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Abstract

The aim of this paper is to develop an optimal long-term bond invest-
ment strategy which can be applied to real market situations. This
paper employs Merton’s intertemporal framework to accommodate the
features of a stochastic interest rate and the time-varying dynamics of
bond returns. The long-term investors encounter a partial informa-
tion problem where they can only observe the market bond prices but
not the driving factors of the variability of the interest rate and the
bond return dynamics. With the assumption of Gaussian factor dy-
namics, we are able to develop an analytical solution for the optimal
long-term investment strategies under the case of full information. To
apply the best theoretical investment strategy to the real market we
need to be aware of the existence of measurement errors representing
the gap between theoretical and empirical models. We estimate the
model based on data for the German securities market and then the
estimation results are employed to develop long-term bond investment
strategies. Because of the presence of measurement errors, we provide
a simulation study to examine the performance of the best theoreti-
cal investment strategy. We find that the measurement errors have a
great impact on the optimality of the investment strategies and that
under certain circumstance the best theoretical investment strategies
may not perform so well in a real market situation. In the simulation
study, we also investigate the role of information about the variability
of the stochastic interest rate and the bond return dynamics. Our re-
sults show that this information can indeed be used to advantage in
making sensible long-term investment decisions.
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1 Introduction

The aim of this paper is to construct an optimal long-term strategy for in-
vesting in bond securities that would be applicable to trading in real markets.
When considering bond investment, there are three reasons why we require
an extension of the well-established Capital Asset Pricing Model (CAPM)
of Markowitz (1959), Sharpe (1964), and Lintner (1965) for the conduct
of bond portfolio management. First, interest rates should be treated as
stochastic. One of the main purposes of bond portfolio management is to
hedge the risk arising from changing interest rates. Second, the distribu-
tions of asset returns should be allowed to vary with time instead of being
only identically distributed over time as in the CAPM. It is a well-known
fact that the volatility of bond prices decreases as the bonds approach their
maturity dates. Third, investors who invest in bond assets are usually more
interested in hedging than speculation. They also tend to adopt some long-
term investment plan rather than a simple myopic investment strategy. In
this paper we will consider the role of the foregoing factors in bond portfo-
lio management within the intertemporal framework of Merton (1971,1973,
1990).

The now extensive literature in intertemporal asset allocation was initiated
by Merton (1973) who considered the multi-asset model where the asset re-
turns are driven by some underlying stochastic factors. His essential insight
was that investors should consider not only a short period mean-variance
trade-off but also a long-term hedging strategy against possible evolutions
of the factor dynamics. Thus, the solution of the optimal intertemporal
portfolio problem contains two terms, one the regular (mean-variance) term
and the intertemporal hedging term.

In order to apply Merton’s general framework to the practice of the bond
portfolio management, the underlying factors need to be specified. In Kim
and Omberg (1996), the factor is a Gaussian risk premium. The three factors
in Brennan, Schwartz, and Lagnado (1997) are a short-term interest rate, a
long-term interest rate and stock dividends. Brennan and Xia (2002) con-
sider the real interest rate and the expected inflation rate. Brennan, Wang,
and Xia (2004), as well as Munk, Sørensen, and Vinther (2004) concentrate
on the interest rate and the Sharpe ratio. Due to the introduction of finan-
cial derivatives and the increasing complexity of financial trades, stochastic
volatility is considered in more recent research, for example, in Liu and Pan
(2003).

2



Unlike the contributions mentioned above, this paper does not specify the
underlying factors as specific economic variables a priori but estimates them
from observed bond yields. The solution of the optimal bond portfolio prob-
lem relies very much on the dynamic setting for the underlying factors. For
this reason we let the market data determine the factor dynamics. To this
end we employ the dynamic multidimentional term structure model of Duffie
and Kan (1996). The Duffie and Kan model is not only analytically tractable
but also flexible enough to accommodate empirical features, such as level-
dependent volatilities, humped and various other shapes for the yield curve.
The essential feature of the Duffie-Kan model from our perspective is the
link between the underlying factors and bond yield data. Based on the
Duffie-Kan model, we can set up a formula where the underlying factors can
be filtered from market bond yield data.

Before we implement the factor estimation, the identification problem needs
to be discussed because of the fact that one data generating process may
have distinct parameter representations. To solve this problem we need
to impose additional conditions on the parameter space so that one data
generating process has exactly one parameter representation satisfying the
given identification conditions. This paper will give a different parameter
representation from the canonical forms of Dai and Singleton (2000). Our
representation turns out to have an easier solution to the intertemporal asset
allocation problem.

To solve the intertemporal asset allocation problem, Merton (1971) pro-
posed the method of dynamic programming. Cox, Ingersoll and Ross (1985)
(CIR) give analytical solutions for the square root process. In general, how-
ever, there are only a few cases that can be solved analytically. Campbell
and Viceira (2002) develop an approximate solution for the log-utility case.1

Liu (2005) characterizes the conditions on asset returns that support analyt-
ical solutions. In this paper, we apply the Feynman-Kac formula to the HJB
equation arising from the method of dynamic programming. The solution
has an expectation representation, which is similar to the solution obtained
by using the static variational method of Cox and Huang (1989).

In order to give an investment recommendation that can be usefully ap-
plied to actual market situations, we estimate the bond pricing model based

1For the log-utility function, the intertemporal effect vanishes.
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on the yield data of the German securities market. Our empirical task is to
decide the most appropriate model in the context of the intertemporal asset
allocation problem. Within the framework of this paper, the task reduces to
the determination of the number of the factors in the Gaussian Duffie-Kan
model.

When fitting the model to market data, the theoretical bond pricing formula
cannot hold exactly, but only with some measurement errors. This fact has
implications for the intertemporal problem since we must take account of
the fact that the solutions we have obtained are derived from the model
without measurement errors. Therefore, we develop a simulation study to
investigate the impact of the measurement errors on the performance of the
best theoretical investment strategies. In the simulation study, we also con-
sider investment strategies based on different information about the bond
pricing model. We will assume that some agents know the intertemporal
feature of the bond prices so that they invest according to the intertemporal
strategy, whilst other agents can only observe market bond prices and they
adopt an investment strategy based on a risk-return trade-off.

The remainder of the paper is organized as follows. Section 2 sets up the
model for the intertemporal asset allocation problem. The first part of Sec-
tion 2 reviews the Duffie-Kan multifactor term structure model and discusses
the model identification problem. The second part develops the optimal in-
tertemporal asset allocation strategy based on the Duffie-Kan model. The
form of the solution of the intertemporal problem obtained by using the
Feynman-Kac formula is provided. Section 3 presents the empirical study of
the bond pricing model where we estimate the Gaussian Duffie-Kan model
based on the data for the German securities market. The simulation study
is provided in Section 4. The last section draws some conclusions. A number
of technical results are gathered in the appendices.

2 The Intertemporal Asset Allocation Problem

In this section we set up the model for the intertemporal decision problem.
The intertemporal asset allocation problem is to choose optimal asset allo-
cation strategies in order to maximize agents’ long-term expected utility of
consumption. The form of the optimal asset allocation strategies depends
on the kinds of assets available for investment. We consider an investment
opportunity set that only consists of bond assets, and use the Duffie and Kan
(1996) framework to model them. The Duffie and Kan model is reviewed
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in Section 2.1. Section 2.2 reviews the method of dynamic programming
proposed by Merton (1971), which we use to solve the intertemporal as-
set allocation problem, and solves the optimal asset allocation strategies by
employing the Feynman-Kac formula.

2.1 Modelling Bond Assets

First, we review the Duffie-Kan affine family briefly and then discuss the
identification problem for this family.

