel data of 122 de-
veloping countries and concluded that East Asian markets have changed their
behavior in terms of holding foreign exchange reserves after the currency and
financial crises occurring in East Asia.

industrial developing Africa Asia Europe Middle East Western
(developing)

1994 50.5 49.5 1.9 30.5 3.6 5.3 8.3
2002 39.6 60.4 2.9 38.5 7.1 5.7 6.7

Table 1: Change of the share of world reserves 1994-2002, in percentage
(reserves minus gold)

As table 1 demonstrates the increase in reserves has particularly occurred in
developing countries and East Asia. Table 2 shows the increase of reserve
holdings since 1997 for particularly East Asian countries.6

China Taiwan HongKong South Korea Singapore
1997 16 32 52 3 72
2001/2 16 44 67 25 88

Table 2: Increase of international reserve holdings since 1997 as percentage
of GDP (reserves minus Gold)

Both tables 1 and 2 clearly illustrate the attempt of the affected countries
to build up are precautionary international reserves in order to withstand
currency runs and currency crises.

Moreover, as the work by Aizenman and Turnovsky (2002) shows suf-
ficient international reserves of a country that is an extensive international
borrower can serve as a collateral for the creditor who want to secure interna-
tional loans. The increase of reserves in heavily borrowing countries reduces

5The data are taken from Aizenman and Marion (2002, appendix).
6The data are taken from Aizenman and Marion (2002, appendix).
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default risk and may raise the welfare of both the high income lending coun-
tries as well as the emerging market economies.7

In the subsequent sections of our paper we will study the dynamics of
foreign currency reserves for macro economies of emerging markets when
the monetary authority has become aware of those intricate issues as above
discussed and attempts to control the reserves in the context of a monetary
policy control model where monetary policy rules of Taylor type are pursued
by the monetary authority.

3 A Monetary Policy Model

Next, we present a model for a representative country that pursues a mon-
etary policy in an open economy. First, we presume that the central bank
has two target variables: the inflation rate and the output level. We assume
that those can be indirectly affected by the central bank through control-
ling the short-term nominal interest rate. The central bank’s objective is to
minimize a social welfare loss an economy deviating from those target levels.
The social welfare loss is computed as:

L =

∫

∞

0

e−rt[
λ1

2
(π − π∗)2 +

λ2

2
(y − y∗)2]dt (1)

where π is the inflation rate, y is the output level, π∗ and y∗ are those
target levels respectively. The weights λ1 and λ2 measure the relative impor-
tance of those target variables.

The economy is assumed to be represented by the following macroeco-
nomic relationships:

y = α − β(i − πe) + X(ee); X ′(ee) > 0 (2)

π = πe + η(y − y∗) (3)

ėe = i − if − ρ(i − if , R); ρi−if > 0, ρR < 0 (4)

7Of course, recently monetary authorities of some of the East Asian countries have
bought up foreign currencies in order to stabilize their currencies and to keep their export
markets flourishing.
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where ee is the expected exchange rate of domestic for foreign currency.
An increase in ee means an anticipation of depreciation of the domestic cur-
rency. Equ. (2) represents an IS relationship. The real interest rate nega-
tively affects the firm’s investment decisions. α and β are positive constants.
X is the net imports which positively reacts to the depreciation of the ex-
pected exchange rate. Equ. (3) is a Phillips curve. The domestic inflation
rate π is positively correlated with the deviation from the natural output
(or NAIRU) level yn. In the current version we neglect the open economy
component in the Phillips-curve.8 For simplicity, we assume that the policy
maker sets y∗ = yn. In our most simplest variant we also presume that πe is
a constant.9

The interest rate parity condition (4) is assumed to consist of two factors:
the uncovered interest rate parity where i is the domestic riskless rate and
if is the foreign riskless rate, and ρ is a risk premium which compensates
the agents for the uncertain risk.10 It is commonly recognized that there are
two types of risk factors; exchange rate risk and country risk. The volatility
of the exchange rate causes exchange rate risk. High volatility brings about
high uncertainty, therefore a high risk premium. Therefore, the first factor
in ρ is i − if that captures the volatility of the exchange rate. Country risk
is the possibility of losses related to foreign financial instruments. We think
that the central bank’s foreign reserve accumulation is one of the key factors
that affects country risk.

