
FLAME GUI User Manual

Bülent Özel, Mehmet Gençer, Vehbi Sinan Tunalıoğlu and Kaan Erkan
TUBITAK-UEKAE

The Turkish Academic Network and Information Centre
Kocaeli, Turkey

1

Contents

List of Figures iv

1 Executive Summary 1

2 Introduction 3

3 Requirements and Installation 5
3.1 Installing required software . 5
3.2 Installing EURACE-GUI from binary distribution . 6
3.3 Installing EURACE-GUI from sources . 6

4 Overview of Agent and Population Design Process 7

5 Agent Design with XMML-Editor 10

6 Compiling Agents with GXparser 12

7 Population Design with PopGUI 13
7.1 Using PopGUI . 14
7.2 STEP 1: Creating a population . 15
7.3 STEP 2: Specifying population composition . 16
7.4 STEP 3: Specifying agent memory variables . 16

7.4.1 Distinguishing simple and composite variables . 19
7.4.2 Specification syntax for variables and basic random distributions 19
7.4.3 Deterministic initialization . 20
7.4.4 Using other memory variables of agent in expressions 20
7.4.5 Initializing arrays . 21
7.4.6 Using model constants or population size for scalability purposes 21
7.4.7 Accessing other agents and initializing agent relations 22
7.4.8 A note about managing dependencies . 24
7.4.9 Some useful Python constructs . 24
7.4.10 FINISHING UP: Validating and saving memory variable specifications 25

7.5 STEP 4: Editing constants . 25
7.6 STEP 5: Instantiating population and finishing up . 25
7.7 Command line options, utilities, and debugging . 26
7.8 NOTES . 26

8 Running Simulations through ExpGUI 28

9 Analysis of results using VisGUI 30
9.1 Overview . 30
9.2 Features . 30
9.3 Using VisGUI . 33

9.3.1 Platforms . 34

ii

CONTENTS iii

9.3.2 External Packages . 34
9.3.3 Standalone Installation . 35

9.4 Summary . 35

A Manual installation from sources A-1
A.1 Installing PopGUI . A-1

A.1.1 Installation on GNU/Linux . A-1
A.1.2 Installation on Windows . A-1

List of Figures

1.1 EURACE GUI . 2

4.1 Flow of multi-agent design in EURACE . 8

5.1 XMME (AgentGUI) Screenshot . 11

6.1 GUI for XParser . 12

7.1 Population properties dialog . 15
7.2 Editing population composition . 17
7.3 Editing memory variables . 18

8.1 Experiment Manager . 28

9.1 Parallel Database Creation . 31
9.2 Parallel Database Creation . 32
9.3 Visualization of Time Series a Variable . 33
9.4 Visualization of Distribution of a Variable . 34
9.5 Visualization of Advanced Time Series Plots of an Experiment 35
9.6 Exporting Raw Data of Plots . 36
9.7 File Operations . 37
9.8 Configuring Workspace . 38

iv

Chapter 1

Executive Summary

Creation of software utilities for use in design of agents, design of agent populations, preparation of

simulations, and visualization of simulation results has been an essential objective of EURACE project

in order to present a complete platform to facilitate use of agent based simulations in policy design. The

EURACE Graphical User Interface (GUI) presented here refers to a collection of compatible software tools

which provide the components that correspond to these functions of the EURACE software platform.

Design of the EURACE GUI reflects our intention that these software tools reflect most general

definition of the particular problems they intend to solve in agent based approach, to the extend that

it is possible, while at the same time they are complete in the sense that they can be deployed in the

EURACE project. In particular that they work with the FLAME simulation framework [?].

Following are the components of EURACE GUI that correspond to different aspects of simulation

development work:

XMML Editor Agent design requires a tedious process of describing agent memory and behavior in

an XML format specific to FLAME (the so called XMML format) while controlling for consistency

of design in terms of parameters that affect the overall model. The XMML Editor provides a

graphical interface which allows the agent designer to focus in his/her job, in addition to providing

facilities for detecting errors in the design. It was named after the fact that it translates the design

into the XMML format which is usable in FLAME framework.

GXparser Once a model composed of several agent types is designed, it has to be compiled by the so

called XParser component of the FLAME. The GXparser provides a graphical tool to ease this

manual process and report possible compilation errors back to the designer.

PopGUI A population corresponding to the European Economy in EURACE simulations is composed

of multiple (thousands) copies of several types of agents in several geographical regions, whose

memory and relations with each other are characterized by statistical features derived from actual

data. The PopGUI component enables simulation designers to describe composition of populations

and statistical features of agents, and produce population instances that are used as initial states

1

Chapter 1. Executive Summary 2

for simulations.

ExpGUI Policy experiments require comparison of outcomes of alternative simulations, where the com-

pared cases correspond to covariation of several parameters among their corresponding ranges.

ExpGUI facilitates creation of a series of simulation tasks from description of the experiment, thus

reducing errors in creation of policy experiments.

VisGUI The VisGUI component provides a tool for visualization and analysis of simulation outcomes.

