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Abstract

In this paper we analyze how the primary surplus to GDP ratio in the US

reacts to variations in the public debt-GDP ratio. In contrast to earlier studies we

perform non-parametric and semi-parametric estimations. Our results show that

the response of the primary surplus to GDP ratio is a positive nonlinear function

of the debt-GDP ratio. Further, our estimations demonstrate that the coefficient

giving the response of the surplus ratio to a change in the debt ratio declines over

time when we assume a linear model with time dependent coefficients.
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1 Introduction

Bohn (1998) presented a new sustainability test for public debt because, as he argues,

conventional tests are restrictive since they conclude too soon that a given policy is un-

sustainable. As an alternative, Bohn suggests to investigate how the primary surplus

reacts to increases in the debt ratio. If the primary surplus to GDP ratio increases at

least linearly with a rising debt ratio, public debt is sustainable. Intuitively, the reasoning

behind this test is obvious. If the government raises the primary surplus to GDP ratio as

the debt to GDP ratio increases it takes corrective actions which guarantee that the gov-

ernment remains solvent. Formally, this was proven by Bohn (1998) assuming a constant

reaction coefficient. Canzonerie et al. (2001) generalized the proof by allowing for a time

dependent reaction coefficient.1

For the US, Bohn (1998) estimated OLS regressions and found that the primary

surplus-GDP ratio is a positive function of the debt ratio implying that US debt pol-

icy is sustainable. In addition, Bohn estimated parametric regression where the debt

ratio enters the equation to be estimated in a nonlinear way. He found evidence that the

marginal effect of the debt ratio on the primary surplus-GDP ratio rises with higher debt

ratios suggesting a nonlinear, convex relationship. The latter is also supported by Sarno

(2001) who tested for nonlinearities and detected strong evidence for nonlinearities in the

process generating the US debt-GDP time series.

However, neither of these authors apply non-parametric estimation techniques and

they do not present an explicit estimate for the function giving the relation between the

primary surplus ratio and the debt ratio. In this paper we take the next step by exploring

functional shapes of the effects. To do so, we take advantage of recent developments

in statistics. About a decade ago Hastie & Tibshirani (1990) introduced Generalized

1The proof is restrictive since it requires that the reaction coefficient is positive at any moment in

time. However, using continuous time it can be shown that a reaction coefficient which is positive on

average guarantees sufficiency for dynamically efficient economies, see Greiner (2004).
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Additive Models as a new flexible class of regression model. The theoretical achievements

were accompanied by numerical developments which led to the success of the software

packages S-PLUS and later on R (see also Venables & Ripley, 2003). The main idea behind

this class of models is, that the effect of an explanatory variable on some measurement

of interest is not modelled as parametric (usually linear) function, but kept flexible by

just postulating that the effect is smooth in the sense of differentiability. The functional

shape is thereby to be estimated from the data, either using local, that are kernel based

methods, or spline smoothing. Available software readily allows to fit such models. With

the contributions by Wood (2000, 2001) also the disputable point of choosing the right

amount of smoothing has been settled in practice. A motivating overview of the state of

art in this field can be found in Ruppert, Wand & Carroll (2003).

In this paper we apply non-parametric estimation to US data. We are focussing the

question whether the relation between the primary surplus to GDP ratio and the debt-

GDP ratio is characterized by nonlinearities. In particular, we want to visualize the

function governing the response of the primary surplus ratio to changes in the debt ratio.

To get insight into this question we pursue smoothing spline regression. Furthermore,

we estimate a semi-parametric regression where we assume a linear relation between the

primary surplus ratio and the debt ratio. However, the coefficients associated with the

predictor variables are assumed to be time varying. This leads to a varying coefficient

model as introduced in Hastie & Tibshirani (1993).

The rest of the paper is organized as follows. In the next section, we test for nonlin-

earities in the relationship between the primary surplus to GDP ratio and the debt-GDP

ratio. Section 3 estimates a semi-parametric function where the exogenous variables en-

ter the equation to be estimated in a linear way but the coefficients are allowed to be

nonlinear functions of time. Section 4, finally, concludes.
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2 A nonparametric model

Starting point of Bohn’s sustainability test is the assumption that the primary surplus to

GDP ratio is a positive function of the debt-GDP ratio and of other variables affecting

the primary surplus ratio. Estimating this policy rule allows conclusions as to the sus-

tainability of a given fiscal policy. If the primary surplus-GDP ratio rises at least linearly

with the debt-GDP ratio a given fiscal policy can be shown to be sustainable.

