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Abstract
In this paper a quantity-setting duopoly is considered where one

firm develops a new product which is horizontally differentiated from
the existing product. The main question examined is which strate-
gic effects occur if the decision to launch a new product is considered
separately from the decision to develop the innovation. We analyze a
multi-stage game where a firm’s decision to introduce the newly devel-
oped product in the market is explicitly taken into account and charac-
terize an equilibrium where the competitor of the potential innovator
strategically over-invests in process innovation. In this equilibrium the
competitor tries to push the potential innovator to introduce the new
product thereby reducing competition for the existing product. It is
shown that this effect has positive welfare implications in comparison
to the case where the innovator commits ex ante to introducing the
developed product.

Keywords: product innovation, process innovation, market introduction,
innovation incentives

JEL Classification: L13, O31

1 Introduction

When a firm introduces a new product in the market this decision is the
result of a multi-stage process often involving among other steps R&D ac-
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tivities, prototype designs, test marketing runs and finally a launch decision.
Firms typically launch only a small fraction of the innovative products they
develop. In a seminal study Mansfield et al. (1977) use data of 16 compa-
nies in the chemical, drug, petroleum and electronics industries to estimate
the probability of commercialization of R&D projects given technical com-
pletion. The average probability in the sample is 65%, where values differ
significantly between firms ranging from 12% to more than 90% [p. 24]. Re-
cently Astebro (2003) and Astebro and Simons (2003) employ data from
the Canadian Innovation Centre, to show that only 7% of the inventions
recorded from independent inventors lead to a successful commercialization.
Hence, there is a significant gap between the number of product innovation
projects firms undertake and the number of product innovations actually in-
troduced in the market. In order to analyze a firm’s decision leading to the
introduction of new products, it is therefore important to consider the incen-
tives to invest in product innovation projects as well as the firms incentives
to launch a developed product.

Starting with the seminal analysis of Arrow (1962), a vast literature in
economics and management has analyzed the incentives of firms to invest in
innovative activities under different market environments. A large part of
this literature has focused either on process or on product innovations, and
only recently authors have considered the interplay between the two types of
innovative activities and the resulting incentive effects. Athey and Schmut-
zler (1995) show in a monopoly setting that these two types of innovative
activities are complementary and that this induces also complementarities
with respect to investments increasing product and process flexibility. Us-
ing a duopoly model Lin and Saggi (2002) confirm the complementarities
between product and process innovation efforts in a duopoly model. They
also examine the effect of the type of market competition on innovation in-
centives and demonstrate that firms are inclined to do more product R&D
under price competition whereas firms invest more in process R&D under
quantitiy competition. The effect of intensity of competition on incentives
for product and process innovation has also been studied in Bonanno and
Haworth (1998), Boone (2000) or Symeonidis (2003). Yin and Zuscovitch
(1998) and Rosenkranz (2003) analyze the effect of firm and market size
on the balance between product and process innovation, where the latter
also reconsiders the analysis of R&D cartels (see e.g. Kamien et al. (1992))
under the additional aspect that firms invest in product and process inno-
vation. None of these studies take into account the multi-phase structure of
the decision making process leading to the actual introduction of the new
product.
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Other streams of literature do take the multi-stage structure of R&D
projects into account, however their focus is not on the interplay of process
and product innovation incentives in the presence of strategic interaction.
First, in several recent papers the value of R&D projects has been analyzed
using a real options approach (e.g. Huchzermeier and Loch (2001), Lint
(2005), Smit and Trigeorgis (1997)). Their focus is on the value of flexibility
in the R&D process in an uncertain and competitive environment. Second,
the work on patent-races and innovation timing games takes into account
the dynamic nature of R&D projects and provides insights into the resulting
strategic effects, but the focus is on the adoption of new technology, tech-
nological competition, and the optimal timing of bringing a new product or
process to market (see e.g. Hoppe and Lehmann-Grube (2005), Doraszelski
(2003), Reinganum (1989)).

The goal of this paper is to initiate a rigorous analysis of the strategic
implications of the multi-stage nature of R&D projects in a market envi-
ronment where firms are active in product and process innovation. A step
in this direction has been recently taken by Lukach et al. (2005) who study
the role of sequential investment decisions in process innovation in a market
setting with potential competition. Our analysis differs from this paper in
two important aspects. First, our emphasis is on the interplay of process
and product innovation. Second, we consider a scenario with actual rather
than potential competition.

We study a duopoly market with Cournot competition. Ex-ante the two
producers are able to offer identical products at identical costs. Firm 1 is
in the process of developing a new product, which is horizontally differen-
tiated from the existing product. How consumers will perceive the degree
of differentiation between the new product and the old one is at this stage
uncertain. Both firms can invest in process innovation which reduces pro-
duction costs for the existing product. After finishing the product innovation
project, firm 1 obtains information about the perceived degree of differenti-
ation and, based on this, the firm decides whether to enter the competition
with the existing product or to introduce the new product on the market. If
firm 1 decides to launch the new product, competition is less strong due to
the differentiation effect. However, it has to take into account that due to
lost learning curve effects the average production costs of the new product
are higher than for the existing product and that firm 1’s investments in
process innovation are lost.1

1Clearly, the assumption that process innovations are completely product specific is
very strong, but the basic effects do not change if we allow for a positive but diminished
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We find that three different types of equilibria with quite distinct inter-
pretations can occur in this game. Which type of equilibrium exists depends
crucially on the additional production costs faced by firm 1 if it decides to
launch the new product. If the difference in production costs between the
existing and the new product is small (high), then firm 1 will introduce the
differentiated product (the existing product). More interestingly, we dis-
cover that there is an intermediate range of the cost difference, where firm
2 strategically over-invests in process innovation. The consideration of the
multi-stage structure of firm 1’s product innovation project is crucial for
this insight. Once firm 1 has started the project, firm 2 has incentives to
influence the continuation decision of its competitor (i.e. the launch decision
for the new product). In our framework, where the new product developed
by firm 1 is horizontally differentiated, firm 2 has incentives to push firm 1
to introduce the developed innovation, thereby leaving the market segment
for the existing product to firm 2. By choosing a high level of process inno-
vation firm 2 reduces its own production costs to a level where the market
for the existing product becomes unattractive for firm 1. Hence in this type
of equilibrium firm 2 is indeed able to successfully influence the outcome of
the subsequent launch decision of firm 1. However, in order to reach this
goal firm 2 has to overinvest, i.e. it has to choose an investment level which
is above the level that would ex-post be optimal given that firm 1 goes to the
market with the new product. A welfare comparison between the different
types of equilibria shows that such limit R&D behavior of firm 2 reduces
the profits of firm 1 but actually is welfare-improving.

The paper is organized as follows. We introduce our model in section
2 and characterize the subgame perfect equilibria of the game in section 3.
The analytical findings are illustrated with a numerical example in section 4
where we also compare the different types of equilibria with respect to firm
profits and welfare. Concluding remarks are given in section 5. Proofs and
supporting lemmas are collected in Appendix A.

2 The Model

We consider a duopoly with quantity competition. There are three decision
stages which we call the innovation stage, the product selection stage, and

cost reducing effect of stage one investments on production costs of the new product.
Also, one could allow firm 1 to make process innovation investments specific to the new
product in stage one. For reasons of tractability we have not done so in this paper, but
an extension like this might be considered in future work.
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the production stage2.

Innovation Stage: It is assumed that both firms have the ability to
produce an identical product variant which we refer to as the ’old product’.
Additionally, firm 1 is in the process of developing a different product variant
(’new product’), where the investments in product development are sunk.
The outcome of the development process, i.e. the degree of perceived differ-
entiation, is uncertain. For reasons of simplicity it is assumed that only two
outcomes are possible: high differentiation with probability p or low differen-
tiation with probability 1−p. While the new product development project of
firm 1 is still going on, both firms decide simultaneously how much to invest
in process innovation for the existing product. Hence, the process innovation
decisions are made before the outcome of the product innovation process is
known and before firm 1 has decided whether to introduce the new prod-
uct or the old product. Without any process innovation, future marginal
production costs of the old product would be at a level co > 0. Reducing
these costs by x requires an investment of k(x) = αx + βx2, α, β > 0. Both
the initial cost level and the efficiency of process innovation investments are
assumed to be identical for both firms. We denote the cost reductions due
to process innovation investments of firm i by xi.