2.1.1 The Duffie-Kan affine family

The Duffie-Kan affine family of bond models has the characteristics that the
bond price P (t, T , Xt) is given by the exponential affine form

P (t, T , Xt) = e−A(T−t)−B(T−t)�Xt , (1)

where t is the current time and T is the maturity date. The bond price
depends on the current level of the factors Xt. The factors Xt are repre-
sented by an n-dimensional stochastic process that will be specified later.
All bonds considered in this paper pay no coupons. The coefficients A(τ)
and B(τ)� = (B1(τ), · · · , Bn(τ)) are differentiable functions. The bond
payout at the maturity is set to be 1, so that P (T , T , XT ) = 1. This condi-
tion in turn implies that the initial conditions for the coefficients are given
by A(0) = Bi(0) = 0, for all i = 1, · · · , n.

The bond yield y(t, T , Xt) is defined as an average return, so it has the
affine structure

y(t, T , Xt) :=
lnP (T , T , XT ) − lnP (t, T , Xt)

T − t
=

A(T − t)
T − t

+
B(T − t)�

T − t
Xt .

(2)
The spot interest rate Rt is defined as the instantaneous yield, which can
be represented by

Rt = lim
s↑t

y(Xs, t − s) = ξ0 + ξ�1 Xt , (3)

where we let ξ0 = A′(0) and ξ1 = B′(0).

Duffie and Kan (1996) show that the exponential affine bond price (1) is
supported by affine dynamics for the underlying factors

dXt = K(θ − Xt)dt + Γ
√

StdWt , (4)
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where θ is an n × 1 constant vector, K and Γ = (γij)i,j=1,··· ,n are n × n
constant matrices, and St is a diagonal n × n matrix with affine elements
Si(Xt) = αi + β�

i Xt. The noise term is represented by a standard (orthog-
onal) n-dimensional Wiener process Wt .

2.1.2 A subfamily: The Gaussian factor model

In this paper we only consider a subfamily of the Duffie-Kan family, namely
the one where the factor Xt follows an n-dimensional Gaussian process

dXt = K(θ − Xt)dt + ΓdWt . (5)

We require further that the matrix K be positive definite so that the process
Xt is stationary. Also, the matrix K is required to have distinct eigenvalues.
The volatility coefficient matrix Γ is assumed to be full-rank so that any fac-
tor noise ΓidWt, where Γi denotes the i-th row in Γ, cannot be substituted
by any linear combination of the other factor noises.

Applying Itô’s Lemma to the bond price (1), the dynamics of the instanta-
neous bond return are given by

dP (t, T , Xt)
P (t, T , Xt)

= μP (T − t, Xt)dt − B(T − t)�ΓdWt , (6)

where

μP (τ, Xt) = A′(τ) + B′(τ)�Xt −B(τ)�K(θ−Xt) +
1
2

n∑
i,j=1

Bi(τ)Bj(τ)ΓiΓ�
j .

(7)

The bond market satisfies the standard no-arbitrage condition

μP (τ, Xt) − Rt = −B(τ)�Γλ , (8)

for all τ > 0, where λ is an n × 1 constant vector λ = (λ1, · · · , λn). Each
λi can be interpreted as the market price of the factor innovation Wit. The
no-arbitrage condition (8) states that the excess return over the riskless re-
turn on the left hand side should be equal to the risk premia on the right
hand side.
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The no-arbitrage condition (8) requires that the coefficients A(τ) and B(τ)
satisfy the ordinary differential equations

B′(τ) = −K�B(τ) + ξ1 , (9)

A′(τ) = (Kθ − Γλ)�B(τ) − 1
2

n∑
i,j=1

Bi(τ)Bj(τ)ΓiΓ�
j + ξ0 . (10)

2.1.3 The model identification problem

When considering a multifactor term structure model such as the one given
by equations (1), (5), (9) and (10), we are inevitably confronted with an
identification problem, especially when we do not specify the factors Xt as
specific economic variables but rather seek to infer them from market data.
The identification problem arises due to the fact that different parameter
representations in the multifactor term structure model can generate the
same bond prices. This can be illustrated as follows. To a set of factors
Xt in the bond pricing formula (1), we can apply a full-rank transformation
L and we still get the same multifactor term structure model based on the
transformed factors XL

t := LXt since

y(t, t + τ, Xt) =
A(τ)

τ
+

B(τ)�

τ
Xt =

A(τ)
τ

+
(L−1�B(τ))�

τ
XL

t .

The transformed factors XL
t follow the stochastic differential equation

dXL
t = LdXt = LKL−1(Lθ − XL

t )dt + LΓdWt ,

which is different from the original factor dynamics (5).

To solve the identification problem, we need to impose additional conditions
on the parameters (θ,K, Γ, λ, ξ0, ξ1) such that for any bond yield expression
of the form (2) there exists only one parameter representation satisfying
those conditions.

Property 1 Consider the bond yield model (2), where the factors Xt follow
the dynamics (5) and the coefficients B(τ) and A(τ) satisfy the no-arbitrage
conditions (9) and (10). Assume that the parameters (θ,K, Γ, λ, ξ0, ξ1) of
this model satisfy the identification conditions:
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(i) K in (5) is diagonal,

(ii) θ in (5) is equal to (0, · · · , 0)�,

(iii) ξ1 in (9) is equal to
(
1, · · · , 1

)�,

(iv) Γ in (5) is lower-triangular.

Then, for each data generating process (2) for y(t, t + τ, Xt), there exists
only one corresponding parameter representation (up to permutations of the
factors Xt).

Our parameter representation given in Property 1 is different from the
canonical representation of Dai and Singleton (2000, p.1948) where, in our
notation, the matrix K is lower-triangular while Γ is diagonal. In our repre-
sentation, each factor Xi has a distinct mean-reverting speed represented by
the parameter κi while in the Dai and Singleton representation, the factors
are stochastic processes independent of each other. These two representa-
tions are equivalent in the sense that we can find a full-rank linear matrix
to transform one representation to the other and vice verse. The reason
why we choose this parameter representation rather than the canonical rep-
resentation is because of its convenience in solving for the coefficient B(τ)
in equation (9) and the intertemporal optimal strategies that will be intro-
duced later.

The following property solves the coefficients Bi(τ), A(τ) in the bond price
formula (1) satisfying the identification conditions given in Property 1.

Property 2 Let κ1, · · · , κn be the elements on the diagonal of K. Then,
the coefficients B(τ) and A(τ) satisfying the no-arbitrage conditions (9) and
(10) with the parameter restrictions given in Property 1 are solved as

Bi(τ) =
1
κi

(1 − eκiτ ) , ∀i = 1, · · · , n (11)

A(τ)
τ

=
n∑

i=1

Γiλ

κi

(− 1 +
1 − e−κiτ

κiτ

)
+ ξ0 (12)

−1
2

n∑
i,j=1

ΓiΓ�
j

κiκj

(
1 − 1 − e−κiτ

κiτ
− 1 − e−κjτ

κjτ
+

1 − e−(κi+κj)τ

(κi + κj)τ
)

,

where B(τ) =
(
B1(τ), · · ·Bn(τ)

)�.
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2.2 Optimal Asset Allocation Strategies

2.2.1 The intertemporal model

The intertemporal asset allocation problem considers homogenous agents
whose utility is represented by the CRRA (Constant Relative Risk Aversion)
utility function

U(C) =
C1−γ

1 − γ
, (13)

where γ > 0 and γ �= 1. Initially the agents have endowment V0 where Vt

represents wealth at time t. The objective of these agents is to maximize
the expected future utility

E0

[
e−δT U(VT )

]
. (14)

The agents maximize their objective (14) by choosing an investment plan
(α1t, · · · , αnt) for each moment t ∈ [0, T ]. Each αit represents the invest-
ment proportion in the i-th bond relative to the total wealth level.

For the multifactor no-arbitrage bond model introduced above, we can
choose n bonds with distinct maturity dates T 1, · · · , Tn, as many as the
number of the factors, to span all bond returns, see, for example, Chiarella
(2004). In other words, any bond can be replicated by a portfolio consisting
of these n chosen bonds.