With st denoting the primary surplus to GDP ratio and dt the debt-GDP ratio, we

model st to depend on dt in a flexible, non-parametric manner via

st = α + f1(dt) + f2(GV ARt) + f3(Y V ARt) + ǫt, ǫt ∼ iid(0, σ2). (1)

Here, GV AR is the level of temporary government spending and Y V AR is a business

cycle indicator (cf. Bohn, 1998). In (1), fl(·) are considered as smooth non-parametric

functions, l = 1, 2, 3. These functions are kept unspecified and will be estimated from the

data (see Appendix for details).

Figure 1 shows the data ranging from year 1916 to 1995. The shaded area indicates

World War I and II plus the subsequent year. These data are excluded from the analysis

for two reasons. First, from a statistical viewpoint these years show extreme values in the

covariates and hence they would act as leverage points in the estimation. By excluding

the points leverage biased estimates are avoided. Secondly, from an economic point of

view estimating a policy rule such as (1) assumes a reaction which holds in normal times

but not necessarily in war times. During wars the response of public surpluses to public

debt cannot be expected to be the same as in times of peace. So, from an economic

perspective war periods are considered as exogenous shocks which destabilize the system

and may make policy rules which hold in peace irrelevant.
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Figure 1: Data used in the estimations.

Model (1) is now fitted to the data and the resulting fits including their confidence

bands are shown in Figure 2. The smoothing parameter is thereby chosen data driven.

As reference line we also include a parametric linear fit resulting from the model

st = α + β1 dt + β2 GV ARt + β3 Y V ARt + εt (2)
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Figure 2: Non-parametric estimates for model (2) using the data as shown in Figure 1

excluding 1916-1919 and 1940-1946.

The resulting estimates in model (2) are also shown in Table 3 in the Appendix.

Apparently, as can be seen from Figure 2, there is evidence, that the linear model (2)

does not describe the data sufficiently well, as the effects of dt, GV ARt and Y V ARt show

a nonlinear shape. The numbers in brackets on the vertical axis are the trace of the

smoothing matrix of each smooth term and give the degree of complexity of each term

(see also the Appendix). If a variable entered the model linearly we would have 1, and

the higher the number the stronger the degree of nonlinearity.

Moreover, the adjusted R2 for model (2) is 0.63 while for the non-parametric model

(1) we achieve 0.76. The Durbin Watson statistic for the parametric residuals is 1.47
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while the non-parametric residuals lead to 1.58. The improvement of the non-parametric

over the parametric model is also mirrored in the bottom right plot of Figure 2 where we

compare the fitted adjusted and normalized residuals ε̂i in the two models. Note that,

due to the standardization, the residuals should behave like N(0, 1) variables. For the

parametric models this is not the case and we see clear outliers. In contrast, for the non-

parametric models, where residuals are connected by a line for better visual impression,

outliers are not exposed.

Figure 2 shows the function f1(dt) obtained from estimating (1). This function in-

dicates that the primary surplus to GDP ratio rises with a higher debt ratio. Further,

the function shows that the increase in the surplus ratio is larger for higher debt ratios,

suggesting a convex function. Since the surplus ratio rises to a stronger degree when the

debt ratio is higher the debt ratio should display mean reversion. The latter fact implies

that the debt ratio remains bounded and, thus, guarantees sustainability of public debt.

Our result derived above suggests a nonlinear relationship between the primary surplus

ratio and the debt ratio among others. However, our inference should be based on terms

of statistical significance. Therefore, the next step is to assess which of the non-parametric

components are actually required in the sense of statistical significance. We pursue this

question by significance tests based on bootstrapping.

Let H1 denote model (1) with all components entering non-parametrically. We denote

this by defining with N the index set of non-parametric components. For model (1) we

have

N1 = {d,GV AR, Y V AR} (3)

With H0 we denote a simplified model where one (or more) of the components are

modelled linearly instead of non-parametrically. For instance, N0 = {d,GV AR} stands

for the model

st = α + f1(dt) + f2(GV ARt) + β3 Y V ARt + εt (4)

and N0 = ∅ represents model (2). Moreover we define with µ̂1t and µ̂0t the fitted mean

6



values for the t-th observation st under model H1 and H0, respectively. In order to test

model H0 against H1 we calculate the F type statistic

F =
RSS0 − RSS1

RSS1

(5)

where RSSl =
∑

n

t=1
(st − µ̂lt)