As above shown the currency runs in the concerned countries created
for the central banks a serious shortage of foreign currency reserves. When
foreign investors observe a shortage of foreign reserves, there is a high risk
of staying in the domestic currency. Investors have to account for a possible
rapid depreciation of the currency in the future. The second factor in ρ is
thus R that captures country risk.

The currency reserve dynamics in our model can be written as

Ṙ = X(ee) + F (ee, R); Fee < 0, FR > 0 (5)

where

8For including the affect of the exchange rate in the Phillips-curve, see Ball (1999) and
Flaschel, Gong and Semmler (2005).

9This assumption will be relaxed in the numerical exploration of our model, using
dynamic programming.

10For details of such risk premium, see Evans and Lyons (2005).
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F (ee, R) = n(ee) − z(ee, R); j′(ee) < 0, zee > 0, zR < 0 (6)

The first term tells us that an increase in net imports will bring more
foreign currency reserves. The term F (ee, R) captures the net inflow of fi-
nancial funds that also causes an increase in currency reserves. Equ. (6)
simply shows that the net inflow is equal to the inflow n minus the outflow
z.11 While n is a function of ee only, z is a function of two factors: ee and R.
The reason why investors give weight to foreign reserves in their decision of
pulling their funds out is somewhat related to investors’ psychology. Since
they understand that a serious shortage of foreign reserves may bring about
a panic caused by the fear of a rapid depreciation of the currency, foreign
investors will show a more sensitive reaction, in case of lower reserves, to an
anticipated depreciation of the domestic currency. In short, equ. (6) tells us
that investors’ reaction is state-dependent.

Using the IS and Phillips relationships, the welfare loss can be rewritten in
terms of two state variables ee and R, and a control variable i. Therefore, the
problem for the policy maker will be to minimize the following loss function:

Min
i

L =

∫

∞

0

e−rt[
λ1

2
(πe + η(α − β(i − πe) + X(ee) − y∗) − π∗)2 (7)

+
λ2

2
(α − β(i − πe) + X(ee) − y∗)2]dt

s.t. to equ. (4), equ. (5) and the

boundary conditions for ee and R. (8)

The current value Hamiltonian of this problem is

11In the short-run, the outflow and the inflow of the foreign currency due to financial
investments depends on the difference of the domestic and the rest of the world’s interest
rates and the expected exchange rate. Here we neglect the difference in the interest rates
and assume the inflow to be constant. Those simple assumptions allow us to highlight the
mechanism of the currency crises resulting from the investors speculative behavior.
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H =
λ1

2
{πe + η(α − β(i − πe) + X(ee) − y∗) − π∗}2 (9)

+
λ2

2
(α − β(i − πe) + X(ee) − y∗)2

+q1(i − if − ρ(i − if , R))

+q2(X(ee) + F (ee, R)).

The FOCs are

∂H

∂i
= −λ1βη(πe − π∗) (10)

−β(λ1η
2 + λ2)(α − β(i − πe) + X(ee) − y∗)

+q1(1 − ρi−if (i − if , R))

= 0

·

q1 = rq1 − (X ′(ee) − Fee(ee, R))q2 (11)

−λ1ηX ′(ee)(πe − π∗)

−(λ1η + λ2)(α − β(i − πe) + X(ee) − y∗)

·

q2 = (r − FR(ee, R)) q2 + ρR(i − if , R)q1 (12)

·

e = i − if − ρ(i − if , R) (13)

·

R = X(ee) + F (ee, R). (14)

For the sake of deriving more specific results, we use the following specific
functions.

ρ(R) =
σ1

R
+

σ2

2
(i − if )2 (15)

where the first term is country risk associated with a currency run and
the second term is exchange rate risk driven by the volatility of the exchange
rate. The terms σ1 and σ2 are constant coefficients.
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X(ee) = εee − m (16)

where ε shows the elasticity of im(ex)ports to a change in exchange rate,
and m is the autonomous import level, and

F (R, ee) ≡ n(ee) − z(ee, R) (17)

=
ν

ee
−

µ

R
ee2

where ν and µ are constant coefficients.
Then, the FOCs can be rewritten as:

∂H

∂i
= −λ1βη(πe − π∗) (18)

−β(λ1η
2 + λ2)(α − β(i − πe) + εee − m − y∗)

+q1(1 − σ2(i − if ))

= 0

·

q1 = rq1 − (ε +
ν

ee2
+ 2µ

ee

R
)q2 (19)

−λ1ηε(πe − π∗)