Product Selection Stage: Firms observe the decisions their respec-
tive competitor has made in the innovation phase. Furthermore, between
the innovation stage and the product selection stage the outcome of firm 1’s
product innovation project is revealed to both parties,3 i.e. both firms ob-
serve the realized degree of differentiation. Firm 1 then has the choice either
to continue producing the old (homogeneous) product or to introduce the
new (differentiated) product in the market. If firm 1 decides to introduce
the new product, it stops producing the old product (e.g. due to capacity
restrictions). Marginal costs of production for the new product are cn where

2We adopt the usual sequence product innovation - process innovation - market com-
petition from game-theoretic analyses with sequential decisions (see e.g. Lin and Saggi
(2002)), but add the launch decision as an additional decision between the process inno-
vation stage and the market competition stage. We have abstained from adding another
process innovation stage after the launch decision, since such a more complex game struc-
ture would be hardly tractable and distract attention form the main point of the paper.

3Actually, it would be sufficient to assume that firm 2 learns about the value of the
degree of differentiation (γ) only in cases where firm 1 has decided to introduce the new
product in the market.
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it is assumed that co < cn < 2c0.4 Firm 1’s launch decision of the developed
product is represented by the binary variable P1, where P1 = N means that
the new product is introduced whereas P1 = O if firm 1 sticks to the old
product.

Production Stage: Both firms know the competitor’s cost level and
the degree of product differentiation. All investments in process and product
innovation are sunk at this point. The firms then simultaneously choose their
profit maximizing output quantities.

The demand for the firm’s product depends on the degree of differenti-
ation. The inverse demand function is assumed to have the linear form

pi = a− qi − γqj , i, j ∈ {1, 2}, i 6= j. (1)

The variables q1, q2 denote the quantities produced by the two firms. The
parameter γ reflects the degree of product differentiation.5 In particular, γ
takes the value γh if a product with high degree of differentiation or γl if a
product with low degree of differentiation is offered, where 0 < γh < γl < 1.
If firm 1 offers the old product, we have γ = 1, i.e products are perfect
substitutes.

The profit in the production phase is then

πi(γ, qi, qj) = ([a− qi − γqj ]− ci(xi)) qi, (2)

where a > ci. For the marginal cost functions we have

c1(x1) =

{
co − x1 for P1 = O

cn for P1 = N

c2(x2) = co − x2

(3)

We will characterize the equilibria of this game and discuss the implica-
tions of the strategic behavior on investments in process innovation and on
the likelihood that the new product is actually launched. We will show that
different types of equilibria with quite distinct properties may be observed

4Note that firm 1 can realize the benefits from process innovation in the innovation
phase only if it decides to continue with the existing product.

5This demand structure can be derived from the utility optimization problem of a
representative consumer with utility function U(q1, q2; γ) = a(q1 + q2) − (q2

1 + 2γq1q2 +
q2
2)/2 + m choosing quantities q1 of good 1, q2 of good 2 and m of a numeraire good (see

Spence (1976), Dixit and Stiglitz (1977)).
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in our setup depending on the values of market and cost parameters. In
particular, we will investigate the dependence of the resulting equilibrium
on the increases in production costs faced by firm 1 if it decides to launch
the new product.

3 Equilibrium Analysis

We consider subgame-perfect equilibria of the game and hence analyze the
game by backward induction. The difference cn − co is interpreted as the
loss of specific production know-how firm 1 encounters when it decides to
introduce the new product. This number can be seen as a measure of the
technological differences between the old and new product. In our analysis
we will characterize how the value of this variable influences the constellation
of equilibria of the game.

3.1 Production Stage

In the production stage the two firms compete in a Cournot duopoly with
differentiated products. Standard analysis gives the following equilibrium
quantities and profits:

qe
i (γ, c1, c2) =

(2− γ)a + γcj − 2ci

4− γ2
, i, j ∈ {1, 2}, i 6= j

πe
i (γ, c1, c2) =

((2− γ)a + γcj − 2ci)2

(4− γ2)2
, i, j ∈ {1, 2}, i 6= j

In what follows we make several assumptions in order to exclude trivial cases
and parameter constellations which induce counter-intuitive effects of a new
product introduction on the profits of the firms:

(A1) Throughout the analysis it is assumed that if the outcome of the prod-
uct innovation process is good, it is optimal for firm 1 to introduce the
product regardless of the revious choices of process innovation invest-
ments.

(A2) Firm 2 always prefers that firm 1 introduces the new product and
leaves the market for the old product:

πe
2(γ, cn, c2) ≥ πe

2(1, c1, c2), ∀γ ∈ {γl, γh}, c1, c2 ∈ [0, co].

Although we deal with the potential introduction of a horizontally
differentiated product without quality advantages, in principle this in-
troduction might still have negative effects for the competitor of the
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innovator. This is in particular true if the competitor has large cost
advantages for the existing product, the new product is highly differ-
entiated and the market is relatively small. Here we restrict attention
to the case where the softening of competition in the market for the
old product which results from the introduction of the horizontally dif-
ferentiated new product leads to increased profits for the competitor.

Direct calculations show that (A1) and (A2) always hold for a > 8c0

and γh sufficiently small.

(A3) Optimal process investments of firm 1 are positive for sufficiently small
expected x2 if the firm stays in the old market for γ = γl. Optimal
process investments of firm 2 are positive for sufficiently small expected
x1. A sufficient condition for this to hold is

0 ≤ α < min
[
27
64

,
4(1− p)

9
(a− co)

]
.

Note that these assumptions also guarantee the positivity of quantities and
profits. In addition we will assume β > 1 to ensure concavity of the two
firms payoff functions with respect to process innovation investments.

3.2 Product Selection Stage

At the product selection stage the new product development project has
been finished and firm 1 knows x1, x2 and γ. It is optimal to choose P1 = N
iff

πe
1(γ, cn, co − x2) ≥ πe

1(1, co − x1, co − x2).

As pointed out above, we consider only equilibria where this inequality holds
true for γ = γh. For γ = γl we get that firm 1 chooses P1 = N iff

x2 ≥ xT1
2 (x1) :=

6cn − (2− 3γl + γ2
l )a− (4 + 3γl − γ2

l )co

4− 3γl − γ2
l

+
2(4− γ2

l )
4− 3γl − γ2

l

x1.

(4)
Note that xT1

2 (x1) is an increasing function of x1. Also, the value of xT1
2 (x1)

increases with cn for all x1.
In game-theoretic terms each combination (x1, x2) is the root of a sub-

game and the equilibrium strategy in these subgames induces

P e
1 (x1, x2) =





N x2 > xT1
2 (x1)

{N, O} x2 = xT1
2 (x1)

O x2 < xT1
2 (x1)
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at the product selection stage.
Considering the form of P e

1 (x1, x2) the main strategic effects at work can
already be identified. On the one hand, if firm 2’s investments in process
innovation are sufficiently high, it can ‘push’ firm 1 to introduce the new
product. Accordingly, there might be an incentive for firm 2 to strategi-
cally overinvest in process innovation. On the other hand, such a strategic
investment, which leads to cost reductions of firm 2, is potentially harmful
for firm 1. Firm 1 can increase the minimal investment level xT1

2 by in-
creasing its own investment x1 in process innovation. In principle, these two
effects could lead to overinvestments on both sides. However, in the follow-
ing analysis we will show that only overinvestment by firm 2 can occur in
equilibrium.

3.3 Process Innovation Stage

At this stage the two firms simultaneously choose xi ∈ [0, co]. If P1 = N is
chosen for γ = γl the expected profit of firm i reads

ΠN
i (x1, x2) = pπe

i (γh, cn, co − x2) + (1− p)πe
i (γl, cn, co − x2)− αxi − βx2

i .

For P1 = O we have

ΠO
i (x1, x2) = pπe

i (γh, cn, co−x2) + (1− p)πe
i (1, co−x1, co−x2)−αxi−βx2

i ,

where the choice of P1 depends on (x1, x2) as described in subsection 3.2.
In order to characterize the equilibrium choices of (x1, x2) we separately
consider both firms best-reply correpsondences.

3.3.1 Best Reply of Firm 1

To characterize the best reply correspondence of firm 1 some additional
notation is needed. We define

x∗1(x2) = argmaxx1∈[0,co]Π
O
1 (x1, x2)

as the best response of firm 1 under the assumption that it does not launch
the new product and

xT2
2 = min(x2 ∈ [0, co]|x∗1(x2) = 0)

as the minimum level of x2 needed to make it optimal for firm 1 to invest zero
for process innovations even if it plans to offer the old product for γ = γl.
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Simple calculations give

x∗1(x2) = min
[
max

[
4(1− p)(a− co)− 9α

18β − 8(1− p)
− 4(1− p)

18β − 8(1− p)
x2, 0

]
, co

]

xT2
2 = min

[
max

[
a− co − 9α

4(1− p)
, 0

]
, co

]
.