2, l = 0, 1. If both models H0 and H1 are parametric (and

nested) we can use classical asymptotic theory for assessing the significance of F with

reference distribution given by the F distribution. This asymptotic theory does not hold

for non-parametric tests (see e.g. Härdle & Mammen, 1993). We therefore assess F by

bootstrapping. To do so we generate new observations

s∗
t

= µ̂0t + ε∗
t

(6)

from the fitted H0 model, where ε∗
t

is a bootstrapped residual. In principle, there are

several options to draw ε∗
t

(see for instance Shao & Tu, 1995, or Efron & Tibshirani,

1993). We decided for a residual bootstrap, that is we draw ε∗
t

from the fitted residuals

ε̂11, . . . , ε̂1n in the H1 model with ε̂1t = st − µ̂1t. Note that bootstrap residuals must not

be drawn from the fitted H0 residuals ε̂0t. This would be wrong, because if the H0 model

is not correct, this results in biased residuals. Hence, bootstrapping with residuals drawn

from the H0 model would mean simulating from a false model.

With (6) we now run the standard ideas of bootstrapping by refitting models H1 and

H0 to the bootstrapped data s∗
t

to obtain a bootstrapped F statistic F ∗. Repeating this

B times provides a simulated reference distribution of F under H0 which finally allows to

assess significance.

We have now gathered the prerequisites to run a model selection which is pursued in a

stepwise backward selection by replacing one non-parametric function by a linear function

after the other. The results are listed in Table 1. The final model shows a non-parametric

structure in the debt ratio d and in government spending GV AR yielding (4) as the final

model. It should be noted that the business cycle variable Y V AR does not enter the

equation non-parametrically and the shape shown in Figure 2 is not significantly different
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from a straight line. The fact that Y V AR does not enter non-parametrically holds because

we cannot reject H0 : N0 = {d,GV AR} against H1 : N1 = {d,GV AR, Y V AR} while

H0 : N0 = {d, Y V AR} and H0 : N0 = {GV AR, Y V AR} are both rejected in favour

of H1 : N1 = {d,GV AR, Y V AR}. Further, both the debt ratio d as well as temporary

government spending GV AR enter the equation in a non-parametric way as the last two

lines in Table 1 clearly show. Now, both H0 : N0 = {d} and H0 : N0 = {GV AR} are

rejected in favour of H1 : N1 = {d,GV AR}.

The corresponding fitted smooth functions f1(·) and f2(·) of (4) are basically the same

as those shown in Figure 2 and are therefore not reproduced again. Especially, the primary

surplus ratio again turns out to be a convex function of the debt ratio.

H0 H1 p-value selected model

N0 = {d,GV AR} N1 = {d,GV AR, Y V AR} 0.122 H0

N0 = {d, Y V AR} N1 = {d,GV AR, Y V AR} 0.036 H1

N0 = {GV AR, Y V AR} N1 = {d,GV AR, Y V AR} 0.044 H1

N0 = {d} N1 = {d,GV AR} 0.008 H1

N0 = {GV AR} N1 = {d,GV AR} 0.022 H1

Table 1: Test results (p-value) for backward selection routine.

3 A time varying coefficient model

The previous section demonstrated that there is evidence for nonlinearities in the process

determining the response of the primary surplus ratio to variations in the debt ratio. In

this section we pursue the question of whether the functional relationship had been stable

over time. To do so, we assume a linear relationship but let the coefficients depend non-

parametrically on time. Allowing for time dependent coefficients implies that the marginal
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effect of the variables may change over time giving sufficient flexibility. Therefore, a linear

structure can be justified in the estimation of the functional relationship between the

surplus ratio and the debt ratio.

The equation to be estimated, then, is given by

st = α + β1(t) dt + β2 GV ARt + β3 Y V ARt + εt (7)

Now, β1(t) gives the effect of the debt ratio depending on time t. In principle, one could

also allow β2 as well as β3 to depend on t. However there is no evidence in the data for

such dynamic structure, tested in an analogous way as in the previous section. From an

economic point of view this implies that the effects of temporary government spending and

of business cycles on the primary surplus ratio are constant over time. Thus, there is no

indication that the fiscal behaviour of the government as to variations in public spending

and business cycles has changed. This can be justified by resorting to the tax smoothing

model stating that public deficits should be used to compensate declining tax revenues

such that tax rates are smoothed over time. Therefore, there should be no systematic

time trend in the coefficients of GV AR and Y V AR giving policy makers’ response to

temporary government spending and to business cycle variations.