−(λ1η + λ2)(α − β(i − πe) + εee − m − y∗)

·

q2 =

{

r − µ

(

ee

R

)2
}

q2 −
σ1

R2
q1 (20)

ėe = i − if −
σ1

R
−

σ2

2
(i − if )2 (21)

Ṙ = εee − m +
ν

ee
−

µ

R
ee2 (22)

From (18),

q1 =
λ1βη(πe − π∗) + β(λ1η

2 + λ2)(α − β(i − πe) + εee − m − y∗)

1 − σ2(i − if )
(23)

Incorporating equ. (23) into equs. (19)-(22) and solving q̇1 = q̇2 = ėe =
Ṙ = 0 for i, ee, R, and q2 gives us the steady states of the model.
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4 Monetary Policy without Reserve Control:

Numerical Examples

Next, we introduce numerical examples. Hereby we presume that the mone-
tary authority does not attempt to control the foreign reserves but only aims
at controlling the inflation rate and output through steering the interest rate.

For the case of a monetary policy without explicit control of foreign re-
serves as target of the monetary authority we specify for the model, as devel-
oped in section 2, the parameters as represented in table 1. Note that in our
example 4.1 of table 1 the function ρ = 0 means that there is no risk premium
for the asset holding in the domestic currency. Yet, we have introduced with
ν > 0, µ > 0, an effect on foreign exchange reserves triggered by the level of
exchange rates and the level of reserves. Note that we here also presume the
most simplest variant where, as in the output determination of equ. (2) and
the Phillips-curve of equ. (3) the expected inflation rate, πe, is a constant.
We for convenience also take m = 0.

λ1 = 1 α = 5
λ2 = 1 β = 1
π∗ = .03 η = .01
πe = .03 σ1 = .00
y∗ = 10 σ2 = .00
if = .05 ε = 1
r = .02 m = .00

ν = 100
µ = 10

Table 3: Parameters for example 4.1, ρ = 0

The parameters of table 3 deliver us a unique steady state. The steady
state values, for the reserves R, interest rate, i, the exchange rate, e, output y,
and the inflation rate, π, are shown in table 4. We have computed the steady
state for the above parameter values, using equs. (19)-(23), employing the
software package Mathematica. We obtain the following steady state (SS)
as reported in table 4.12 As we can observe there is a region for R between

12The eigenvalues obtained from the 4D system in q1, q2,
e,R at this unique steady state
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zero and 10.1 that may attract the currency reserves away from zero. This
is indeed confirmed by the study of the dynamics of the steady state.

SS R i e y π

1 10.1043 0.05 5.02 10 0.03

Table 4: Steady state values for example 4.1

The dynamics about the steady state of the state variables R and e are
computed using a dynamic programming algorithm as applied to dynamic
economic problems in Grüne and Semmler (2004). In the appendix a sketch
of the algorithm is provided. Figure 1 shows the value function about the
unique steady state.

Figure 1: Value function about the unique steady state, example 4.1

are {2.46829, -2.44829, 1.0, -0.989899}. The steady state is thus a saddle point in terms of
state and co-state variables. It is, however, a general mathematical result, that a saddle
point in the state-costate space corresponds to a stable point in the state space dynamics
of a HJB-equation.
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The figure 1 shows that there is a deep valley of the value function about
the steady state demonstrating that the value function indeed achieves a
minimum about the steady state values in the vicinity of the steady state
R∗ = 10.104 and e∗ = 5.02.

Figure 2: Value function about the unique steady state, example 4.1

Figure 2, which depicts the vector field for the solution of the dynamic pro-
gramming problem (19)-(23), represented by the state equations (21)-(22),
demonstrates the dynamics about the steady state. As can be observed from
the trajectories all trajectories move toward the unique steady state R, e in
the vicinity of the steady state. Thus, all currency reserves moved by a shock
to the region between zero and the steady state R, will safely move back to
the steady state R.

In a next variant, example 4.2 we pursue a dynamic programming solution
of our basic variant of section 3, but we take in the IS equation (2) the actual
inflation rate π instead of πe = constant. In equ. (3) in the Phillips-curve we
then presume, in order to avoid lags that the price dynamics is determined
solely by the output gap. Also, in order to observe a stronger price reaction
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we presume an η=0.15. The remainder of the parameters are the same as in
table 3 (example 4.1).