Let Pit := P (t, T i, Xt) denote the price of the i-th bond maturing at time
T i. From (6), the bond return dynamics can be represented in the vector
form ⎛

⎜⎝
dP1t
dP1t
...

dPnt
Pnt

⎞
⎟⎠ = μtdt + ΣtdWt ,

where

μt :=

⎛
⎜⎝μP (T 1 − t, Xt)

...
μP (Tn − t, Xt)

⎞
⎟⎠ (15)

Σt := −BtΓ , with Bt :=

⎛
⎜⎝B1(T 1 − t) · · · Bn(T 1 − t)

...
. . .

...
B1(Tn − t) · · · Bn(Tn − t)

⎞
⎟⎠ . (16)

9



Then, the evolution of wealth due to the the investment plan (α0t, · · · , αnt)
can be represented by2

dVt

Vt
= Rtdt + α�

t

(
(μt − Rt1)dt − BtΓdWt

)
, (17)

where α�
t := (α1t, · · · , αnt), and 1 := (1, · · · , 1)�.

The remaining investment proportion α0t := 1 −∑n
i=1 αit, which can be

positive or negative, represents the investment position in the money mar-
ket which earns the riskless return Rt.

2.2.2 The solution via dynamic programming

Let J(t, T, Vt, Xt) be the value function, which is defined as the maximized
objective function (14) for the sub-period [t, T ], so that

J(t, T, Vt, Xt) = max
αs;t≤s≤T

{
Et

[
e−δT U(VT )

]}
. (18)

The value function depends on the wealth Vt and the level of the underlying
factor Xt at the initial time of the sub-period. The Hamilton-Jacobi-Bellman
(HJB) equation3 characterizes the first order condition that yields the opti-
mal decisions and is given by

0 = max
αt

{
∂

∂t
J +

(
Rt + α�

t (μt − Rt1)
)
JV Vt

+
1
2
α�

t ΣtΣ�
t αtJV V V 2

t + (θ − Xt)�K�JX (19)

+α�
t ΣtΓ�JV XVt +

1
2

n∑
i,j=1

ΓiΓ�
j JXi,Xj

}
.

We observe that during the time period s ∈ [t, T ] the factor dynamics for
Xs, given in (5), are independent of the wealth level Vs. Furthermore,
the percentage wealth change dVs/Vs, defined by (17), is also independent
of the wealth level Vs. Given the just-stated independence of Vt, it turns
out that the initial wealth level Vt does not affect the optimal decisions α∗

s

2See Merton (1971) .
3The HJB equation states that the optimal lifetime utility over [t, T ] should be equal to

the optimal momentum utility for a short time interval [t, t+ dt) plus the optimal lifetime
utility over [t+dt, T ]. See Kamien and Schwartz (1991: 264-271) for a heuristic discussion
and Chapter 11 in Øksendal(2000) for a rigorous derivation.
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over the period s ∈ [t, T ], and it can be treated as a scalar multiplier of
the intertemporal optimization problem (18). So, we can rewrite the value
function as

J(t, T, Vt, Xt)

= max
αs;t≤s≤T

{
V 1−γ

t e−δTEt[U(
VT

Vt
)]
}

= V 1−γ
t J(t, T, 1, Xt) = e−δtU(Vt)Φ(t, T, Xt)γ , (20)

where we set
Φ(t, T, Xt)γ := eδt(1 − γ)J(t, T, Xt, 1) .

The product form (20) separates Vt from the other dependent variables.

Using the product form (20), the HJB equation (19) may be written as4

0 = max
αt

{
−δJ + (1 − γ)

(
Rt + α�

t (μt − Rt1)
)
J

−1
2
(1 − γ)(−γ)α�

t ΣtΣ�
t αtJ + γ(θ − Xt)�K�ΦXi

Φ
J

+(1 − γ)γα�
t ΣtΓ�ΦXi

Φ
J

+
1
2

n∑
i,j=1

ΓiΓ�
j

(
γ(γ − 1)

ΦXi

Φ
ΦXj

Φ
+ γ

ΦXiXj

Φ

)
J

}
,

from which the first order condition (FOC) for αt leads to the expression
for the optimal αt given by

α∗
t =

1
γ

(ΣtΣ�
t )−1(μt − Rt1)︸ ︷︷ ︸

Mean-Variance Efficient

+ (ΣtΣ�
t )−1ΣtΓ�ΦX

Φ︸ ︷︷ ︸
Intertemporal Hedging

. (21)

The first term in the solution of the optimal portfolio (21) is the mean-
variance efficient portfolio, where the agents’ portfolio decisions are based

4We abbreviate J(t, T, Xt) to J , and use the following equalities

∂

∂t
Jt = −δJ + γ(

∂

∂t
Φ)

1

Φ
J , JX = γ

ΦX

Φ
J ,

JV V = (1 − γ)J , JV V V 2 = (1 − γ)(−γ)J ,

JV XV = (1 − γ)γ
ΦXi

Φ
J , JXi,Xj =

“
γ(γ − 1)

ΦXi

Φ

ΦXj

Φ
+ γ

ΦXiXj

Φ

”
J .
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on the return-risk trade-off. The second term arises only in an intertempo-
ral framework and is due to the variation of the factors represented by the
volatility coefficient Γ in the factor dynamics (5). In a static framework, Γ
is equal to zero, then this term vanishes. This decomposition of the opti-
mal intertemporal portfolio decision is one of the profound contributions of
Merton (1971,1973).

Applying the equation (21) to the HJB equation (19), the HJB equation
can be transformed into the partial differential equation

0 =
∂

∂t
Φ +

(
K(θ − Xt) +

1 − γ

γ
ΓΣ−1

t (μt − Rt1)
)�

ΦX

+
1
2

n∑
i,j=1

ΦXiXjΓiΓ�
j (22)

+Φ
(
− δ

γ
+

1 − γ

γ
Rt +

1 − γ

2γ2
(μt − Rt1)�(ΣtΣ�

t )−1(μt − Rt1)
)

.

For the finite time case we let the final utility function be equal to the
temporary utility function

J(T, T, VT , XT ) = U(VT ) .

Thus, the boundary condition for the multiplicative part Φ(t, T, Xt) is

Φ(T, T, XT ) = 1 , (23)

due to the definition of Φ in equation (20).

So, the problem of intertemporal asset allocation now reduces to the prob-
lem of solving the nonlinear second order partial differential equation (22)
for Φ.

2.2.3 Solving the HJB equation via the Feymann-Kac formula

To simplify the HJB equation (22), we let

ht := − δ

γ
+

1 − γ

γ
Rt +

1 − γ

2γ2
λ�λ . (24)

Together with the fact that

Σ−1
t (μt − Rt) = λ ,
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which is based on the no-arbitrage condition (8), the HJB equation can be
rewritten further as

0 =
∂

∂t
Φ +

(
K(θ − Xt) + Γ

1 − γ

γ
λ
)�

ΦX +
1
2

n∑
i,j=1

ΦXiXjΓiΓ�
j + Φht . (25)

The application of the the Feymann-Kac formula5 to represent the solution
is straightforward and involves associating the HJB equation (25) with the
partial differential equation (59) in the Appendix.

We provide the solution here and the proof is given in Section 6.1 of the
appendix.

Property 3 The solution Φ(t, T, Xt) for the partial differential equation
(25) with the boundary condition (23) is given by the expectation operator
representation

Φ(t, T, Xt) = Et,Xt

[
e

R T
t h(Xs,s)ds dP̂T

dPT

]
, (26)

where the Radom-Nikodym derivative appearing in (26) is given by

dP̂T

dPT
= exp

(1 − γ

γ
λ�(WT − Wt) − (1 − γ)2

2γ2
λ�λ(T − t)

)
, (27)

and Et,Xt is the expectation operator with respect to the process Xs, t ≤ s ≤
T , satisfying (5) with initial value Xt.

The reader may note that the expectation operator expression (26) is very
similar to the martingale solution obtained by the static variational method
of Cox and Huang (1989). It can be shown that the expectation operator
representation (26) is equivalent to the solution of Cox and Huang (1989)
in Hsiao (2006). Here we provide another way to obtain the martingale
solution.