As database we now consider post World War II years starting with 1947. The fitted

coefficient β1(t) is shown in Figure 3 together with the estimated residuals ε̂t. The Durbin

Watson statistic for ε̂t takes the value 1.65 and R2 is calculated as 0.72. The parametric

estimates β2 and β3 are listed in Table 2.
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coefficient estimate std dev t-value

Intercept -0.007 0.008 -0.834

GVAR -1.968 0.533 -3.689

YVAR -0.626 0.146 -4.29

Table 2: Parametric estimates for model (7) using the data as shown in Figure 1 from

1947-1995.
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Figure 3: The reaction coefficient β1(t) as a function of time obtained from estimating

(7) and the residuals of the estimation.

Figure 3 clearly demonstrates that the reaction coefficient β1(t) is characterized by a

negative trend over time. This implies that the reaction of the primary surplus to GDP

ratio has declined over the last 50 years. But it should be noted that the coefficient has

remained positive over the whole time period we consider. The result that the reaction

coefficient β1(t) has declined over time is also consistent with the last section where we

found that the primary surplus reacts the stronger to variations in public debt the higher

the debt ratio is. Since debt ratios were particularly high after World War II we can
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expect that the reaction coefficient β1(t) is high in those periods when we assume a linear

but time varying relationship.

We should also like to point out that GV AR and Y V AR have the expected signs as in

the paper by Bohn (1998). However, in contrast to Bohn, the GV AR coefficient is larger

than one and the Y V AR coefficient is smaller than one in absolute values. This implies

that the primary surplus falls by less than GDP in a recession and by more than GDP as

temporary government spending rises.

4 Conclusion

This paper has tested for sustainability of US public debt by analyzing how the primary

surplus reacts to variations in the debt ratio. Estimating smoothing spline regressions

demonstrated that the primary surplus to GDP ratio is a nonlinearly increasing function

of the debt ratio. In addition, we could provide an estimate for the function giving

the response of the primary surplus ratio to the debt ratio. This function showed that

the response of primary surplus-GDP ratio seems to increase with a rising debt ratio

confirming Bohn’s conjecture.

Further, we performed a semi-parametric estimation where we assumed a linear re-

lationship, but with the parameter giving the response of the primary surplus ratio to

changes in the debt ratio being time dependent. With the parameter being time de-

pendent the linear model is sufficiently flexible to reflect the situation in the US. This

estimation demonstrated that the sustainability coefficient declined over time but seems to

remain positive over the time period under consideration. Thus, our estimations provide

additional evidence that US public debt was sustainable over the time period considered

although there was a negative trend.

From a methodological point of view this paper has provided an example for smooth-

ing spline regressions which allow to perform non-parametric and semi-parametric esti-

mations. These are more flexible than OLS estimations and contain the latter as a special
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case. Surprisingly, there are only few applications of smoothing spline estimations in eco-

nomics although these estimations may yield insights into economic structure which are

difficult to detect with ordinary OLS estimation.
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A Nonparametric estimation

The subsequent algorithm is based on Wood (2000) and implemented in the public domain

software package R (see Ihaka & Gentleman, 1996). The program and more information

about it can be downloaded from http://www.r-project.org/. We exemplify the fit with

the simplified model

st = α + f(dt) + εt

Let st and dt be the observed values for t = 1, 2, . . .. For fitting we replace f(dt) by

the parametric form

f(dt) = dt βd + Z(dt) γ (8)

where Z(dt) is a high dimensional basis in dt, for instance a cubic spline basis, and γ as

corresponding coefficient. Conventionally, Z(dt) is 10 to 40 dimensional. In practice, if

a larger basis is used this is reduced to a smaller basis using only those basis functions

corresponding to the largest Eigenvalues of Z(dt)Z(dt)
T , see Wood (2000) for more details.

In principle, with replacement (8) one ends up with a parametric model. However, fit-

ting the model in a standard OLS fashion is unsatisfactory due to the large dimensionality

of Z(dt) which will lead to highly variable estimates. This can be avoided by imposing an

additional penalty term on γ, shrinking its values to zero. To be more specific, we obtain

an estimate by minimizing the penalized OLS criterion

∑

t

{st − dtβd − Z(dt)γ}
2 + λγT Pγ

with λ called the smoothing or penalty parameter and γT Pγ as penalty. Matrix P is

thereby chosen in accordance to the basis (see Ruppert, Wand & Carroll, 2003, for more

details). It is easy to see that choosing λ = 0 yields an unpenalized OLS fit, while λ → ∞

typically implies γ = 0 depending on the choice of P . Hence, λ steers the amount of

smoothness of the function with a simple linear fit as one extreme and a high dimensional

parametric as the other extreme.