ConGUI Since simulation development requires several iterations over the various tasks described above,

the ConGUI component was added to the EURACE GUI to ease launching of the various compo-

nents described above.

Figure 1.1: EURACE GUI

Figure 1.1 is the flow diagram and the graphical user interface of the toolkits developed for EURACE.

The deliverable presented here first describes the architecture of EURACE GUI in relation to other com-

ponents of the EURACE Software Platform, then proceeds to instructions for using various components

of the GUI as part of simulation development work.

Chapter 2

Introduction

This document serves as the definitive documentation for the suite of user level programs that are created

as part of the EURACE project effort. The EURACE project aims to produce socio-economic models

and multi-agent simulation software for use in economic policy experiments. The project has started in

September 2006, and will conclude in September 2009. Information on EURACE project can be found

at http://www.eurace.org.

An important requirement for EURACE project was creation of a software platform for design

and implementation of agents, creation of agent populations, creation and execution of experiment

sets, and evaluation and visualization of simulation results. While an existing multi-agent framework

(FLAME/Xagents framework) was adopted in EURACE project and improved as part of the project

effort [?], such tools for pipeline of agent, population, and experiment design not existed at the time

and created as part of the EURACE project.

The set of user interface tools in EURACE software platform, collectively called here as EURACE-

GUI, were distributed individually during early stages of project. This documentation provides a sin-

gle entry introduction to capabilities and usage of EURACE-GUI. Up-to-date information about the

EURACE-GUI can be accessed online at http://eurace.cs.bilgi.edu.tr.

EURACE-GUI consists of several independent modules that were created at different stages of the

project. Various different technologies were employed for each module in order to satisfy implementation

and agile development needs. For this reason modules are written using different computer languages

(C++, Python), and uses various software and libraries (GTK, Qt, R-project). Despite their indepen-

dence, the modules in EURACE-GUI can be invoked easily from within an entry point program called

Control GUI (ConGUI).

These independent modules all correspond to stages of the process of designing, running, and evalu-

ation multi-agent simulations of complex systems. Following is a brief description of each module in the

EURACE-GUI:

ConGUI : ConGUI is a front-end which facilitates invocation of different modules of EURACE-GUI

3

http://www.eurace.org
http://eurace.cs.bilgi.edu.tr

Chapter 2. Introduction 4

easily as part of a design pipeline.

XMML-Editor : Used for designing different types of agents, their memory variables and behavior, in

addition to global constants and messages used in a multi-agent system.

GXparser : Used as a front-end for validating agent models produced with XMML-Editor, by parsing

them through FLAME’s xparser.

PopGUI : Used for creating populations of agents whose state variables and relations can be initialized

according to given criteria.

ExpGUI : Used for creating sets of experiments using agent models and populations, then for executing

them on a FLAME simulation engine.

VisGUI : Used for visualization and statistical analysis of simulation outcomes.

The reader is recommended to read Chapter 4 which provides an overview of the multi-agent model,

population and experiment design process, before proceeding to subsequent chapters which explain usage

of individual modules.

Chapter 3

Requirements and Installation

EURACE-GUI is written with portability in mind. Despite the variety of libraries it depends upon,

all such dependencies are available for common computing platforms including 32-bit or 64-bit variants

of GNU/Linux, Unix or BSD, and Microsoft Windows. While it is likely that it can be run on other

systems such as Mac OS, it is neither tested on those platforms not we provide installation packages for

them. Manual installation of individual modules of EURACE-GUI and libraries required by them can be

cumbersome. Nevertheless, details of doing so are described in Appendix A and module sources can be

downloaded from http://eurace.cs.bilgi.edu.tr.

Before installing EURACE-GUI using installation packages, you are recommended to install the

following software separately:

FLAME : FLAME multi-agent platform is developed and distributed by University of Sheffield. Please

check http://ccpforge.cse.rl.ac.uk for FLAME installers.

R : R statistics package installers are available for a variety of platforms and is distributed under the

GPL license. R installers can be downloaded from http://www.r-project.org.

Although you can install and run EURACE-GUI without having the above software, you should be aware

that created simulations cannot be run without FLAME platform, and most features of the VisGUI

component will not be available without R. However, if your intention is merely using a computer as a

multi-agent design workstation, it is perfectly possible to install and run EURACE-GUI without these

two software packages.

3.1 Installing required software

Although EURACE-GUI can be installed and run without the following software, its use and features

are limited without them. Therefore it is recommended that the following are installed, in this order:

R : R statistics package can be downloaded and installed from http://www.R-project.org. If you are

using a Debian or Ubuntu Linux, it can also be installed using the package ‘r-base’.

5

http://eurace.cs.bilgi.edu.tr
http://ccpforge.cse.rl.ac.uk
http://www.r-project.org
http://www.R-project.org

Chapter 3. Requirements and Installation 6

FLAME : First get the sources from http://ccpforge.cse.rl.ac.uk. After unzipping the sources,

you need to compile and install two components from FLAME tree: libmboard and xparser. Enter

to these directories in the given order, run ‘make’ then ‘make install’.