3 Estimating the Factors based on Market Data

In this section we estimate the parameters and the unobservable stochastic
factors in the bond pricing formula (2) based on actual market data. The
coefficients A(τ) and B(τ) in (2) are given in equations (12) and (11) and

5See Theorem 1 in Section 6.2 of the Appendix.
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the factor Xt follows the dynamics (5). We will determine parameter values(K, Γ, λ, ξ0

)
in order to fit the observed bond yield data y(t, T , Xt). The

parameter values are determined by the maximum likelihood method.

The bond yield data are obtained from the Homepage of Deutsche Bun-
desbank (German Federal Bank)6. The yield data are derived from the
interest rates on Federal securities using the method of Nelson and Siegel7.
The bond yields used here are medium- and long-term ones with time to
maturity of 1 year, 3, 5, 8, and 10 years8 corresponding to our purpose for
constructing long-term asset allocation strategies. We have chosen the time
horizon January 03, 2003 to February 10, 2005 because the bonds were ac-
tively traded in this period. All data are available on a daily basis, so there
are 535 observation points. Figure 1 plots the data and their descriptive
statistics are given in Table 1.

Year2003 2004 2005

1%

2%

3%

4%

5%

1 Year Yield

3 Year Yield

5 Year Yield

Figure 1: German Yield Curve
6The data source is located at “http://www.bundesbank.de/statistik/statistik.en.php”,

then click “Time Series Database”, then “Interest Rates”, then “capital market”, then
“Term structure of interest rates in the debt securities market - estimated values”, then
“Yields, derived from the term structure of interest rates, on listed Federal securities with
annual coupon payments (monthly and daily data)”.

7See the Monthly Report of the Deutsche Bundesbank, October 1997: 61-66.
8Those time series that are labelled by wt3211, wt3215, wt3219, wt3225, and wt3229

respectively.
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bond yields 1Y 3Y 5Y 8Y 10Y
mean 0.0224 0.0282 0.0336 0.0395 0.0422
st. deviation 0.00151 0.00224 0.00249 0.00254 0.00256

Table 1: Descriptive Statistics of Bond Yields

In order to estimate the unobservable common factors in the observed
bond yield data, we employ the Kalman filter9. The observation equation of
the Kalman filter is the bond yield formula (2) to which measurement errors
ετi
t are added, so that

y(t, t + τi, Xt) =
A(τi)

τi
+

B(τi)�

τi
Xt + ετi

t , (28)

where {τi, i = 1, · · · , 5} = {1, 3, 5, 8, 10 years} correspond to the observed
data given above. Reasons for the existence of measurement errors might
include the unobservability of Xt, real market frictions, or imperfections
in the model itself. The measurement errors ετi

t are assumed to be identi-
cal, independently, and N (0, σε)-distributed for all observation time points
t and all time to maturity τi. Also, they are assumed to be independently
distributed with respect to the factor Xt.

The state equation of the Kalman filter is given by the factor dynamics (5)
where the parameters have to satisfy the normalization conditions in Prop-
erty 1. Because the market data are discrete-time while the factor dynamics
follow the continuous-time dynamics (5), we need to solve the stochastic
differential equation (5) between observation times t and t + Δ. Thus, we
represent the factor dynamics by the solution10

Xt+Δ = e−KΔXt +
∫ Δ

0
e−K(Δ−u)θdu +

∫ Δ

0
e−K(Δ−u)ΓidWt+u . (29)

We have developed estimation programs based on the software package
“TSM”(Time Series Modelling), which is implemented in the programming
language ”GAUSS”11. For the model estimation we set one time unit equal
to one year, so that the time step for daily data is about 1/250.

9See Section 6.2 of the Appendix.
10See Kloeden and Platen(1992).
11For information about “GAUSS” and “TSM” see http://www.aptech.com.
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In order to determine how many common factors Xt should be chosen for
the underlying dynamics for the bond yields, we implement the model esti-
mation for one-, two-, and three-dimensional factors Xt and then choose the
best model according to information criteria, namely, the Akaike, Bayesian
and Hannan-Quinn information criteria.

At a maximum, the gradient of the log-likelihood is equal to zero. In the
numerical implementation, the convergence tolerance for the gradient is set
to be 10−5. However, with this setting, we were not able to obtain conver-
gence for the three-dimensional factor model so we relaxed the convergence
tolerance to 0.07 in order to obtain a set of parameter estimates.

All estimation results are listed in Table 2. The Kalman filter estimates
of the one-, two-, and three-factor models are plotted in Figures 2, 3 and 4
respectively.

1-factor 2-factor 3-factor
Estimates (T-stat.) Estimates (T-stat.) Estimates (T-stat.)

κ1 0.0974 (22.18) 0.1431 (10.87) 0.0499 (218.34)
κ2 0.7748 (18.70) 0.5587 (216.00)
κ3 0.5991 (328.73)
Γ11 0.0064 (27.10) 0.0110 (16.63) 0.0177 (2554.51)
Γ21 -0.0105 (-6.59) -0.4583 (-446.13)
Γ22 0.0035 (36.61) 0.5087 (395.88)
Γ31 0.4447 (238.76)
Γ32 -0.5153 (-373.10)
Γ33 0.0072 (397.43)
λ1 -0.9362 (-13.55) -0.7561 (-0.95) -0.1319 (-3.97)
λ2 -3.7973 (-5.79) -0.5867 (-1.66)
λ3 -0.7291 (-1.05)
ξ0 0.0231 (37.03) 0.0155 (0.33) 0.0040 (3.42)
σε 0.0013 (71.07) 0.0006 (41.06) 0.0001 (18.31)

Table 2: Estimated Parameters and T-statistics
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Figure 3: The filtered factors in the two-factor model
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Figure 4: The filtered factors in the three-factor Model
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With regard to the estimates we make a number of observations. First, all
mean-reverting parameters κi are quite small for all three models. Second,
the two innovations in the two-factor model, which are represented by the
noise terms Γ11W1t and Γ21W1t +Γ22W2t, are highly (negatively) correlated
with the correlation coefficient −0.9485 based on the estimation values in
Table 2. This high correlation of the factor innovations leads to high correla-
tion of the factors processes X1t, X2t, as shown in Figure 3. Third, a similar
high correlation can be also found between the second and the third factor
innovations in the three-factor model, which are represented by the noise
terms

∑2
i=1 Γ2iWit and

∑3
i=1 Γ3iWit. The correlation coefficient is equal to

−0.9997. The estimated factors are displayed in Figure 4. In the three-factor
estimation we also observe that the estimated second and third factors vary
over an abnormally large scale compared with the observed market yields.

In Table 3, the statistical performance of the three different models is com-
pared. The “rel. fitting errors” denote the squared quadratic sum of the
fitting errors relative to the bond yields’ standard deviation, for example,
the fitting error of the bond yield with one year maturity in the one-factor
model amounts to 0.6281% relative to the standard deviation. The second
part of the table provides the results of the three information criteria. The
value of an information criterion expresses an adjusted goodness of fit with
the penalty for utilization of the degrees of freedom, see for example Burn-
ham and Anderson (2004). The results of Table 3 show that the three-factor
model is the best statistical model among the three. It has significantly the
smallest fitting errors and the smallest values for all information criteria.

rel. fitting errors τ = 1Y τ = 3Y τ = 5Y τ = 8Y τ =10Y
1-Factor 0.6281% 0.0652% 0.0725% 0.0813% 0.1441%
2-Factor 0.0228% 0.0715% 0.0181% 0.0122% 0.0277%
3-Factor 2.03 ×10−6 4.56 ×10−6 3.67 ×10−6 1.32 ×10−6 1.45 ×10−6

Information criteria Akaike (AIC) Bayesian (BIC) Hannan-Quinn
1-Factor -10.38 -10.36 -10.37
2-Factor -11.71 -11.69 -11.70
3-Factor -13.89 -13.86 -13.88

Table 3: Comparison of the performance of the various models

Overall, the empirical investigation of the bond yield model (2) has given
a diversity of results. On the one hand, the graphs in Figure 3 seem to sug-

18



gest that the second factor is redundant because the trajectories of the two
factors are almost like a mirror image of each other. The estimated factor
trajectories in the three-factor model fluctuate on a wide scale that is much
larger then that of the bond yields themselves. On the other hand, from the
statistical point of view, however, it seems that the more factors, the better
the statistical performance among the three models.