13



The fitted function itself can be written as f̂1(d) = H(λ)s where s = (s1, s2, . . .) is

the vector of observed surplus values and analogous definition for d. The matrix H(λ)

results thereby as

H(λ) =
(

d Z(d)
)









dT

ZT (d)





(

d Z(d)
)

+ λ





0 0

0 P









−1



dT

ZT (d)



 .

Matrix H(λ) is also called the smoothing matrix and its trace is conventionally defined

as the degree of complexity of the fit. Note that as special case we get trace of H(∞)

equals 1 while trace of H(0) is p+1 with p as dimension of Z(d). The parameter λ steers

the compromise between goodness of fit and complexity of the fit.

To obtain a reliable fit, λ should be chosen data driven. One possibility is to use a

generalized cross validation criterion defined through

GCV (λ) =
∑

t

(

st − f̂(dt)

1 − tr(H)/n

)2

with n as overall sample size. A suitable choice for λ is achieved by minimizing GCV (λ).

This can be done iteratively using a Newton-Raphson algorithm, as has been pointed out

and implemented by Wood (2000, 2001).

If there is more than one smooth function involved, estimation can be carried out

using a backfitting strategy. This means, in order to fit one smooth component all other

terms in the model are kept fixed and smoothing like demonstrated above is pursued.

One then cycles over the different smooth components by always fitting just one of the

smooth functions. This is the major idea behind fitting additive models and we refer to

Hastie & Tibshirani (1990) for further technical details.
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B Result of parametric linear estimation of (2)

coefficient estimate std dev t-value

Intercept -0.014 0.004 -3.378

d 0.043 0.009 4.282

GVAR -0.669 0.145 -4.621

YVAR -1.750 0.433 -4.043

Table 3: Parametric estimates for model (2) using the data as shown in Figure 1 excluding

1916-1919 and 1940-1946.
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C Data

The data are from the appendix in Bohn (1998).