Note that the second order conditions are satisfied due to our assumption
that β > 1.

Furthermore, we denote by xT3
2 := xT1

2 (0), where xT1
2 (x1) is given by (4),

the minimum level of x2 which will induce firm 1 to launch the new product
for γ = γl if it did not invest in process innovation.

Finally, xT4
2 denotes the minimum level of x2 needed to make it ex-ante

(i.e. before the process innovation decision) optimal for firm 1 to decide to
launch the new product regardless of the degree of differentiation γ. We
define xT4

2 by

xT4
2 =





x̃2, if ∃x̃2 ∈ [0, co] with ΠN
1 (0, x̃2) = ΠO

1 (x∗1(x̃2), x̃2)

−ε if ΠN
1 (0, x2) > ΠO

1 (x∗1(x2), x2) ∀x2 ∈ [0, co]

co + ε if ΠN
1 (0, x2) < ΠO

1 (x∗1(x2), x2) ∀x2 ∈ [0, co]

,

where ε > 0 is an arbitrary positive parameter.6 If xT4
2 ∈ [0, c0] firm 1 is

indifferent between the two options for x2 = xT4
2 . In Lemma 1 in Appendix

A we show that ΠN
1 (0, x2) − ΠO

1 (x∗1(x2), x2) is monotonic with respect to
x2 ∈ [0, co] and therefore xT4

2 is unique and well defined.
It is quite intuitive that both, the ex-ante threshold xT4

2 and the ex-post
threshold xT3

2 are increasing in cn. A proof of this claim is given in Lemma
2 in Appendix A together with characterizations of other properties of the
thresholds which will be used in the further analysis.

The characterization of the best response correspondence of firm 1 at
the process innovation stage is now a direct implication of the discussion
provided above.

Proposition 1 The best reply correspondence of firm 1 has the form

BR1(x2) =





x∗1(x2) x2 < min[xT2
2 , xT4

2 ]
{0, x∗1(x2)} x2 = min[xT2

2 , xT4
2 ]

0 x2 > min[xT2
2 , xT4

2 ]

for x2 ∈ [0, co].
6The parameter ε is introduced for technical reasons in order to guarantee that xT4

2 is
well defined for any parameter constellation.
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Figure 1: Best response correspondence BR1 for player 1: (a) xT4
2 < xT2

2

and (b) xT4
2 ≥ xT2

2 .

Note that BR1 is continuous if xT4
2 ≥ xT2

2 but has one downward jump if
xT4

2 < xT2
2 . We provide an illustration of the typical form of BR1 for the

cases xT4
2 < xT2

2 and xT4
2 ≥ xT2

2 in Figure 1.

3.3.2 Best Reply of Firm 2

From the analysis of the decisions made at the product selection stage we
infer that the expected profit function for firm 2 is given by ΠN

2 (x1, x2) for
x2 ≥ xT1

2 (x1) and by ΠO
2 (x1, x2) for x2 < xT1

2 (x1). We define

x∗N2 (x1) = argmaxx2∈[0,co]Π
N
2 (x1, x2)

and analogously x∗O2 (x1). Note that x∗N2 is independent of x1 because this
investment level is derived under the assumption that firm 1 introduces the
new product in any case. The rather lengthy full expressions for these two
optimal investment levels are given in Lemma 3 in Appendix A. Further-
more, Lemma 3 shows that x∗O2 (x1) is strictly decreasing and linear in x1.

Due to assumption (A2) the inequality ΠN
2 (x1, x2) − ΠO

2 (x1, x2) ≥ 0
holds for all (x1, x2) ∈ [0, co]2. Hence, it is obvious that the optimal choice
for firm 2 is x∗N2 whenever such investment induces firm 1 to introduce
the new product even if γ = γl, i.e. if x∗N2 ≥ xT1

2 (x1). If this inequality
is violated, the optimal choice of firm 2 either has to be at xT1

2 (x1) or at
x∗O2 (x1). In the former case firm 1 is induced to introduce the new product
regardless of γ, but in the latter case firm 1 trashes the new product and
sells the old product for γ = γl. The best reply of firm 2 is therefore a
piece-wise linear function which might jump between the candidates x∗N2 ,
xT1

2 (x1), and x∗O2 (x1).
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We denote the level of x1 where the optimal choice of firm 2 switches
from x∗N2 to xT1

2 by xT1
1 :

xT1
1 =





x̃1, if ∃x̃1 ∈ [0, co] with xT1
2 (x̃1) = x∗N2

−ε if xT1
2 (x1) > x∗N2 ∀x1 ∈ [0, co]

co + ε if xT1
2 (x1) < x∗N2 ∀x1 ∈ [0, co].

Furthermore, we define xT2
1 as the maximal level of x1 where firm 2

prefers investing a high amount in process innovation, thereby inducing firm
1 to introduce the new product in any case, to accepting that firm 1 intro-
duces the new product only for γ = γh. We denote the difference in maximal
profits for firm 2 under the two scenarios by

g(x1) = max
x2∈[xT1

2 (x1),co]
ΠN

2 (x1, x2)− max
x2∈[0,xT1

2 (x1)]
ΠO

2 (x1, x2).

Using this notation we can write xT2
1 as

xT2
1 =





x̃1, if ∃x̃1 ∈ (0, co] with g(x̃1) = 0

−ε if g(x1) < 0 ∀x1 ∈ [0, co]

co + ε ifg(x1) > 0 ∀x1 ∈ [xT1
1 , co].

,

It is shown in Lemma 4 that both thresholds are unique and well defined
and that xT1

1 ≤ xT2
1 with strict inequality if at least one of the two thresholds

is in [0, co].
The following characterization of the best reply of firm 2 follows now

directly from the arguments given above.

Proposition 2 The best reply correspondence of firm 2 is given by

BR2(x1) =





x∗N2 x1 < xT1
1

xT1
2 (x1) xT1

1 ≤ x1 < xT2
1

{xT1
2 , x∗O2 (x1)} x1 = xT2

1

x∗O2 (x1) x1 > xT2
1

for x1 ∈ [0, co].

To provide additional insights into the structure of BR2 and to illustrate
the definitions of the two thresholds xT1

1 and xT2
1 , in Figure 8 in Appendix

B the profit functions ΠN
2 and ΠO

2 of firm 2 for different values of x1 are
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Figure 2: Best response correspondence for player 2.

compared. In Figure 2 we illustrate the typical form of BR2. There is a
trade-off between investing ’too much’ in process innovation (compared to
the ex-post optimal level, given the decision of firm 1 at the product selection
stage) and the reduced profit opportunities due to more intense competition
on the market for the old product. In general, the best reply of firm 2 is
not everywhere monotonic decreasing as in the standard Cournot duopoly
models with process innovation, but there is an increasing branch which is
caused by the additional strategic incentives to induce the competitor to
introduce the new product.

In Appendix A we show that if the introduction of the new product
does not generate increases in variable production costs (cn = co), then the
threshold xT1

1 is strictly positive. Accordingly – at least for small invest-
ments x1 – firm 1 launches the new product anyway and there is no need for
firm 2 to invest more in process innovation than would be optimal ex post.
The interval [0, xT1

1 ] of x1-values where this holds true shrinks as the cost
differential cn − co increases (see Lemma 5). Numerical evidence suggests
that also xT2

1 decreases with cn, however obtaining analytical conditions
which guarantee this property seems to be very involved and we abstain
from presenting any such conditions.
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3.4 Equilibria

We are now in a position to give characterizations of the different types
of subgame-perfect-equilibria which might occur in the model in different
scenarios. In particular, we will discuss the evolution of equilibria as cn, the
unit production costs for the new product, increases starting with cn = co.
Recall that cn− co can be interpreted as the loss in production know-how if
firm 1 introduces the new product. We distinguish three different types of
equilibria:7

• Determined Innovator Equilibrium (D.I.E.): Firm 1 does not
invest in process innovations and introduces the new product regard-
less of the degree of product differentiation which results from product
innovation. Firm 2 chooses the level of process innovation which is op-
timal given that firm 1 launches the new product in any case.

• Pushed Innovator Equilibrium (P.I.E:): Firm 1 does not invest
in process innovation and introduces the new product regardless of the
degree of differentiation which results from product innovation. Firm
2’s investment in process innovation is just sufficiently high to make
firm 1 indifferent between producing the old product or launching the
new product if γ = γl. The level of investment in process innovation
of firm 2 is above the level which would be optimal ex post given that
firm 1 launches the new product.