Figure 3: Value function about the steady state (actual inflation rate in the
IS-curve), example 4.2.

As figure 3 for example 4.2 shows the value function changes only slightly,
and as the computation of the vector field for this case has shown, the steady
state equilibrium also only changes slightly. Yet the local dynamics does not
change so that the positive steady state of R is the sole attractor between
zero and the steady state of R. Since neither the shape of the value function
significantly nor the dynamics change, we subsequently work with the simpler
variant as proposed in equ. (1)-(4).

In a next variant, example 4.3, we permit the function ρ > 0 due to a risk
premium arising from low currency reserves. We again refer to the simple
variant equs. (1)-(4). We set σ1 = 0.3. The other parameter R remain the
same as in table 3. We still keep σ2 = 0. Due to the introduction of a risk
premium σ1 > 0, multiple steady state equilibria may arise.13 This is shown
in table 5.

13The eigenvalues obtained from the 4D system in q1, q2,
e,R at each steady state (from

SS1 to SS4) are: {-2.43215, 2.3969, 1.02606, -0.960707}, {-114.343, 112.387, 0.992782 +
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SS R i e y π

1 10.2578 0.079 5.04925 10.00 0.03
2 0.5197 0.627 1.74967 6.15 -0.008
3 -0.0515 -5.773 -0.803366 10.00 0.03
4 -0.5197 -0.527 -1.74967 3.80 -0.031

Table 5: Multiple steady states for example 4.3, σ1 = 0.3, σ2 = 0, ρ > 0

Note that the highest steady state is almost the same as in table 4, for
example 4.1, with σ1 = 0,, σ2 = 0, yet there are 3 more steady states arising,
with a negative R indicating that the country may have to obtain a credit
line on external reserves for example from the IMF. Overall, due to country
risk (σ1 > 0) the domain of attraction of the steady state R = 10.25778
has decreased and shocks may produce a more vulnerable situation for the
country’s currency reserves.14

The next example, example 4.4, allows also for the function ρ > 0 , and thus a
risk premium, but a reaction of the foreign currency reserves to the exchange
rate and the level of foreign reserves so we have both σ1 > 0, σ2 > 0. We
here again employ the simple variant of equs. (1)-(4) but now with ρ > 0
due to σ1 > 0, σ2 > 0. We employ the parameters as shown in table 6:

2.75418 i, 0.992782 - 2.75418 i}, {-114.246, 112.286, 4.84355, -2.85307}, {-2453.37, 2409.97,
22.8586, 20.574}. Note that SS(1) is stable, SS(2) is unstable, SS(3) is stable and SS(4)
again unstable.

14Note that a large negative ρ, due to a negative R, an external credit line of a country,
might not be very reasonable, so we might disregard the steady with a negative R or
constrain the ρ by a lower bound.
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λ1 = 1 α = 5
λ2 = 1 β = 1
π∗ = .03 η = .01
πe = .03 σ1 = 2.0
y∗ = 10 σ2 = 2.0
if = .05 ε = 1
r = .02 m = .00

ν = 100
µ = 10

Table 6: Parameters for example 4.4, ρ > 0(σ1 > 0, σ2 > 0)

Also example 4.4 gives arise to multiple steady states. We have left aside
the detailed exploration of the number of steady state equilibria but explore
instead,using dynamic programming, in what direction the largest steady
state moves.

Note that the difference of this example and the previous one is that we
have taken both σ1 > 0, σ2 > 0 (σ1 = 2, σ2 = 2), indicating that the home
countries risk premium rises due to two effects.

Both figures 4 and 5 show that with the country’s risk premium becoming
positive, ρ > 0 due to σ1 > 0, σ2 > 0 the required equilibrium reserves move
up and also e increases slightly.
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Figure 4: Minimum of the value function moves up (equilibrium R is rising),
example 4.4
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Figure 5: Vector field pointing upward, example 4.4

As figures 4 and 5 demonstrate the required equilibrium reserves are up-
ward shifting when the home country’s risk premium is rising due to σ1 > 0,
σ2 > 0, but the domain of attraction of the upper steady state of R has been
reduced.

5 Targeting the Foreign Reserves

As eluded to in section 2, after the experience of the currency financial crises,
the currency reserve level has become one of the most important concerns for
many central banks. By building up large of precautionary reserve balances,
central banks keep the ability to defend their currency value and avoid a
currency crisis scenario. In this section, we consider a central bank which
has three target variables: the inflation rate, the output level and its foreign
currency reserves. The short-term nominal interest rate is again the only
control variable for the central bank.