Year s GVAR YVAR d
1916 -0.007614879647 -0.012000000000 0.000100000000 0.0200000000000
1917 -0.077863727740 0.100000000000 -0.000200000000 0.0146533523546
1918 -0.137360425379 0.199000000000 -0.005100000000 0.0890883902169
1919 -0.065962237772 0.089000000000 -0.003900000000 0.2365673158331
1920 0.014944984665 -0.022000000000 0.000300000000 0.2565480609257
1921 0.022525373998 0.012000000000 0.004100000000 0.3244166239106
1922 0.022840755078 -0.020000000000 0.001300000000 0.2927053847553
1923 0.020893495830 -0.024000000000 -0.001600000000 0.2457790599749
1924 0.020021875754 -0.019000000000 0.000100000000 0.2377833885848
1925 0.017135177572 -0.022000000000 -0.001100000000 0.2058835405765
1926 0.018167760447 -0.024000000000 -0.001800000000 0.1976818469274
1927 0.018432965562 -0.020000000000 -0.001900000000 0.1805893142338
1928 0.015424837091 -0.019000000000 -0.000400000000 0.1660725353409
1929 0.013170324315 -0.019000000000 -0.000900000000 0.1486366234356
1930 0.005364582970 -0.012000000000 0.002303225806 0.1598645725003
1931 -0.023028398500 -0.002000000000 0.007800000000 0.1893445046937
1932 -0.016708169013 0.008000000000 0.010600000000 0.2690012521009
1933 -0.015708646765 0.015000000000 0.012600000000 0.3176637456875
1934 -0.034269561169 0.012000000000 0.012200000000 0.3188557783299
1935 -0.028194997460 0.014000000000 0.009600000000 0.3396827502056
1936 -0.037638597656 0.002000000000 0.006500000000 0.3552141543723
1937 0.002141121861 -0.002000000000 0.004300000000 0.3586397049831
1938 -0.018312450103 0.018000000000 0.007700000000 0.3932026395606
1939 -0.017129071242 0.001000000000 0.006700000000 0.3853396280944
1940 -0.005841196672 0.014000000000 0.005000000000 0.3704486929483
1941 -0.032710701364 0.047000000000 0.001300000000 0.3208764038572
1942 -0.197329522205 0.182000000000 -0.003500000000 0.3221205665027
1943 -0.228252267352 0.303000000000 -0.006100000000 0.4773008417899
1944 -0.242276116610 0.341000000000 -0.006200000000 0.6547003331541
1945 -0.179088060794 0.302000000000 -0.004900000000 0.8780353261957
1946 0.034053479909 0.037000000000 -0.001800000000 1.0464542339468
1947 0.072309639682 -0.024000000000 -0.002500000000 0.8527551100874
1948 0.046704244233 -0.029000000000 -0.002800000000 0.7424113196481
1949 0.006381012416 -0.024000000000 0.000800000000 0.7173055076606
1950 0.046108239406 -0.012000000000 -0.000500000000 0.6709431829330
1951 0.032248647969 0.010000000000 -0.003900000000 0.5822346805978
1952 0.002223980445 0.017000000000 -0.005000000000 0.5420884573986
1953 -0.006838836455 0.007000000000 -0.005600000000 0.5221186593345
1954 -0.003935923672 0.006000000000 -0.000200000000 0.5313528838552
1955 0.021913244871 -0.017000000000 -0.002400000000 0.4950949055579
1956 0.025337313689 -0.020000000000 -0.003800000000 0.4688544775211
1957 0.016904500879 -0.019000000000 -0.002700000000 0.4321483942698
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Year s GVAR YVAR d
1958 -0.010912608193 -0.007000000000 0.002300000000 0.4219541834609
1959 0.010054194184 -0.017000000000 -0.000200000000 0.4015771315919
1960 0.018610832265 -0.018000000000 -0.000200000000 0.3999430280587
1961 0.004405284508 -0.001000000000 0.002300000000 0.3808737151248
1962 0.004442733991 -0.016000000000 -0.000200000000 0.3627664573455
1963 0.012309684159 -0.017000000000 0.000200000000 0.3501781665047
1964 0.007088722145 -0.021000000000 -0.000800000000 0.3275894574111
1965 0.012376151573 -0.021000000000 -0.002000000000 0.3043977055449
1966 0.009393247017 -0.013000000000 -0.003600000000 0.2750698146738
1967 -0.004078696017 -0.001000000000 -0.003400000000 0.2585172744722
1968 0.005820498037 0.000000000000 -0.004000000000 0.2411662960217
1969 0.021481839701 -0.004000000000 -0.004000000000 0.2303952760315
1970 0.001641520821 -0.009000000000 -0.001200000000 0.2135908267954
1971 -0.007375319338 -0.011000000000 0.000600000000 0.2035765855826
1972 -0.001939746621 -0.015000000000 0.000000000000 0.1996322563698
1973 0.008968268031 -0.023000000000 -0.001500000000 0.1892707975482
1974 0.006079366670 -0.019000000000 0.000000000000 0.1742992951866
1975 -0.028394517356 -0.003000000000 0.006300000000 0.1661964920888
1976 -0.014733835455 -0.008000000000 0.004500000000 0.1920887874873
1977 -0.008338066458 -0.011000000000 0.003200000000 0.2020376446210
1978 0.002574829524 -0.016000000000 0.001100000000 0.2013201680214
1979 0.010322619746 -0.016000000000 0.000600000000 0.1988661192571
1980 -0.002873318907 -0.007000000000 0.003400000000 0.1941259394277
1981 0.002760098206 -0.004000000000 0.004400000000 0.1978240315800
1982 -0.018907708798 0.008000000000 0.008500000000 0.2142146619063
1983 -0.023246387492 0.008000000000 0.008000000000 0.2413981690271
1984 -0.013837524104 0.000591724334 0.002789975557 0.2620421917141
1985 -0.015978257100 -0.000657689466 0.002258186619 0.2900249361646
1986 -0.016123310362 -0.001813603144 0.001846372121 0.3204757839751
1987 -0.003367200695 -0.005867188418 0.000407955866 0.3414085767716
1988 0.001881317332 -0.010948483464 -0.001008184274 0.3428786438530
1989 0.006931835419 -0.013151494506 -0.001398702245 0.3417192606655
1990 0.004387320296 -0.011847536863 -0.000816633639 0.3509508036892
1991 -0.000566196386 -0.004822348258 0.001796193032 0.3867543848530
1992 -0.013624152744 -0.002554864756 0.003329827579 0.4104781465067
1993 -0.009659771553 -0.005968603896 0.002101056719 0.4333773338725
1994 0.001604019782 -0.010566045628 0.000622337870 0.4394221203339
1995 0.008729937171 -0.013572905255 -0.000414530310 0.4367381122243
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