• Cautious Innovator Equilibrium (C.I.E): Firm 1 introduces the
new product only if γ = γh and invests the corresponding optimal
amount for process innovation. Firm 2 chooses the optimal level of
process innovation given that firm 1 produces the old product for γ =
γl.

In Figure 3 we depict the typical form of the individual best replies
leading to each of the three types of equilibria. We also present a scenario
where no equilibrium in pure strategies exists.

Our analysis starts with two results dealing with the first two types of
equilibria (Propositions 3 and 4). Conditions for the third type of equilib-
rium are given in Proposition 5. We will focus on scenarios where all three
types of equilibria can exist. A necessary condition for the existence of a

7We will carry out the analysis under the assumption that β is sufficiently large. This
assumption is needed for the proof of a technical lemma (Lemma 6 in Appendix A) which
we use in the further analysis. However, numerical evidence suggests that the needed
properties also hold for values of β only slightly larger than 1.
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Figure 3: Typical forms of the best replies inducing (a) a determined innova-
tor equilibrium, (b) a pushed innovator equilibrium, (c) a cautious innovator
equilibrium, (d) no equilibrium in pure strategies.

pushed innovator equilibrium is that xT2
2 ≤ co and therefore we derive the

following propositions under the assumption that this inequality holds.8

We know that xT1
1 is positive for cn = co and that there exists a unique

cT
n > co such that xT1

1 = 0 for cn = cT
n (see Lemma 5 (a) and (c)). Note

that for cn = cT
n we must also have xT3

2 = xT1
2 (0) = x∗N2 . Intuitively, for

cn = cT
n the level of process innovation which is optimal for firm 2, given

that firm 1 always introduces the new product, is just sufficient to make
firm 1 indifferent between introducing the new product and offering the old
product for γ = γl and x1 = 0. For values of cn higher than this threshold,
firm 2 has to invest extra amounts in order to induce firm 1 to launch the
new product if the degree of differentiation is low (γ = γl). We distinguish

8As will be shown below, a pushed innovator equilibrium exists if xT1
1 ≤ 0 and

min[xT2
2 , xT4

2 ] ≤ xT3
2 ≤ co. It follows from Lemma 2 that this is impossible if xT2

2 = co + ε.
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between two scenarios: (i) given that cn = cT
n and x2 = x∗N2 firm 1 has

an incentive to choose a positive x1 if it offers the old product for γ = γl;
(ii) x1 = 0 is optimal for cn = cT

n and x2 = x∗N2 even if firm 1 offers the
old product for γ = γl. In the latter case we say that process innovation
incentives for firm 1 are weak.

Definition 1 Process innovation incentives for firm 1 are called weak if
xT2

2 ≤ xT3
2 for cn = cT

n . If xT2
2 > xT3

2 for cn = cT
n we say that process

innovation incentives for firm 1 are strong.

Intuitively, weak (strong) process innovation incentives correspond to
scenarios where the probability p for a good outcome of firm 1’s product
innovation project is high (low). This follows from the fact that for γ = γh

firm 1 always introduces the new product and therefore looses the positive
effect of its process innovation investments.

A subgame perfect equilibrium in our game is a profile of the form
((xe

1, P
e
1 (x1, x2), qe

1(γ, c1, c2)), (xe
2, q

e
2(γ, c1, c2))). We will characterize the equi-

libria by the investments of the two firms in process innovation (xe
1, x

e
2) and

the resulting action of firm 1 at the product selection stage: P e
1 (xe

1, x
e
2).

Proposition 3 If firm 1 has weak process innovation incentives then the
following results hold.

(a) For all cn ∈ [co, min[cT
n , 2co]] there exists a subgame-perfect equilibrium

with xe
1 = 0, xe

2 = x∗N2 . In equilibrium firm 1 chooses P e
1 = N after

observing γ = γl at the product selection stage (Determined Innovator
Equilibrium).

(b) Let C = {cn ∈ (cT
n , 2co]|xT2

1 > 0}. For all cn ∈ C there exists a
subgame-perfect equilibrium with xe

1 = 0, xe
2 = xT3

2 . In equilibrium
firm 1 chooses P e

1 = N after observing γ = γl at the product selection
stage (Pushed Innovator Equilibrium).

(c) For cn ∈ (cT
n , 2co] \ C there exists no (pure-strategy) subgame-perfect

equilibrium where firm 1 chooses P e
1 = N after observing γ = γl at the

product selection stage.

The results obtained in this proposition are quite intuitive. If cn is
close to co, then the resulting loss of specific production know-how if firm
1 launches the new product is small. In this case, there is an equilibrium
where firm 1 will introduce the new product even if firm 2 chooses the level
of process innovation which is optimal ex post. On the other hand, for large
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values of cn, there exists no equilibrium where firm 1 introduces the new
product also for γ = γl. Finally, the most interesting situation occurs for
intermediate ranges of cn. In this case there is an equilibrium where firm
1 always introduces the new product, but firm 2’s investments in process
innovation are above the level which would be optimal given that firm 1
launches the new product. Obviously, the incentive for firm 2 to overinvest
stems from the insight that it can successfully push the competitor out of
the own market segment. The rationale of this behavior is similar to the
well known limit-pricing results (see e.g. Spence (1977)). In this sense firm
2’s behavior can be seen as ’limit R&D expenditures’.

A characterization of the equilibria occurring in the case of strong process
innovation incentives is given in Proposition 4.

Proposition 4 If firm 1 has strong process innovation incentives then there
exists a unique cn ∈ [co, c

T
n ] such that xT4

2 = x∗N2 and a unique c̄n > cT
n such

that xT4
2 = xT2

2 for cn = c̄n. We have:

(a) For all cn ∈ [co, min[cn, 2co]] there exists a subgame-perfect equilibrium
with xe

1 = 0, xe
2 = x∗N2 . In equilibrium firm 1 chooses P e

1 = N after
observing γ = γl at the product selection stage (Determined Innovator
Equilibrium).

(b) For cn ∈ (cn, min[c̄n, 2co]) there exists no (pure-strategy) subgame-
perfect equilibrium where firm 1 chooses P e

1 = N after observing γ = γl

at the product selection stage.

(c) Let D = {cn ∈ (c̄n, 2co]|xT2
1 > 0}. For all cn ∈ D there exists a

subgame-perfect equilibrium with xe
1 = 0, xe

2 = xT3
2 . In equilibrium

firm 1 chooses P e
1 = N after observing γ = γl at the product selection

stage (Pushed Innovator Equilibrium).

(d) For cn ∈ (c̄n, 2co] \ D there exists no (pure-strategy) subgame-perfect
equilibrium where firm 1 chooses P e

1 = N after observing γ = γl at the
product selection stage.

In the scenarios covered by case (b) of this proposition, the game has a
structure similar to the well known ’Chicken’ game. Under the assumption
that firm 1 launches the new product even if γ = γl, the optimal investment
of firm 2 is so small that for such a value of x2 firm 1 prefers to offer the
old product for γ = γl. However, given that firm 1 decides to introduce the
old product, firm 2 should invest a higher amount and such a high x2 would
make it optimal for firm 1 to trash the old product and introduce the new
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one. Hence, there is no pure strategy equilibrium. There is a possibility that
mixed equilibria exist where the strategies of both players have a continuum
as support, but we do not investigate these types of equilibria in detail.

In the subsequent section we will illustrate the evolution of equilibrium
constellations when cn is increased, i.e. when the situation is getting worse
in terms of loss of product specific know-how. We will study the change in
equilibria for the case of weak process innovation incentives (see Proposition
3, xT2

2 ≤ xT3
2 ) and for the case of strong process innovation incentives (see

Proposition 4, xT2
2 > xT3

2 ). Finally, we turn to the third type of equilibrium,
where firm 1 only launches the new product if the degree of differentation
is high. It can be easily checked that x∗O2 (x∗1(0)) > 0. Taking into account
the shape of x∗1 and x∗O2 this implies that there exists a unique solution to

x2 = x∗O2 (x1)

x1 = x∗1(x2)
(5)

in [0, co]2. We denote this solution by (x̂1, x̂2). The conditions under which
these choices can be part of a subgame-perfect equilibrium are straight for-
ward.

Proposition 5 (a) x̂1 = 0: A subgame-perfect equilibrium with xe
1 =

x̂1, x
e
2 = x̂2 and P e

1 = O at the product selection stage for γ = γl

(Cautious Innovator Equilibrium) exists if and only if xT2
1 ≤ 0.