This social welfare loss is computed as:
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L =

∫

∞

0

e−rt[
λ1

2
(π − π∗)2 +

λ2

2
(y − y∗)2 +

λ3

2
(R − R∗)2]dt (24)

where now R, the stock of foreign currency reserves, R∗, its target level
and λ3, its relative importance, are additionally included in the central bank’s
objective function.

Suppose that the economy is as before described by the IS equation (2),
the Phillips curve (3), the interest rate parity condition (4), and currency
reserve dynamics (5). Then, the problem for the monetary policy authority
can be rewritten as:

Min
i

L =

∫

∞

0

e−rt[
λ1

2
(πe + η(α − β(i − πe) + X(ee) − y∗) − π∗)2 (25)

+
λ2

2
(α − β(i − πe) + X(ee) − y∗)2

+
λ3

2
(R − R∗)2]dt

s.t. equs. (4), (5) and the boundary conditions for ee and R

The current value Hamiltonian of this problem is

H =
λ1

2
{πe + η(α − β(i − πe) + X(ee) − y∗) − π∗}2 (26)

+
λ2

2
(α − β(i − πe) + X(ee) − y∗)2

+
λ3

2
(R − R∗)2

+q1(i − if − ρ(i − if , R))

+q2(X(ee) + F (ee, R)).

After an inclusion of the foreign reserve target, only (12) changes as fol-
lows:

·

q2 = (r − FR(ee, R)) q2 − λ3(R − R∗) + ρR(i − if , R)q1. (27)

Therefore, by introducing the same specific functions (15)-(17 ), (27) can
be rewritten as

·

q2 =

{

r − µ

(

ee

R

)2
}

q2 − λ3(R − R∗) −
σ1

R2
q1. (28)
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Incorporating (23) into (19), (21), (22), and (28) and solving q̇1 = q̇2 =
ėe = Ṙ = 0 for i, ee, R, and q2 gives a new set of steady states.

6 Monetary Policy with Reserve Control: Nu-

merical Examples

In the next examples we employ the assumption that the monetary authority
also targets the exchange reserves. We fix a required foreign exchange reserve
R∗ which may reflect some monetary policy target resulting from experience
and observations.

λ1 = 1 α = 5
λ2 = 1 β = 1
λ3 = 10 η = .01
π∗ = .03 σ1 = .00
πe = .03 σ2 = .00
y∗ = 10 ε = 1
R∗ = 100 m = 0
if = .05 ν = 100
r = .02 µ = 10

Table 7: Parameters for example 6.1, ρ = 0

With the parameters as represented in table 7, which are the same as in table
3, but R∗ and λ3 are introduced, we obtain a multiplicity of steady states.15

In fact, as the table 8 shows three steady states for our state variable R and
e, and the corresponding interest rates, i, outputs, y and inflation rates, π,
are obtained.

15The eigenvalues obtained from the 4D system in q1, q2,
e,R at each steady state (from

SS1 to SS3) are: {3.27181, -3.25073, 0.00 + 3.14646 i, 0.00 - 3.14646 i}, {3.83562×106,
-3.83562×106, 8.79169, -8.78159}, {3.46176×106, -3.46176×106, 0.00 + 8.7866 i, 0.00 -
8.7866 i}. Note that no reference on the stability properties of the equilibria can be made
when the real parts of the eigenvalues are zero. Dynamic programming has to be used
instead.
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SS R i e y π

1 100.042 .05 14.6595 19.6395 0.126395
2 0.000205191 .05 0.12708 5.10708 -0.018929
3 -0.000221597 .05 -0.13038 4.84962 -0.021503

Table 8: Steady State Values, ρ = 0, example 6.1

Figure 6 depicts the value function about the high steady state R = 100.042
and e = 14.6595.

Figure 6: Value function about high steady state, example 6.1

As the value function shows the minimum again lies in a deep valley. Note
that the required R∗ is assumed to be very high and the introduced λ = 10
represents a strong reaction of the monetary authority to the deviation of
foreign reserves to its target. This is purposely undertaken in order to obtain
distinct and clearly separated steady states.
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Figure 7: Vector field about the high steady state, example 6.1

As figure 7 shows there are converging dynamics toward the high steady state
which is indicated by the arrows, thus the highest steady state SS(1) is an
attractor.