The estimated models will be used in Section 4 for the simulation study
of portfolio performance. We discard the the three-factor model because of
its wild behavior, which might lead to extreme investment strategies. We
employ the estimation results of the one- and two-factor models.

4 Optimal Portfolios and Simulation Study

In this section we give explicit forms for the optimal intertemporal portfolio
strategies. We then undertake a simulation study of portfolio performance
based on the estimation results of Section 3.

Given the solution of the value function in Section 2.2.3, we give explict
forms of the optimal intertemporal portfolio strategies in Section 4.1. Those
optimal strategies, however, are constructed without measurement errors in
the pricing formula (28). In order to apply these optimal strategies to real
market situations, we need to take account of the existence of the measure-
ment errors in the pricing formulas. Then, the following questions arises
naturally. Do the best theoretical (intertemporal) investment strategy still
perform well in the presence of the measurement errors? How do the mea-
surement errors affect performance of the strategies? In Section 4.2 we will
provide a simulation study that seeks to answer these questions. In the sim-
ulation study we are also interested in the problem of partial information,
when investors do not have an intertemporal model for investment planning
but rather follow the conventional strategy of choosing the mean-variance
efficient (MVE) portfolios. We will compare the MVE strategies with the
intertemporal optimal strategies.

4.1 Optimal Portfolio without Measurement Errors

Property 4 The explicit solution of Φ(t, T, x) satisfying the expectation op-
erator representation (26) where the parameters

(K, Γ, λ, ξ0

)
satisfy the iden-
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tification conditions given in Property 1, is given by

Φ(t, T, Xt) = f̃(t, T )e
1−γ

γ
B(T−t)Xt , (30)

where

ln f̃(t, T ) = − δ

γ
(T − t) +

1 − γ

2γ2
λ�λ(T − t) +

1 − γ

γ
ξ0(T − t)

+(
1 − γ

γ
)2
∫ T

t
B(T − s)�Σλds

+
1
2
(
1 − γ

γ
)2
∫ T

t
B(T − s)�ΣΣ�B(T − s)ds ,

and B(τ)� =
(

1
κ1

(1 − e−κ1τ ), · · · , 1
κn

(1 − e−κnτ )
)
.

Using the result of Property 4, we can obtain the analytical solution for
the optimal portfolio given in equation (21) in our case of the optimal bond
portfolios, where the derivative in the intertemporal hedging term in the
formula (21) is now given by

ΦX(t, T, Xt)
Φ(t, T, Xt)

=
∂

∂X
ln Φ(t, T, Xt) =

1 − γ

γ
B(T − t) . (31)

Substituting (31) into the solution α∗
t of the optimal portfolio given in (21),

we obtain the analytical representation for the optimal investment strategy
in the form

α∗
t =

1
γ

(Σ�
t )−1λ︸ ︷︷ ︸

Mean-Variance Efficient

+
1 − γ

γ
(Σ�

t )−1Γ�B(T − t)︸ ︷︷ ︸
Intertemporal Hedging

, (32)

where we recall that Σt has been defined in (16). We remark here that due
to the log-linear form of the factor Xt in the solution of the value function
(30), the intertemporal hedging term turns out not to depend on the level
of the factors. The mathematical reason for this is that the factor follows
a mean-reverting Gaussian process and so depends linearly on its past, as
shown in the solution (29).

Although the intertemporal hedging term does not directly depend on the
factor level, it is still affected by the intertemporal behavior of the factors
represented by the mean-reverting parameters K and the variation Γ. The
intertemporal hedging effect is more significant,
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(i) when the investors are more risk-averse (large γ),

(ii) when the investment horizon is long (large T − t),

(iii) when the factor is more like a random walk process (small mean re-
version speed κi), and

(iv) when the mean-variance portfolio is not too dominant compared to
the intertemporal hedging term (mathematically, we need to compare
the scale of the market price of risk |λ| with the volatility of the long
term bond B(T − t)�Γ).

Furthermore, the optimal wealth based on the optimal portfolio evolves
according to

dV ∗
t

V ∗
t

= Rtdt + α∗�
t

(
(μ − Rt1)dt + ΣtdWt

)
(33)

= Rtdt +

(( 1
γ

λ� +
1 − γ

γ
B(T − t)�Γ

)
Σ−1

t

)(
Σt

(
λdt + dWt

))

= Rtdt +
1
γ

(
λ�λdt + λ�dWt

)
+

1 − γ

γ
B(T − t)�Γ(λdt + dWt) .

An important implication of the formula (33) for the wealth evolution is
that the optimal wealth evolution is independent of the choice of bond as-
sets, which means that it is independent of the time to maturities of the
bonds in which the agents invest. A different choice of bond assets will give
rise to a different volatility matrix Σt (recall the definition of Σt in (16)
). We can see in the optimal wealth development (33) that the volatility
matrix Σt no longer appears.

To visualize the optimal investment strategies, we illustrate the optimal
intertemporal portfolio weights based on the estimation results of the one-
and two-factor models given in Table 3. Recall that the number of the bond
assets needs to equal to the number of the factors, due to the no-arbitrage
argument. In Fig 5, the asset in the one-factor model is a 10-year bond and
the assets in the two-factor model are chosen to be one 3-year bond and
one 10 year bond. The risk aversion parameter γ goes from 4 to 100. The
extreme long and short investment positions in the two-factor model can be
traced back to the high correlation of the factor innovations. It leads to a
high degree of dependence of Γ and therefore to a near degenerate volatil-
ity matrix Σt, again recall the definition (16). From the formula (32) we
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see that the near degenerate volatility matrix results in extreme long/short
investment positions.

Risk Aversion20 40 60 80 100

Investment Proportions

-100

0

100

200

300

400
1F-Strategy in 10Y Bond
2F-Strategy in 3Y Bond
2F-Strategy in 10Y Bond

Figure 5: Optimal Investment Proportions based on the One- and Two-
factor Models

4.2 Simulation Study including Measurement Errors

The analytical solution for the optimal portfolios given above is based on
the exact affine term structure (2). When applying the theoretical optimal
strategies to the real world we need to take account of the measurement
errors that occur in the formula (28).

We develop an investment scenario and use simulation to determine the
performance of the theoretical optimal strategies in the model with measure-
ment errors. In the simulation example, we employ the two-factor model to
simulate the bond price P (t, T i, Xt) according to

P (t, T i, Xt) = e−A(T−t)−P
i=1,2 Bi(T i−t)�Xit−(T i−t)εit , (34)

where all parameters take values from the estimation results of the two-factor
model given in Table 2. The investment horizon is set to be 10 years. For
the two-factor bond model, there are two bond assets in the investment set.
At the initial time t = 0, the agents can invest in two bonds: one matures
in 3 years and the other matures in 10 years. In this case we have T1 = 3
and T2 = 10. As time goes by, the time to maturity Ti − t decreases. Once
the short-term bond matures, a new 3-year bond will be introduced into the
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investment set immediately. So, the maturities have the time schedule show
in Table 4.

0 ≤ t < 3 3 ≤ t < 6 6 ≤ t < 9 9 ≤ t ≤ 10
T 1 = 3 6 9 12
T 2 = 10 10 10 10.