(b) x̂1 > 0: A subgame-perfect equilibrium with xe
1 = x̂1, x

e
2 = x̂2 and

P e
1 = O at the product selection stage for γ = γl (Cautious Innovator

Equilibrium) exists if and only if xT2
1 ≤ x̂1 and xT4

2 ≥ x̂2.

Proof. The proof follows directly from the characterizations of the two best
replies BR1 and BR2 given above.

It should further be noted that no other types of equilibria are possible.
In particular, it is not possible to have solutions of x1 = x∗1(x2), x2 = x∗N2

or x1 = x∗1(x2), x2 = xT1
2 (x1) with x1 > 0. This is easy to see. We can only

have x1 > 0 in equilibrium if firm 1 offers the old product for γ = γl. But in
this case the optimal response of firm 2 should be x2 = x∗O2 (x1) rather than
x∗N2 or xT1

2 (x1). Hence, the three propositions above provide a complete
characterization of the possible subgame-perfect equilibria of the game.

The following corollary, which gives a simple sufficient condition for the
existence of a cautious innovator equilibrium, follows directly from Proposi-
tion 5.

Corollary 1 If xT2
1 ≤ 0 then there exists a cautious innovator equilibrium.
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In particular, there is always a cautious innovator equilibrium if case (c) of
Proposition 3 applies, and therefore we obtain

Corollary 2 If firm 1 has weak process innovation incentives there exists
for each admissible value of cn at least one pure strategy subgame-perfect
equilibrium.

The following discussion of a numerical example will further show that
co-existence of different types of equilibria is possible.

4 Comparison of Equilibria Types

Having characterized the potential equilibrium constellations of the game,
several questions arise. How does the probability p for a successful product
innovation influence the equilibrium constellation? How does it determine
whether the scenarios described in Proposition 3 or 4 arise? How do the dif-
ferent types of equilibria compare with respect to firm profits and welfare?
In particular, what is the welfare effect of the strategic ’over-investment’ in
process innovation by firm 2 in a Pushed-Innovator-Equilibrium? Due to the
complexity of the expressions involved in the characterization of the equilib-
ria of the game, it is impossible to provide a rigorous analytical treatment
of these issues. Therefore, in this section we will provide some insights using
a numerical example.

4.1 Equilibrium Investment Levels

We choose the following values for the market and cost parameters and the
degree of differentiation, a = 10, β = 5, α = 0.77, γl = 0.75, γh = 0.2, c0 = 1,
and examine the effects of changes in p and cn. For p = 0.8 we get cT

n =
1.5388 and for cn = cT

n = 1.5388 we have xT2
2 < xT3

2 . Accordingly, there are
weak process innovation incentives for firm 1 and Proposition 3 applies. In
Figure 4 we depict the equilibrium investment levels of both players for cn

in the range [1.5, 1.65].
The results of Proposition 3 are nicely illustrated. For small values of

cn there is a determined innovator equilibrium (D.I.E.), for an intermediate
range there is a pushed innovator equilibrium (P.I.E.) and for large cn we
have a cautious innovator equilibrium (C.I.E.). We know from the discussion
in the previous section that if firm 1 has weak process innovation incentives
there always exists at least one equilibrium in pure strategies. In our numer-
ical example we have exactly one equilibrium for each value of cn. Although
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Figure 4: Equilibrium investment levels of both players for p = 0.8 and cn

in the range [1.5, 1.65].
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co-existence of a C.I.E. with a D.I.E. or a P.I.E. can not be ruled out, in all
numerical examples we have considered the equilibrium was unique, when-
ever process innovation incentives of firm 1 were weak. Observe that for the
entire range of cn values firm 1 does not invest in process innovation. On the
other hand, the equilibrium investment of firm 2 is always positive. As long
as there is a determined innovator equilibrium, the equilibrium investments
increase slightly as cn goes up. The increase becomes much larger as soon as
the equilibrium becomes a pushed innovator equilibrium. At the transition
from the pushed innovator to the cautious innovator equilibrium there is a
significant drop of firm 2’s investment in process innovation. In Figure 4 (b)
we also show the socially optimal level of x2. It is interesting to note that
the distance between the investment in equilibrium and the socially optimal
level is smallest if there is a pushed innovator equilibrium.

If we slightly decrease the probability of a successful product innova-
tion to p = 0.795 we have cT

n = 1.5387 and xT2
2 > xT3

2 . Hence, this is a
case where firm 1 has strong process innovation incentives and Proposition
4 applies. As can be seen in Figure 5, there is a range of cn values with no
equilibrium in pure strategies and also an interval where the pushed innova-
tor equilibrium and the cautious innovator equilibrium co-exist. As before,
firm 2’s investments are highest in a pushed innovator equilibrium, whereas
investments of firm 1 are highest in the cautious innovator equilibrium.

If the P.I.E. and the C.I.E. co-exist a typical equilibrium selection prob-
lem arises and it depends on the type of equilibrium selected whether firm
1 launches the new product even if the degree of differentiation of the new
product is low. So, in this case neither the levels of process investments nor
the likelihood that the new product is actually introduced in the market can
be predicted based on an equilibrium analysis. In Figure 6 we illustrate the
best replies BR1 and BR2 yielding such co-existence of equilibria.

4.2 Firm Profits and Welfare

We now return to the question how the different types of equilibria compare
with respect to the profits of the two firms and the overall welfare. For
reasons of simplicity we restrict our attention here to the case where firm 1
has weak process innovation incentives. The extension of our insights to the
case with strong process innovation incentives is straight forward. Figure 7
shows the profits of both firms and welfare.9

Several interesting observations can be made. In the range of cn where we
9Welfare is calculated in a standard way, see Appendix C for details.
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Figure 6: The best reply functions of both players for p = 0.795 and cn =
1.604. The two circles indicate the co-existing equilibria.

have a determined innovator equilibrium or a cautious innovator equilibrium,
profits of firm 1 and welfare decreases with increasing cn, whereas profits
of firm 2 increase. Since cn influences only the production costs of firm
1 these effects are as anticipated. In the range where a pushed innovator
equilibrium arises, profits of firm 2 however decrease with increasing cn.
Furthermore, the profits of firm 1 decrease more sharply with increasing cn

compared to the scenarios of D.I.E. or C.I.E.. This has the implication that
at the transition from P.I.E. to C.I.E. a further increase in cn leads to an
upward jump of the profits of firm 1. Hence, in equilibrium an increase in
production costs for the new product has positive effects on the profits of
firm 1.

Social welfare increases for increasing costs cn in a subinterval of the
range where a pushed innovator equilibrium occurs. This is due to the fact
that firm 2 extends its process innovation investments beyond its ex-post
optimal level, which is below the socially efficient level, and thereby gets
closer to the social optimum. Hence, the strategic implication of explicitly
considering firm 1’s decision to launch the new product (at least to some
extent) weakens the effect that equilibrium process innovation investments
are below the socially optimal level which has been frequently observed
in the literature (see e.g. Dasgupta and Stiglitz (1980), D’Aspremont and
Jaquemin (1988), Qiu (1997)). Figure 7b also nicely illustrates the rationale
of firm 2 in the P.I.E.. By pushing the competitor to a different market
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segment through higher investments in process innovation it smoothes the
gap between its profit if firm 1 launches the new product and the profit it
would obtain if firm 1 produces the old product, which is a perfect substitute
for firm 2’s product.

5 Discussion and Conclusions

The starting point of this paper is the question which kind of strategic incen-
tives are created by the fact that a firm’s decision to launch a new product
is separated from the decision to develop an innovation. Our analysis shows
that an explicit consideration of the launch decision indeed has effects on
process innovation incentives, new product introduction and welfare.

In order to put our findings into perspective it is interesting to com-
pare them with a scenario where firm 1 ex-ante commits to introduce the
new product, which is implicitly assumed in the majority of the literature
in this field. Two cases might be considered. First, if firm 1 ex-ante com-
mits to introduce the new product regardless of γ, it is easy to realize that
the equilibrium values of process innovation investments would be given by
(0, x∗N2 ). Second, if firm 1 ex-ante commits to introduce the new product
only if γ = γh (an assumption which is consistent with studies where it is
assumed that product innovation efforts are successful only with a certain
probability and only then lead to the introduction of a new product; see
e.g. Yin and Zuscovitch (1998)) then there would always be a unique equi-
librium with process innovation efforts (x̂1, x̂2). Basically, these two cases
would correspond to an ex-ante commitment to a determined innovator equi-
librium (D.I.E.) or a cautious innovator equilibrium (C.I.E.). Considering
Figure 7 we can therefore easily see that, at least in the range of cn where
a P.I.E. exists, any such commitment would actually reduce welfare. If firm
1 would ex-ante commit to introduction regardless of γ this could on the
other hand increase profits of both firms compared to the pushed innovator
equilibrium. In order to maximize its own profit for cn ∈ C firm 1 would
however ex-ante want to commit to launch the product only if γ = γh.