Next, we study an example, example 6.2 where, due to σ1 > 0 and σ2 = 0
In fact we take the same parameters as reported in table 7 for example 6.1,
but employ σ1 = 0.3, and σ2 = 0. There is now a risk rate ρ > 0 responding
to low currency reserves.

SS R i e y π

1 100.042 0.0530 14.6595 19.6365 0.126365
2 -0.0323294 -9.2294 -0.6874 13.5721 0.065720

Table 9: Steady State Values, σ1 = 0.3, σ2 = 0, ρ > 0, example 6.2

As shown in table 9 this time due to the introduction of the risk premium,
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arising from σ1 = 0.3, only two steady states are detectable.16 Since the up-
per steady state (SS1) remains the same as in example 6.1 we do not expect,
when employing the dynamic programming algorithm, different results in the
local stability properties and the local behavior of the value function. We
thus can by-pass a detailed dynamic programming study for this variant.

16The eigenvalues obtained from the 4D system in q1, q2,
e,R at each steady state (from

SS1 to SS2) are: {3.27182, -3.25075,
0.00 + 3.14645 i, 0.00 - 3.14645 i}, {-4561.26, 4480.39, 40.4486 + 35.3196 i, 40.4486 -

35.3196 i} The latter case shows instability, but again no inference can be made for the
case of zero real roots. Yet the dynamic programming result showed, as for the case of
table 8 and depicted in figure 7 that the upper equilibrium is stable.

22



7 Conclusion

In this paper we have studied an extension of Taylor type monetary policy
rules where the central bank is confronted by foreign investors‘ state de-
pendent reactions and self-fulfilling expectations. In this context we have
explored two different currency crises scenarios. We have focused on two
factors; λ3, the weight that the central bank gives to the level of precaution-
ary foreign reserve balances, and ρ, the risk premium factor in the interest
rate parity condition. The factor ρ represents the foreign investors’ state-
dependent reactions which is likely to fuel currency runs. A summary of the
outcomes can be stated as follows.

Scenario 1: Baseline monetary policy without reserve control

(λ3 = 0)
In our baseline monetary policy model, the central bank pursues only

two targets, the output level and the inflation rate. When the risk premium
factor is zero ρ = 0, there is a unique steady state in a positive state space,
and the dynamic property of this steady state is represented by a saddle
point when the Hamiltonian is used to study the local stability properties
which corresponds to a stable steady state in the state space. When the risk
premium factor ρ > 0 is introduced, multiple steady states arise and two
domains of attraction appear in a positive state space. The upper steady
state is close to the unique steady state obtained when ρ = 0 and it is a
saddle point and the lower steady state occurs at a low reserve level and the
dynamic property is an unstable focus. The latter indicates that the lower
steady state is unstable in the state space. Therefore, the lower steady state
divides the positive state space into two domains: an upper stabile and a
lower unstable domain, where the trajectories move downward. Overall, this
reduces the stable domain of attraction and a currency crisis scenario may
here develop, the reserve level continuously falls and, the central bank has
to keep high interest rates which entails a recession and deflation. Since the
lower steady state level of R moves up when the risk premium factor is strong,
it suggests that higher ρ enlarges the domain of attraction of the lower steady
state and a greater possibility of a currency crisis can be expected.

Scenario 2: Monetary policy with targeting the reserve (λ3 > 0)
In this scenario the central bank targets the level of precautionary foreign
reserve balances as well. When the risk premium factor is zero, multiple
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steady states arise and thus two domains of attraction exist in a positive state
space. Since the lower steady state is close to zero and the upper steady state
of R is very high and close to the target reserve level, there is little possibility
of a currency crisis. The lower steady state moves even closer to zero when
the central bank gives higher weight to the level of precautionary foreign
reserve balances, which means that the domain of attraction of the upper
steady state enlarges as λ3 increases. The central bank’s actual reserve level
tends to be as large as the central bank’s desired target level. When the risk
premium factor ρ > 0 is introduced, it turns out that we still can avoid the
currency crisis scenario. There is a unique steady state in a positive state
space, and the steady state of R remains close to the central bank’s target
level.