Table 4: Time schedule of the bond maturities

In our simulation study we consider six different investment strategies:

• (S1) The first strategy is the full-information two-factor intertemporal
investment strategy. It is the best theoretical investment strategy. The
agents adopting this strategy possess the full information of the model
of the price dynamics, which includes the number of the factors and the
parameter values. The strategy is constructed by adopting the formula
(32) based on the two-factor model. After elementary operations, the
strategy S1 at the time t, denoted by α∗

S1(t), is given by the formula

α∗
S1(t) =

1
γ

(
B1(T 1 − t) B1(T 2 − t)
B2(T 1 − t) B2(T 2 − t)

)−1(Γ11 Γ21

0 Γ22

)−1(
λ1

λ2

)
(35)

+
1 − γ

γ

(
B1(T 1 − t) B1(T 2 − t)
B2(T 1 − t) B2(T 2 − t)

)−1(
B1(10 − t)
B2(10 − t)

)
,

recall that Bi(τ) = (1 − e−κiτ )/κi, and T i for different t are given in
Table 4. The agents know that the all parameter values K, Γ, λ and ξ0

are given by the results of the two-factor model in Table 2.

• (S2) The second strategy is the full-information mean-variance effi-
cient (MVE) investment strategy. Agents adopting this strategy also
have the full information of the price dynamics as those adopting best
theoretical investment strategy S1, but they follow the mean-variance
efficient (MVE) strategy. The strategy is constructed by using the
MVE portfolio, which is the first term in the formula (32) based on
the two-factor model. So, this strategy can be represented by

α∗
S2(t) =

1
γ

(
B1(T 1 − t) B1(T 2 − t)
B2(T 1 − t) B2(T 2 − t)

)−1(Γ11 Γ21

0 Γ22

)−1(
λ1

λ2

)
,(36)
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where the agents also know the parameter values are given in Table 2.
Recall that the strategy S2 is the best strategy when the investment
environment is static. It is also in line with the conventional consider-
ation of portfolio decisions based on the trade-off between return and
risk.

• (S3) The third strategy is a partial information MVE strategy. The
agents adopting this strategy have no information about the bond
price dynamics. They adopt the same two-factor MVE strategy as the
agents adopting S2, but they have to use the original formula given in
(21), namely,

α∗
S3(t) =

1
γ

(ΣtΣ�
t )−1(μt − Rt1) (37)

since they do not have information about the bond price dynamics.
Their strategy to find proxies for Σt and μt is to use sample statistics
of the bond daily returns. We set the learning period as one year.
So, at time t the agents collect the last 250 daily bond returns for
the two bonds maturing at T 1 and T 2 over the last year [t, t − 1]
and subsequently calculate the sample mean and sample covariance of
these daily bond returns. The sample mean minus the average riskless
returns of Rt is the proxy for (μt − Rt1)Δ and the sample covariance
matrix is the proxy for ΣtΣ�

t Δ.

• (S4) With the fourth strategy the agents keep all their wealth as money
and earn the riskless instantaneous interest rate. This is just the value
of the money market account and serves as a reference value.

• (S5) The fifth strategy is a one-factor intertemporal investment strat-
egy. As a one-factor model investor, the agents only invest in one
bond. We choose the bond maturing at the final time T = 10. This
investment strategy is constructed by using the formula (32) based on
the one-factor model, so that this strategy, denoted by α∗

S5(t) can be
represented by

α∗
S5(t) =

1
γ

λ1

B1(10 − t)Γ11
+

1 − γ

γ
. (38)

We adopt the estimation results of the one-factor model given in Table
2.

• (S6) The last strategy is a one-factor MVE investment strategy, which

24



can be expressed by

α∗
S5(t) =

1
γ

λ1

B1(10 − t)Γ11
. (39)

In Table 5 we summarize the different features of the six investment strate-
gies above.

Strategy Type Information
S1 Intertemporal The true price dynamics The best theoretical

(the two-factor term investment strategy
structure model)

S2 MVE The true price dynamics

S3 MVE Observed bond prices

S4 All-money —–

S5 Intertemporal The one-factor model

S6 MVE The one-factor model

Table 5: Six Strategies in the Simulation Study

The simulation programs are written in the programming language “GAUSS”.
We simulate each scenario 1,000 times for all six strategies and for two dif-
ferent risk aversion parameters, namely, γ = 15 and γ = 30. In order to
determine the impact of the measurement errors, our simulation study in-
cludes a case with the measurement errors having σε = 0.0006, adopted from
the estimation result of the two-factor model in Table 2, and a case without
measurement errors, that is, σε = 0. We take the time step for 1/50, corre-
sponding to weekly rebalancing. At the beginning of the investment period,
the agents are endowed with one unit of wealth. As the criteria to evaluate
performance of the strategies, we investigate both the expected final utility
and the distribution of the final wealth.

Figure 6 shows the final wealth distribution for γ = 15, where the x-axis
represents the final wealth and the y-axis shows the frequency. Table 6 lists
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the expected utility and the descriptive statistics of the final wealth. Recall
that the utility is always negative for the risk aversion parameter γ > 1.

The result is quite striking because the two-factor intertemporal investment
strategy S1, the best theoretical investment strategy, performs worst among
all strategies, in particular, much worse than the partial information strat-
egy S3 and the all-money-holding strategy S4. The one-factor intertemporal
investment strategy S5 is the winner of the this investment competition. In
the statistical summary in Table 6 we can see that the average of the final
wealth by adopting best theoretical investment strategy S1 is even negative.
This means, the agents are given one unit of wealth at the beginning of
investment but end up with a negative outcome of wealth in average after
10 year investment following the best theoretical investment strategy!

In order to explain this outcome we trace the wealth development over the
whole investment period. Figure 7 shows one typical path of the wealth de-
velopment by adopting the best theoretical investment strategy S1. We can
see in this figure that the trajectory of the wealth development undergoes
steep falls at the time t = 0, 3, and 6 (year) where a new 3-year bond is
introduced. At the time t = 6 the agents’ wealth falls to a level around zero
and is not able to recover subsequently before the end of the investment
horizon.

In Figure 8 we plot the two-factor intertemporal investment strategy S1
through time. We can see that the time points of introduction of new bonds
are also break points for the positions of the strategy S1. This suggests
that the introduction of the new short-term bond causes the rapid decline
in wealth.

It is worth recalling here that, in the case without measurement errors, the
wealth development under the optimal investment strategy is independent
of the choice of bond securities, as illustrated in the optimal wealth dynam-
ics (33). The impact of the introduction of the new short-term bond on the
wealth development seems to be related to the existence of the measurement
errors. To highlight the impact of the measurement errors we also provide
one typical path of the wealth development under the theoretical investment
strategies in the case without the measurement errors in Figure 9. In this
figure we see indeed that the wealth development shows no breaks at the
time of the introduction of the new bonds.
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Figure 10 shows the final wealth distributions by adopting all six strate-
gies for the case without measurement errors. From Table 6 we can see that
the best theoretical intertemporal strategy S1 now indeed performs best in
terms of the expected utility E[UT ]. We also see that without measurement
errors, for all six investment strategies agents are better off. The improve-
ment of the other strategies S3 – S6 is only slight.

The partial information MVE strategy S3 performs on average slightly bet-
ter than the “do-nothing”, or the all-money-holding strategy S4. It has a
higher value of expected utility and a higher average return. It should be
noted that the sample mean and sample standard deviation of the bond re-
turns cannot appropriately approximate the drift and diffusion coefficients
in the model because the drift and diffusion vary with the time to maturity.
Nevertheless, if one does not have other information, the strategy S3 which
seeks to learn the price dynamics by observing the market prices, can still
beat the all-money-holding strategy S4.

The one-factor intertemporal investment strategy S5 performs well in both
cases with and without measurement errors. Its stable performance may be
traced back to the fact that its holding position is not as extreme as that
based on the two-factor model, as illustrated in Figure 5. On the other
hand, the agents who adopt the strategy S5 do have an intertemporal model
in mind. This is an informational advantage to the agents adopting MVE
strategies S3 and S6.