Early commitments of firms to new product launches like the ones de-
scribed above are however very hard and not common. A strong commit-
ment of the first type (launch regardless of γ) would to some degree be
possible through early pre-announcements of a new product to be intro-
duced. It could be argued that for real world firms typically the costs of
launching a new product are so high that ex-ante full commitment to launch
the new product even if it is only slightly differentiated from the existing
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product is not optimal. In terms of our model this means that firms operate
in a range of cn ≥ cT

n (respectively cn ≥ cn in the case of strong process inno-
vation incentives for firm 1). An ex-ante commitment to launch conditional
on the perceived degree of product differentiation would in such a case be
optimal but a credible announcement of this type seems infeasible since the
value of γ is not verifiable. Given this, at least for the range of values of cn

where a determined or pushed innovator equilibrium exists, unconditional
commitment to launch is the best available option for firm 1 and therefore
in these cases our results provide an additional rationale for product pre-
announcements (see e.g. Lilly and Walters (1997) for a discussion of motives
for product pre-announcements). On the other hand, it has been pointed
out in the literature that firms in many instances do not abide to their pre-
announcements (e.g. Bayus et al. (2001)). Accordingly, the strategic effects
discussed in this paper will be of relevance even if pre-announcements have
been made. In principle, firm 1 could also try to commit to a launch decision
by reducing capacities for process innovation for the old product, but there
are again credibility problems. Furthermore, our analysis shows that in a
pushed innovator equilibrium firm 2 engages in limit R&D although firm 1
does not make any process innovation investments.

A number of interesting extensions of the present model come to mind.
Here we deal exclusively with horizontal differentiation. It would be impor-
tant to examine the implications if the newly developed product of firm one
is also vertically differentiated. Furthermore, this paper does not deal with
the decision of firm one to start the product development project in the first
place and also does not allow to carry out process innovations for the new
product prior to its launch. Incorporating these aspects is left for future
research.
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Appendix A

Lemma 1 The function f1(x2) = ΠN
1 (0, x2) − ΠO

1 (x∗1(x2), x2) is strictly
monotone increasing for x2 ∈ [0, co].

Proof.

f1′(x2)

=
∂ΠN

1 (0, x2)
∂x2

− ∂ΠO
1 (x∗1(x2), x2)

∂x2
− ∂ΠO

1 (x∗1(x2), x2)
∂x1

∂x∗1(x2)
∂x2

=
∂ΠN

1 (0, x2)
∂x2

− ∂ΠO
1 (x∗1(x2), x2)

∂x2

= (1− p)
∂π1(γl, cn, co − x2)

∂x2
− (1− p)

∂π1(1, co − x∗1(x2), co − x2)
∂x2

.

The third term in the second line is zero due to the envelope theorem for
x∗1(x2) ∈ (0, co) and due to ∂x∗1(x2)

∂x2
= 0 for x∗1 ∈ {0, co}. Inserting the

expressions for π1 and straightforward transformations show that the last
line is positive if and only if

(16−18γl+γ2
l +γ4

l )a+(16−17γ2
l +γ4

l )(co−x2)+18γlcn−2(4−γ2
l )2(co−x∗1(x2)) > 0.

The coefficients of a, cn, and x1 are positive and the coefficient of x2 is
negative (for γl ∈ (0, 1)), therefore, setting a = 2+γl

4−γl
, cn = co,x1 = 0, and

x2 = co gives a lower bound and we get

(16− 18γl + γ2
l + γ4

l )a + (16− 17γ2
l + γ4

l )(co − x2) + 18γlcn

−2(4− γ2
l )2(co − x∗1(x2))

> (16− 18γl + γ2
l + γ4

l )
4 + γl

2− γl
co + 18γlco − (32− 16γ2

l + 2γ4
l )co

= 3γl(2 + γl − 2γ2
l − γ3

l )co

> 0.

Lemma 2 (a) If xT3
2 ∈ (0, co) it is strictly monotonous increasing in cn.

(b) If xT4
2 < xT2

2 then xT3
2 < xT4

2 . If xT4
2 ≥ xT2

2 then xT3
2 = xT4

2

(c) If xT4
2 ∈ (0, co), then xT4

2 is strictly monotonous increasing in cn.

(d) For cn = co we have xT4
2 < xT2

2 .
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Proof. Claims (a) and (b) follow directly from the definitions of the thresh-
olds.
(c): For xT4

2 ≥ xT2
2 we know from (b) that xT4

2 = xT3
2 and the claim follows

from (a). Hence we only have to deal with scenarios where xT4
2 ∈ (0, xT2

2 ).
We define

f2(x1, x2) = ΠN
1 (0, x2)−ΠO

1 (x1, x2)

and note that this function is a quadratic polynomial in x1. Simple calcula-
tions show that f2(x1, x2) = 9(4−γ2

l )2

1−p

[
K1x

2
1 + K2(x2)x1 + K3(x2)

]
, where

K1 = (4− γ2
l )2(

9β

1− p
− 4)

K2 = −4(4− γ2
l )2(a− co) +

9(4− γ2
l )2α

1− p
+ 4(4− γ2

l )2x2

K3 = 20a2 + 16(2a− co)co − 36(2a− cn)cn − 36γl(a− co)(a− cn) + 17γ2
l (a− co)2

−γ4
l (a− co)2

+[32(a− co)− 36γl(a− cn) + 2γ2
l (a− co) + 2γ4

l (a− co)]x2 + [−16 + 17γ2
l − γ4

l ]x2
2

Due to β > 1 we have K1 > 0. If xT4
2 ∈ (0, xT2

2 ) we have x∗1(xT4
2 ) ∈ (0, co).

Since x∗1(xT4
2 ) is in the interior of [0, co], and ΠO

1 (x1, x
T4
2 ) is a quadratic

function in x1, the global maximum of ΠO
1 (x1, x

T4
2 ) is obtained at x1 =

x∗1(xT4
2 ). Accordingly, the global minimum of f2(x1, x

T4
2 ) is reached for

x1 = x∗1(xT4
2 ). By definition f2(x∗1(xT4

2 ), xT4
2 ) = f1(xT4

2 ) = 0. Hence, the
two solutions of f2(x1, x

T4
2 ) = 0 have to coincide which is equivalent to the

condition that the two roots of K1x
2
1 + K2(xT4

2 )x1 + K3(xT4
2 ) = 0 coincide.

Therefore, we must have

K2(xT4
2 )2 − 4K1K3(xT4

2 ) = 0.

Calculating the left hand side shows that it is a quadratic polynomial in x2.
We write

f3(x2) := K2(x2)2 − 4K1K3(x2) = M1x
2
2 + M2x2 + M3,

where

M1 = 144γ2
l (4− γ2

l ) +
36β

1− p
(4− γ2

l )2(16− 17γ2
l + γ4

l ) > 0

M2 = 72(4− γ2
l )2

[
4γ2

l (a− co)− 8γl(a− cn) + [18γl(a− cn)− (16 + γ2
l + γ4

l )(a− co)]
β

1− p

+(4− γ2
l )2

α

1− p

]
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M3 = 9(4− γ2
l )2

[
9(γl(a− co)− 2(a− cn))2

−[4(6(a− cn)− (4− γl)(1 + γl)(a− co))(6(a− cn) + (4 + γl)(1− γl)(a− co))]
β

1− p

−[8(4− γ2
l )2(a− co)]

α

1− p
+ 9(4− γ2

l )2
α2

(1− p)2

]
.

From f1′(xT4
2 ) > 0 we conclude that for x2 = x̃2 slightly larger than xT4

2

the global minimum of f2(x1, x̃2) is positive and there exists no real solution
of f2(x1, x̃2) = 0. Accordingly, we must have f3(x̃2) < 0 and we conclude
that f3′(xT4

2 ) < 0. Implicit differentiation of

f3(xT4
2 ; cn) = 0

with respect to cn gives

∂xT4
2

∂cn
= − 1

f3′(xT4
2 )

∂f3(xT4
2 )

∂cn
.