Overall, we may conclude that if the central bank takes the level of pre-
cautionary foreign reserve balances into account as one of its targets it is
likely to avoid the economy flipping into a currency crisis scenario. Given
the usual uncertainty that central banks face in terms of the data of the
country, the underlying model and its parameters, the domains of bad out-
comes and the size of shocks it appears as a very useful strategy of central
banks to increase such domains of attraction by some strategy.
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Appendix: The Numerical Solution of the Model

We here briefly describe the dynamic programming algorithm as applied in
Grüne and Semmler (2004) that enables us to numerically solve the dynamic
model as proposed in section 3. The feature of the dynamic programming
algorithm is an adaptive discretization of the state space which leads to high
numerical accuracy with moderate use of memory.

Such algorithm is applied to discounted infinite horizon optimal control
problems of the type introduced in section 3. In our model variants we have
to numerically compute V (x) for

V (x) = max
u

∫

∞

0

e−rf(x, u)dt

s.t. ẋ = g(x, u)

where u represents the control variable and x a vector of state variables.
In the first step, the continuous time optimal control problem has to be

replaced by a first order discrete time approximation given by

Vh(x) = max
j

Jh(x, u), Jh(x, u) = h

∞
∑

i=0

(1 − θh)Uf(xh(i), ui) (A1)

where xu is defined by the discrete dynamics

xh(0) = x, xh(i + 1) = xh(i) + hg(xi, ui) (A2)

and h > 0 is the discretization time step. Note that j = (ji)i∈N0
here

denotes a discrete control sequence.
The optimal value function is the unique solution of a discrete Hamilton-

Jacobi-Bellman equation such as

Vh(x) = max
j

{hf(x, uo) + (1 + θh)Vh(xh(1))} (A3)

where xh(1) denotes the discrete solution corresponding to the control
and initial value x after one time step h. Abbreviating

Th(Vh)(x) = max
j

{hf(x, uo) + (1 − θh)Vh(xh(1))} (A4)
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the second step of the algorithm now approximates the solution on grid
Γ covering a compact subset of the state space, i.e. a compact interval [0, K]
in our setup. Denoting the nodes of Γ by xi, i = 1, ..., P , we are now looking
for an approximation V Γ

h satisfying

V Γ

h (X i) = Th(V
Γ

h )(X i) (A5)

for each node xi of the grid, where the value of V Γ

h for points x which are
not grid points (these are needed for the evaluation of Th) is determined by
linear interpolation. We refer to the paper cited above for the description of
iterative methods for the solution of (A5). Note that an approximately opti-
mal control law (in feedback form for the discrete dynamics) can be obtained
from this approximation by taking the value j∗(x) = j for j realizing the
maximum in (A3), where Vh is replaced by V Γ

h . This procedure in particular
allows the numerical computation of approximately optimal trajectories.

In order the distribute the nodes of the grid efficiently, we make use of a
posteriori error estimation. For each cell Cl of the grid Γ we compute

ηl := max
k∈cl

| Th(V
Γ

h )(k) − V Γ

h (k) |

More precisely we approximate this value by evaluating the right hand
side in a number of test points. It can be shown that the error estimators ηl

give upper and lower bounds for the real error (i.e., the difference between
Vj and V Γ

h ) and hence serve as an indicator for a possible local refinement
of the grid Γ. It should be noted that this adaptive refinement of the grid is
very effective for computing steep value functions and models with multiple
equilibria, see Grüne and Semmler (2004).
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[8] Grüne, L. and W. Semmler (2004), ”Using Dynamic Programming with
Adaptive Grid Scheme for Optimal Control Problems in Economics”,
Journal of Economic Dynamics and Control, 2004, vol. 28:2427-2456.

[9] Kaminsky, G.L. and C. M. Reinhart (1999), ”The Twin Crises: The
Causes of Banking and Balance-Of-Payments Problems.” The American
Economic Review, vol. 89, No. 3: 473-500.

[10] Krugman, P. (1979), ”A Model of Balance Payment Crisis”, Journal of
Money Credit and Banking, vol. 11, no. 3: 311-325.

27



[11] Krugman, P. (2000), ”Crises: The Price of Globalization?”, Global Eco-
nomic Integration: Opportunities and Challenges. Federal Reserve Bank
of Kansas City: 75-105.

[12] Proano-Acosta, C., P. Flaschel and W. Semmler (2004), ”Currency and
Financial Crises in Emerging Market Economies”, CEM Bielefeld Uni-
versity, working paper no. 73.

[13] Stiglitz, J. (2002), ”Globalization and its Discontents”, New York:
W.W. Norton.

28