We provide also the final wealth distributions for agents with higher risk
aversion γ = 30. Such agents do not take as extreme investment positions
as the agents with γ = 15, so the standard variations of the final wealth dis-
tributions based on strategies S1 and S2 without measurement errors, and
those based on strategies S5 and S6 with or without measurement errors, are
reduced, as shown in Table 6. This more conservative attitude also makes
negative final wealth a very low probability outcome by adopting strategies
S1 and S2 in the presence of the measurement errors, as we can observe in
the same table.
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(c) S3 (d) S4

(e) S5 (f) S6

Figure 6: Final Wealth Distribution, γ = 15, σε = 0.0006
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Figure 7: Wealth Development with Measurement Errors
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Figure 8: Theoretical Intertemporal Portfolio Proportions
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Figure 9: Wealth Development without Measurement Errors
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Figure 10: Final Wealth Distribution, γ = 15, σε = 0
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(a) S1 (b) S2
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(e) S5 (f) S6

Figure 11: Final Wealth Distribution, γ = 30, σε = 0.0006
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Figure 12: Final Wealth Distribution, γ = 30, σε = 0
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γ = 15
σε = 0.0006 S1 S2 S3 S4 S5 S6
E[U(VT )] −9.33e86 −7.35e86 −0.0153 −0.0206 −3.85e−8 −1.28e−7

E[VT ] −0.0009 −0.0007 1.2006 1.1830 3.7513 2.8585
σ[VT ] 0.0187 0.0142 0.1159 0.1189 0.7809 0.3339

γ = 15
σε = 0.0 S1 S2 S3 S4 S5 S6
E[U(VT )] −1.13e−48 −5.91e−48 −0.0056 −0.0195 −1.54e−8 −1.07e−7

E[VT ] 22636 17673 1.2829 1.1771 3.9325 2.9184
σ[VT ] 24141 18139 0.1278 0.1174 0.7481 0.3509

γ = 30
σε = 0.0006 S1 S2 S3 S4 S5 S6
E[U(VT )] −4.12e178 −2.84e178 −0.0140 −0.0222 −9.91e−12 −2.85e−9

E[VT ] 1.5921 1.1807 1.1811 1.1717 2.5047 1.8519
σ[VT ] 2.0605 1.5206 0.1180 0.1203 0.2743 0.1019

γ = 30
σε = 0.0 S1 S2 S3 S4 S5 S6
E[U(VT )] −3.68e−55 −4.97e−52 −0.0057 −0.0224 −4.24e−12 −1.81e−8

E[VT ] 195.12 151.74 1.2326 1.1797 2.5300 1.8595
σ[VT ] 79.73 60.46 0.1245 0.1189 0.2613 0.1030

Table 6: Portfolio Performance

5 Concluding Remarks

In this paper we have tried to develop optimal long-term bond investment
strategies that can be applied in real markets. We have modelled the bond
prices dynamics by employing the Gaussian sub-family of the Duffie-Kan
affine model where bond yields with different time to maturities are as-
sumed to be driven by some common factors. The factors are represented
by stochastic processes and are unobservable. We use dynamic program-
ming to set up the optimization procedures and the Feynman-Kac formula
to solve the resulting HJB equation. We were able to develop the analytical
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solution for the intertemporal optimal strategies for the bond investments.

The model was estimated based on the data from German securities markets
using the Kalman filter. Although the three-factor term structure model has
the largest fitting errors and the smallest information criteria, we did not
employ it because of the widely fluctuating trajectories of the filtered fac-
tors. Thus, we employed the one- and the two-factor term structure models
to develop bond investment strategies.

Using the analytical solution obtained for the intertemporal optimal port-
folios, we showed that the two models give very different recommendations
for bond investment strategies. The best theoretical investment strategy,
which is based on the estimation results of the two-factor model, tends to
give a strategy with extremely large investment positions because of the high
correlation of the factor innovations. With regard to this point, the results
of the simulation study have revealed the fact that an investment strategy
with such large positions is very vulnerable to measurement errors.

In the simulation study we simulated the bond prices based on the esti-
mateion results of the two-factor term structure model and investigated the
performance of six different investment strategies: the two-factor intertem-
poral strategy S1, the two-factor MVE strategy S2, the partial information
MVE strategy S3, the all-money-holding strategy S4, the one-factor intert-
meporal strategy S5, and the one-factor MVE strategy S6, in the scenar-
ios with and without measurement errors. The best theoretical investment
strategy S1 performs the worst among all the strategies in the presence of
the measurement errors because of their large long/short positions. The
partial information MVE strategy S3 performed only slightly better than
the all-money-holding strategy S2 because the sample mean and variance
are not a good proxy for the time-varying drift and diffusion of the bond
returns.

The one-factor intertemporal strategy S5 stood out in our simulation study
because of its stable and relatively good performance for both cases with
and without the measurement errors. The success might be explained by
two features of this strategy that come together: on the one hand, it in-
corporate the information of the time-changing investment environment; on
the other hand, the investment positions are of a reasonable scale.

The approach of this paper can be extended in several ways in future re-
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search. For example, we could include stocks in order to study the interac-
tion between stocks and bonds in the intertemporal asset allocation problem.
Intermediate consumption has not yet been considered in this study and will
be the object of future research.

6 Appendix

6.1 Proof

The characterization of the invariant transformation of the parameters has
already been stated in Dai and Singleton (2000) . Here we provide a more
detailed proof.

Lemma 4.1 (Dai and Singleton (2000)) The invariant transformation of
the parameters

(K, θ, Γ, ξ0, ξ1

)
of equations (2), (5), (9) and (10) with respect

to the factor transformation

XL
t := LXt + Θ (40)

is given by (LKL−1, Lθ + Θ, LΓ, ξ0 − ξ�1 L−1Θ, (L�)−1ξ1

)
. (41)

Proof
The first three invariant parameter transformation can be determined easily.
We denote KL, θL, ΓL as the new parameters for the new factor dynamics

dXL
t = KL(θL − XL

t )dt + ΓLdWt . (42)

Under the factor transformation (40), the new factor dynamics can be trans-
formed into

dXL
t = LdXt = LK(θ − Xt)dt + LΓdWt

= LK(θ − L−1(LXt + Θ) + L−1Θ
)
dt + LΓdWt

= (LKL−1)
(Lθ + Θ − XL

t

)
dt + LΓdWt . (43)

Identifying the two dynamical systems (42) and (43), we obtain

KL = LKL−1 , (44)
θL = Lθ + Θ ,

ΓL = LΓ .
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Let BL(τ), AL(τ) be the new coefficients in the yield formula (2) based on
the transformed factor XL

t . The invariant transformation must satisfy two
requirements. First, the bond formulas must remain invariant under the
transformation, so that

y(t, t + τ, Xt) =
A(τ)

τ
+

B(τ)�

τ
Xt ≡ AL(τ)

τ
+

BL(τ)�

τ
XL

t . (45)

Replacing the new factor XL
t in equation (45) with its definition given in

(40), we obtain for the new coefficients BL(τ) and AL(τ) the equalities

BL(τ)� = B(τ)�L−1 , (46)
A(τ) = AL(τ) + B(τ)�L−1Θ . (47)

The second requirement for the invariant transformation is that the new
coefficient BL(τ) and AL(τ) must still satisfy the no-arbitrage equations (9)
and (10) with the new parameters given in (44). That is, the coefficient
BL(τ) must satsify

d

dτ
BL(τ) = −(KL)�BL(τ) + ξL1 = −(L−1)�K�L�BL(τ) + ξL1 .

Multifying L� on both sides, we obtain

d

dτ

(
L�BL(τ)

)
= −K�L�BL(τ) + L�ξL1 .

This equation can be simplified further to

d

dτ
B(τ) = −K�B(τ) + ξL1 , (48)

due to the fact L�BL(τ) ≡ B(τ) from the equality (46).

Identifying the new differential equation (48) for BL(τ) with the original one
(9), it turns out that the new parameter ξL1 must satisfy

L�ξL1 = ξ1 . (49)

Applying the second requirement also to the coefficient AL(τ), it has to
satisfy the no-arbitrage condition (10) with the new parameters (44) and
the new coefficient BL(τ), thus

d

dτ
AL(τ) =

(KLθL − ΓLλ
)�

BL(τ) − 1
2

n∑
i,j=1

BL
i (τ)BL

j (τ)ΓL
i ΓL

j + ξL0 . (50)

37



We can observe that
n∑

i,j=1

BL
i (τ)BL

j (τ)ΓL
i ΓL

j =
(
BL(τ)�ΓL)(BL(τ)�ΓL)� =

(
B(τ)�Γ

)(
B(τ)�Γ

)�
.