In order to prove claim (c), we still have to show that ∂f3(xT4
2 )

∂cn
> 0. Differ-

entiating the coefficients Mi, i = 1, . . . , 3 with respect to CN gives:

∂M1

∂cn
= 0

∂M2

∂cn
= −72(4− γ2

l )2γl

(
18

β

1− p
− 8

)
< 0

∂M3

∂cn
= 144(4− γ2

l )2
(

9β

1− p
− 4

)
(2(a− cn)− γl(a− co))

Because of ∂M2
∂cn

< 0 we get

∂f3(xT4
2 )

∂cn

=
∂M2

∂cn
xT4

2 +
∂M3

∂cn

>
∂M2

∂cn
co +

∂M3

∂cn

= 144(4− γ2
l )2

[(
9β

1− p
− 4

)
((2− γl)a− 2cn)

]

> 0.
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The last inequality follows from assumptions (A2) and (A4) which imply
2(2− γl)a ≥ (4 + γl)cn. This proves claim (c).
(d): For cn = co we have

f2(0, x2) = (1− p)[π1(γl, co, co − x2)− π1(1, co, co − x2)]

It is easy to check that π1(γl, co, co − x2) − π1(1, co, co − x2) > 0 for all
x2 ∈ [0, co]. For x2 ≥ xT2

2 we have x∗1(x2) = 0 and therefore f1(x2) =
f2(x∗1(x2), x2) = f2(0, x2) > 0. This implies that xT4

2 < xT2
2 .

For further reference we also note that M2 < 0. To see this, note that
the coefficients of cn in M2 is negative. Therefore we get an upper bound
for M2 by setting cn = co. Doing this yields

α < (a− co)
β(1− γl)(8 + γl(3 + γl)) + 4(1− p)γl

(2− γl)(2 + γl)2

as a sufficient condition for M2 < 0. Since the right hand side is decreasing
in γl, it is minimized for γl = 1. Accordingly,

α < (a− co)
4(1− p)

9

is a sufficient condition for M2 < 0. Due to assumption (A2) this condition
is fulfilled.

Lemma 3 The optimal process innovation investments of firm 2 are given
by

x∗N2 = min[co,max[0, NNaa + NNncn + NNoco + NNαα]]
x∗O2 (x1) = min[co,max[0, NOaa + NOncn + NOoco + NOα + NOxx1]],

with coefficients

Ñ = 2(4− γ2
l )2(4− γ2

h)2β − 8(4− γ2
l )2p− 8(4− γ2

h)2(1− p) > 0

NNa =
1
Ñ

[4(4− γ2
l )2(2− γh)p + 4(4− γ2

h)2(2− γl)(1− p)] > 0

NNn =
1
Ñ

[4(4− γ2
l )2γhp + 4(4− γ2

h)2γl(1− p)] > 0

NNo = − 1
Ñ

[8(4− γ2
l )2p + 8(4− γ2

h)2(1− p)] < 0

NNα = − 1
Ñ

(4− γ2
l )2(4− γ2

h)2 < 0

33



˜̃N = 18(4− γ2
h)2β − 72p− 8(4− γ2

h)2(1− p) > 0

NOa =
1
˜̃N

[36(2− γh)p + 4(4− γ2
h)2(1− p)] > 0

NOn =
1
˜̃N

36γhp > 0

NOo = − 1
˜̃N

[72p + 4(4− γ2
h)2(1− p)] < 0

NOα = − 1
˜̃N

9(4− γ2
h)2 < 0

NOx = − 1
˜̃N

4(4− γ2
h)2(1− p) < 0

The proof is straightforward and is therefore omitted.

Lemma 4 (a) There exists at most one solution of xT1
2 (x1) = x∗N2 in [0, co].

(b) There exists at most one solution of g(x1) = 0 in [0, co].

(c) xT1
1 ≤ xT2

1 with strict inequality if at least one of the two thresholds is
in [0, co].

Proof. (a) The expression xT1
2 (x1)−x∗N2 is monotonously increasing in x1.

Accordingly, this expression has at most one root in [0, co].

(b) Because of ΠN
2 (x1, x2) > ΠO

2 (x1, x2) ∀(x1, x2) ∈ [0, co]2 we have ΠN
2 (x1, x

∗N
2 (x1)) >

maxx2∈[0,xT1
2 (x1)] Π

O
2 (x1, x2). Therefore g(x1) = 0 can only hold if xT1

2 (x1) >

x∗N2 (x1) which, due to the monotonicity of xT1
2 (x1) − x∗N2 , is equivalent to

x1 > xT1
1 . Furthermore, if xT1

2 (x1) < x∗O2 (x1) we have

max
x2∈[0,xT1

2 (x1)]
ΠO

2 (x1, x2) = ΠO
2 (x1, x

T1
2 (x1)) < ΠN

2 (x1, x
T1
2 (x1)) ≤ max

x2∈[xT1
2 (x1),co]

ΠN
2 (x1, x2).

Accordingly, xT1
2 (x1) > x∗O2 (x1) is a necessary condition for g(x1) = 0 to

hold. Under this condition we have maxx2∈[0,xT1
2 (x1)] Π

O
2 (x1, x2) = ΠO

2 (x1, x
∗O
2 (x1)).

Given this, it is easy to see that g(x1) = 0 holds if and only if f4(x1) = 0,
with

f4(x1) = ΠN
2 (x1, x

T1
2 (x1))−ΠO

2 (x1, x
∗O
2 (x1)),

where only x1 ∈ [xT1
1 , co] has to be considered.
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In the remainder of the proof we show that there exists at most one
solution of f4(x1) = 0 in [xT1

1 , co]. We first show that f4′′ < 0. Taking into
account ∂ΠN

2
∂x1

= 0 and the envelope theorem we get

f4′(x1) =
∂ΠN

2 (x1, x
T1
2 (x1))

∂x2
(xT1

2 )′(x1)− ∂ΠO
2 (x1, x

∗O
2 (x1))

∂x1
. (6)

We know that xT1
2 is linear in x1, therefore

f4′′(x1)

=
∂2ΠN

2 (x1, x
T1
2 (x1))

∂x2
2

[(xT1
2 )′(x1)]2 − ∂2ΠO

2 (x1, x
∗O
2 (x1))

∂x2
1

=

[
8p

(4− γ2
h)2

+
8(1− p)
(4− γ2

l )2
− 2β

] [
2(4− γ2

l )
4− 3γl − γ2

l

]2

− 2(1− p)
9

<
8p

(4− γ2
h)2

+
8(1− p)
(4− γ2

l )2
− 2β − 2(1− p)

9
< 0,

where the last two inequalities follow from β > 1. Furthermore define x̃1

as the unique solution of xT1
2 (x1) = x∗N2 in IR. Obviously f4(x̃1) > 0, and,

taking into account f4′′ < 0, this implies that there exists a unique root of
f4(x1) in (x̃1,∞). For all xT1

1 < co we must have xT1
1 ≥ x̃1 and therefore

there can be at most one root of f4(x1) in (xT1
1 , co].

(c): It follows directly from the arguments in the proof of (b) that if g(xT2
1 ) =

0 then xT2
1 > xT1

1 . Furthermore, it is obvious that xT2
1 = −ε can only hold

if xT1
2 (0) > x∗N2 (0) which implies xT1

1 = −ε.

Lemma 5 (a) For cn = co we have xT1
1 > 0.

(b) If xT1
1 ∈ (0, co), then an increase in cn induces a decrease in xT1

1 .

(c) There exists a unique cT
n > co such that xT1

1 = 0 for cn = cT
n .

Proof. (a): For cn = co we have xT1
2 (0) = −2−3γl+γ2

l

4−3γl−γ2
l
(a− co) < 0. It follows

from assumption (A3) that x∗N2 > 0. Taking into account that xT1
2 increases

with x1 we conclude that xT1
1 > 0 for cn = co.

(b): Implicit differentiation gives

∂xT1
1

∂cn
=

∂
(
x∗N2 − xT1

2 (x1)
)

∂cn

∣∣∣∣∣∣
x1=xT1

1

/[xT1
2 (xT1

1 )]′.
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Since [xT1
2 (x1)]′ > 0 we have to show that

∂xT1
1

∂cn
=

∂(x∗N2 − xT1
2 (x1)

∂cn
< 0. (7)

After inserting the expressions for x∗N2 and xT1
2 and a few transformation

we obtain the following inequality equivalent to (7):

β >

(
(4− 3γl − γ2

l )γh

3(4− γ2
h)2

+
4

(4− γ2
h)2

)
p+

(
(4− 3γl − γ2

l )γl

3(4− γ2
l )2

+
4

(4− γ2
l )2

)
(1−p).

It can be easily seen that the right hand side is bounded above by 1, so we
have proven the claim.
(c): From (a) we knwo that xT1

1 > 0 for cn = co. The arguments in the proof
of (b) show that the slope of xT1

1 with respect to cn is not only negative but
also cannot converge to zero. Accordingly, there exists a cT

n > 0 such that
xT1

1 = 0 for cn = cT
n .