Applying this equalty and the definitions of new parameters given in (44)
to the differential equation (50), then it can be rewritten further to

d

dτ
AL(τ) = (Kθ + KL−1Θ − Γλ)�B(τ) − 1

2

n∑
i,j=1

Bi(τ)Bj(τ)ΓiΓj + ξL0

=
d

dτ
A(τ) + (KL−1Θ)�B(τ) + ξL0 − ξ0 . (51)

The second equality above is obtained by using the original no-arbitrage
condition (10).

Now, we differentiate both sides of (47) and then replace d
dτ B(τ) by the

original no-arbitrage condition (9), then we obtain

d

dτ
A(τ) =

d

dτ
AL(τ) +

d

dτ
B(τ)�L−1Θ

=
d

dτ
AL(τ) + (−B(τ)�K + ξ�1 )L−1Θ . (52)

Identifying the two equations (51) and(52), it follows that the new parameter
ξL0 has to satisfy

ξL0 = ξ0 − ξ�1 LΘ . (53)

We note that the price of risk λ remains unchanged under the factor trans-
formation because we keep the original factor uncertainty Wt. We recall
that the price of risk is the compensation for bearing the uncertainty Wt.
�

Proof of Property 2
Because K is diagonal, we can solve every component of the coefficient B(τ)
separately. Together with Condition (iii) in Property 1, the i-th component
of B(τ) has to satisfy

d

dτ
Bi(τ) = −κiBi(τ) + 1 , (54)

from which the solution (11) follows readily by applying the integration fac-
tor eκiτ and the initial condition Bi(0) = 012.

12Equation (54) is sloved by applying the intergrating factor eκiτ and rewritting it as

eκiτ ` d

dτ
Bi(τ) + κiBi(τ)

´
=

d

dτ

`
eκiτBi(τ)

´
= eκiτ ,
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The solution given in (12) is simpliply obtained by subsituting the expres-
sion (11) into the terms in (10) and then integrating.
�

Proof of Property 3

The proof proceeds in two steps.

1: Change of probability measure

Let P denote the original, so called physical or historical, probability mea-
sure for the underlying process (5). Now, a new equivalent measure is defined
by the Radon-Nikodym derivative

dP̂s

dPs
= exp

(1 − γ

γ
λ�(Ws − Wt) − (1 − γ)2

2γ2
λ�λ(s − t)

)
.

Using Girsanov’s theorem, the shifted Brownian motion

dŴt = dWt − 1 − γ

γ
λdt

is a Brownian motion under the new measure P̂.
Inserting the shifted Brownian motion into the original underlying process
(5), we obtain the stochastic differential equation

dXt = K(θ − Xt)dt + ΓdWt

=
(K(θ − Xt) + Γ

1 − γ

γ
λ
)
dt + ΓdŴt . (55)

2: Application of the Feynman-Kac formula

By applying the Feynman-Kac formula, see the Theorem 1 in the Appendix
6.2, we obatin the result (26).
�

Proof of Property 4

Inserting the expressions for ht into (24) and the Radon-Nikodym derivative

which is readily integrated.
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in (27) into the expectation operator representation (26), we obtain

Φ(t, T, x) = Et,x[eΨ(t,T )] , (56)

where we use Ψ(t, T ) to denote

Ψ(t, T ) := − δ

γ
(T − t) +

1 − γ

2γ2
λ�λ(T − t) +

1 − γ

γ

∫ T

t
Rsds

+
1 − γ

γ
λ�(WT − Wt) − (1 − γ)2

2γ2
λ�λ(T − t)

= − δ

γ
(T − t) +

1 − γ

2γ
λ�λ(T − t) +

1 − γ

γ
λ�(WT − Wt)

+
1 − γ

γ
ξ0(T − t) +

n∑
i=1

1 − γ

γ

∫ T

t
Xisds . (57)

The second equality in equation (57) is due to the fact that

Rs = ξ0 +
n∑

i=1

Xis,

which is based on the result (3) and the identification restriction (iii) in
Property 1. Note that the process Xis is the i-th component of the factor
Xs.

Since the matrix K is diagonal due to the identification restriction (i) in
Property 1, the underlying process (5) can be expressed componentwise as

dXis = κi(θi − Xis)ds + ΓidWs .

The solution of the stochastic differential equation above is given by13

Xis = e−κi(s−t)Xit +
∫ s

t
e−κi(s−u)ΓidWu .

So, the last term of the equation (57) becomes∫ T

t
Xisds =

∫ T

t
e−κi(s−t)Xitds +

∫ T

t

∫ s

t
e−κi(s−u)ΣidWuds

=
1
κi

(1 − e−κi(T−t))Xit +
∫ T

t

∫ T

u
e−κi(s−u)dsΣidWu

= Bi(T − t)Xit +
∫ T

t
Bi(T − u)ΣidWu .

13See Kloeden and Platen (1992) .
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Using this result to rewrite equation (57), we obtain

Ψ(t, T ) = − δ

γ
(T − t) +

1 − γ

2γ
λ�λ(T − t) +

1 − γ

γ
ξ0(T − t)

+B(T − t)Xt +
∫ T

t

(
B(T − u)�Σ + λ�)dWu .

It is easy to see that Ψ(t, T ) is normally distributed with the expectation

EΨ(t, T ) = − δ

γ
(T − t) +

1 − γ

2γ
λ�λ(T − t) +

1 − γ

γ
ξ0(T − t) + B(T − t)Xt

and the variance

VarΨ(t, T ) =
∫ T

t

(
B(T − u)�Σ + λ�)(B(T − u)�Σ + λ�)�ds .

Using the well-known result concerning the expected value of the exponential
of a normally distributed random variable, we obtain from (56) that

Φ(t, T, x) = Et,x[eΨ(t,T )] = eEΨ(t,T )+ 1
2
VarΨ(t,T ) ,

which is equivalent to the expression (30) in Property 4.
�

6.2 Some Basic Results

Theorem 1 (Feynman-Kac Formula) Let Xt be the solution of the stochas-
tic differential equation (SDE)

dXt = F̂tdt + ĜtdŴt (58)

the infinitesimal generator of which is given by

D̂t = F̂�
t

∂

∂x
+

1
2

n∑
i,j=1

ĜitĜ
�
jt

∂

∂xi

∂

∂xj
.

Let h, g, and Ψ are functions with dimentionality h : R
d × R+ → R, g :

R
d × R+ → R, and Ψ : R

d × R+ → R. If Ψ(x, t) satisfies the PDE

∂

∂t
Ψ(x, t) + D̂tΨ(x, t) + h(x, t)Ψ(x, t) + l(x, t) = 0 , (59)
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subject to the boundary condition

Ψ(x, T ) = ω(x) , (60)

then

Ψ(x, t) = Êt,x

[
ω(XT )e

R T
t h(Xs,s)ds +

∫ T

t
l(Xs, s)e

R s
t h(Xu,u)duds

]
, (61)

where Êt,x is the expectation operator with respect to the stochastic process
Xs, s ≥ t satisfying the SDE (58) with initial position Xt = x.

For the proof of the Feymann-Kac formula, see, for example, Øksendal
(2003) or Korn (1997).
�

Kalman Filter

The Kalman filter is employed to estimate the model consisting of one ob-
servation equation

yt = ZtXt + dt + εt , (62)

and one state equation

Xt = TtXt−1 + ct + Rtηt . (63)

The notation is adopted from Harvey(1990). For each t, the N ×1-vector yt

is directly observable. On the right hand side of (62) the observations are
explained by an observable component dt and the unobservable state variable
Xt. The state variable follows the dynamics (63). The Kalman filter can
estimate the unobservable Xt based on the information/observations until
t. Further details of the Kalman filter may obtained in Harvey(1990).
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