The following lemma shows that for sufficiently large β there can be at
most one value of cn where xT4

2 and x∗N2 coincide. The assumption of a large
β is needed for the proof of the lemma but numerical evidence suggests that
this property also holds for small value β. Actually, in all our numerical
studies we found xT4

2 −x∗N2 strictly monotonously increasing with cn as long
as they stay in the interior of [0, cn]. Also the second claim of the lemma,
which is that firm 1 never stays in the old market if cn = co was numerically
verified also for small values of β. In what follows we will always assume
that β is sufficiently large such that Lemma 6 holds.

Lemma 6 (a) For sufficiently large β, keeping all other parameters fixed,
there exists at most one value of cn where xT4

2 = x∗N2 ∈ (0, co).

(b) For sufficiently large β and cn = co we have xT4
2 = 0.

Proof. (a): We show that df3(x∗N
2 )

dcn
> 0 ∀x∗N2 ∈ (0, co), where f3 is defined

as in the proof of Lemma 2. Thus, there can be at most one value of cn

with f3(x∗N2 ) = 0. This will prove our claim because xT4
2 is defined as the

smaller root of f3. To show that df3(x∗2)
dcn

> 0 we observe that

df3(x∗N2 )
dcn

= f3′(x∗N2 )
∂x∗N2

∂cn
+

∂f3(x∗N2 )
∂cn

.

36



Using calculations carried out in the proof of Lemma 2 and taking into
account that (2 − γl)a > 4+γl

2 cn (this follows from assumptions (A2) and
(A4)) we get

∂f3(x∗N2 )
∂cn

> 144(4− γ2
l )2

[(
9β

1− p
− 4

)
((2− γl)a− 2cn)

]

> 144(4− γ2
l )2

[(
9β

1− p
− 4

)
γlcn

2

]
.

For f3′(x∗N2 ) we have

f3′(x∗N2 )
= 2M1x

∗N
2 + M2

> M2

> 36(4− γ2
L)2

[
−8γL(2− γL)(a− co) + [36γL(a− cN )− 2(16 + γ2

L + γ4
L)(a− co)]

β

1− p

]
.

From the expression for x∗N2 derived above we get immediately

∂x∗N2

∂cn

= NIN

= 2

[
γh

(4− γ2
h)2

p +
γl

(4− γ2
l )2

(1− p)

]
/

[
β − 4

(4− γ2
h)2

p− 4
(4− γ2

l )2
(1− p)

]

<
2γl

9β − 4
.

Taking into account that M2 < 0 this gives all-together

df3(x∗2)
dcn

>
36(4− γ2

l )2

9β − 4

[
4(9β − 4)

(
9β

1− p
− 4

)
γlcn

2

+
(
−16γ2

l (2− γl)(a− co) + [72γ2
l (a− cn)− 4γl(16 + γ2

l + γ4
l )(a− co)]

β

1− p

)]

.
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The expression is square brackets is a quadratic polynomial in β where
the coefficient of β2 is positive. Accordingly we have df3(x∗2)

dcn
> 0 for suffi-

ciently large β.
(b): Straight forward calculations show that for cn = co the coefficient of β
in M3 is negative. Hence, for sufficiently large β we have M3 < 0, which
implies that the smaller root of f4(x2) is negative. Therefore xT4

2 = 0.

Proof of Proposition 3:
Proof. (a): From Lemmas 5 and 6 (b) we know that xT4

2 = 0 and x∗N2 > 0
for cn = co. It follows from Lemma 2 and continuity considerations that
there must be a value c̃n ∈ [co, c

T
n ] such that xT4

2 = xT2
2 = xT3

2 holds for
cn = c̃n. Furthermore, we have

∂

∂cn
(xT3

2 − x∗N2 ) >
6

4− 3γl − γ2
l

− 2γl

9β − 4
> 0.

Accordingly, we must have x∗N2 > xT3
2 = xT4

2 for cn = c̃n. Together with
Lemma 6 (a) this shows that x∗N2 ≥ xT4

2 for all cn ∈ [co,min[c̃n, 2co]]. There-
fore, BR1(x∗N2 ) = 0 for all cn ∈ [co,min[c̃n, 2co]]. For cn > c̃n we have x∗N2 >
xT2

2 and therefore BR1(x∗N2 ) = 0 as well. Since xT1
1 is monotonously decreas-

ing in cn (Lemma 5 (b)), xT1
1 > 0 has to hold for all cn ∈ [co,min[cT

n , 2co]].
Therefore BR2(0) = x∗N2 . This shows that x1 = 0, x2 = x∗N2 are indeed
equilibrium actions on the process innovation stage. Furthermore, it follows
from xT1

2 (0) = xT3
2 < x∗N2 ∀cn ∈ [co,min[cT

n , 2co]] that in equilibrium firm 1
introduces the new product at the product selection stage even if γ = γl.
(b): For cn > cT

n we have xT1
1 = 0, therefore BR2(0) = xT1

2 (0) = xT3
2 if

xT2
1 > 0. Furthermore, xT3

2 > xT2
2 , so BR1(xT3

2 ) = 0.
(c): Obviously, in any equilibrium where firm 1 introduces the new prod-
uct regardless of γ we must have x1 = 0. For cn > cT

n and xT2
1 = 0, we

have BR2(0) = x∗O2 (0) < xT3
2 . Therefore, it is optimal for firm 1 to choose

P1 = O having observed γ = γl and x1 = 0, x2 = x∗O2 (0). Accordingly, there
is no equilibrium where P1 = N is optimal for firm 1.

Proof of Proposition 4:
Proof. The existence and uniqueness of cn follows by continuity considera-
tions from xT4

2 < x∗N2 for cn = co, xT4
2 > xT3

2 = x∗N2 for cn = cT
n and Lemma

6. Existence and uniqueness of c̄n follows from monotonicity of xT2
2 − xT3

2

with respect to cn.
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(a): analogous to (a) of Proposition 3.
(b): For cn ∈ [cn, c̄n] we have BR2(0) ≤ xT3

2 < xT4
2 . Therefore, BR1(BR2(0)) >

0 and there is no (pure-strategy) equilibrium where x1 = 0. Accordingly,
there is no pure-strategy equilibrium where P1 = N is chosen in equilibrium.
(c) and (d): analogous to (b) and (c) in Proposition 3.

Appendix B
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Figure 8: The profit function ΠN
2 of firm 2 if firm 1 introduces the new

product regardless of γ and the profit function ΠO
2 if firm 1 launches the

new product only for γ = γh. The profit of firm 2 if firm 1 acts optimally is
drawn in bold face and the dot indicates the optimal choice BR2(x1). (a)
x1 < xT1

1 , (b) x1 = xT1
1 , (c) xT1

1 < x1 < xT2
1 , (d) x1 > xT2

1
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Appendix C

Expected welfare W is calculated in a standard way, namely as the sum of
consumer surplus and producer profits. We denote again by U(q1, q2; γ) the
consumer preference function giving rise to the inverse demand functions
(1). If P ∗

1 = N expected welfare is given by

W = p [U(q1h, q2h; γh)− p1hq1h − p2hq2h

+p1hq1h − cnq1h + p2hq2h − (c0 − xe
2)q2h]

+(1− p) [U(q1lN , q2lN ; γl)− p1lNq1lN − p2lNq2lN

+p1lNq1lN − cnq1lN + p2lNq2lN − (c0 − xe
2)q2lN ]− k(xe

2),

where q1h = q∗1(γh, cn, c0−xe
2), q2h = q∗2(γh, cn, c0−xe

2), q1lN = q∗1(γl, cn, c0−
xe

2), q2lN = q∗2(γl, cn, c0−xe
2) and pih = a−qih−γhqjh, pilN = a−qilN−γlqjlN .

On the other hand, for P ∗
1 = O we have

W = p [U(q1h, q2h; γh)− p1hq1h − p2hq2h

+p1hq1h − cnq1h + p2hq2h − (c0 − xe
2)q2h]

+(1− p) [U(q1lO, q2lO; 1)− p1lOq1lO − p2lOq2lO

+p1lOq1lO − (c0 − xe
1)q1lO + p2lOq2lO − (c0 − xe

2)q2lO]− k(xe
1)− k(xe

2),

where q1lO = q∗1(1, c0 − xe
1, c0 − xe

2), q2lO = q∗2(1, c0 − xe
1, c0 − xe

2) and pilO =
a− qilO − qjlO.
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