3.2 Installing EURACE-GUI from binary distribution

To get a copy of EURACE-GUI installer, go to http://eurace.cs.bilgi.edu.tr and download the

most recent binary package for your platform (supported platforms are Windows, Linux and other Unix

variants). Execute this file to complete the installation.

3.3 Installing EURACE-GUI from sources

If you are working on Microsoft Windows, MinGW is required to compile and install the EURACE GUI

from sourse distribution. It can be downloaded from http://www.mingw.org. On Ubuntu or Debian

Linux platforms you will need to have the package named build-essentals installed. Once you have this

built environment for your platform, follow the instructions in Appendix A.

http://ccpforge.cse.rl.ac.uk
http://eurace.cs.bilgi.edu.tr
http://www.mingw.org

Chapter 4

Overview of Agent and Population

Design Process

Certain stages of multi-agent simulation design envisioned in EURACE depend on output of other stages.

Figure 4.1 visualizes the flow of work through modules in EURACE-GUI, also indicating the type of data

that comes out from modules and used as input to others. This visualization is exactly what you will

see when you launch the ConGUI, which acts as the control panel for invocation of different modules in

EURACE-GUI.

The first stage in EURACE multi-agent simulation design is creation of agents and shared environment

using XMML-Editor. Agent design involves (1) designing agent memory for different types of agents,

(2) describing agent behavior, in the case of EURACE/FLAME the language used for such description

is C programming language using a few FLAME specific constructs, (3) designing global environment

variables shared by agents, (4) designing data types that occur in memory variables and exchanged as

data units between communicating agents. Use of XMML-Editor to carry out these tasks is described

in Chapter 5. Once the multi-agent model design is completed, the model is saved in a FLAME specific

format called XMML.

The next stage is designing a population of agents which will be the initial state of simulation. The

model created in XMML-Editor is used as an input to PopGUI, which enables one to specify how different

geographical regions in the simulated system are composed of different number of each type of agents,

how each agent’s memory should be initialized, and what should be the values of environment constants

shared by all agents. PopGUI provides a variety of expressions which can be used to specify random

distributions for initializing agent memory, or to establish relations between agents (e.g. employment

relations in an economic simulation). Using these specifications PopGUI can create population instances

which are different but has the same stochastic properties.

The model and a population instance is sufficient to run a simulation. The model contains what are

the memory variables of agents and program code describing their behavior. The population instance

7

Chapter 4. Overview of Agent and Population Design Process 8

Figure 4.1: Flow of multi-agent design in EURACE

Chapter 4. Overview of Agent and Population Design Process 9

on the other hand contains initial values of agent memory for a whole set of agents comprising the

population. Before a simulation is run however, the model must be compiled to generate an executable.

The GXparser module allows user to do this without going down the elaborate steps of xparser program

in FLAME.

Economic simulations are useful when one can compare outcomes of different environments, popula-

tions, or behavior. The ExpGUI program provides facilities to create a set of different initial conditions

(populations) and to run simulations easily.

Finally the VisGUI program can be used to visualize and analyze the results of simulations. The

program use plotting and statistical facilities of R statistics package [?].

Chapter 5

Agent Design with XMML-Editor

XMME (X-Machines Modelling Editor) provides the functionality of designing and implementing agent

specification and behavior. It is a GUI application and the XMML (X-Machines Markup Language)

provides the underlying modeling schema.

In particular, XMME helps its user to visually edit an XMML formatted file. XMML is a highly

verbose and partially untyped data specification language based on XML format. This sort of nature

makes it relatively difficult to edit individual XML files to describe agents’ specification and behavior

which are very sophisticated in so far that the agents have internal variable and external message depen-

dencies. Furthermore, the nested model fascility of XMML specification makes it virtually unmanageable

if it comes to large models.

The XMME wraps the XMML specification and functionality by means of nested data models. In

its runtime, all the decoupled XMML files and XMML nodes are managed by the application so that

the model specification remains consistent over time. By doing this, XMME does not limit the XMML

capabilities which allow to represent sophisticated agent models, on the contrary, it helps modeler to deal

with the technical details and internal model specification consistency.

XMME is a free and open source software application which is developed using C++ and Trolltech/QT

development framework. The development idea is based on content-presentation seperation, ie. the model

internals are controlled by a seperate routine which is a software library called libxmm2. libxmm2 provides

the model whereas XMME presents it to the user. At the same time, it passes all the user input to the

libxmm2. libxmm2 is written purely in C++ and core QT library which means that it can be used by

any other software routine, such as web server applications, command line programs etc. During the

EURACE software toolkit development phase, developers have made extensive use of this library with

fast-prototyping principles. Beyond libxmm2, XMME uses QT’s model-view classes, which makes it easy

to align to XMML while new functionalities added to XMML specification.

Both XMME and and libxmm2 are cross-platform applications. So far, it has been ported to Microsoft

Windows, GNU/Linux and MacOSX operating systems.

10

Chapter 5. Agent Design with XMML-Editor 11

Figure 5.1: XMME (AgentGUI) Screenshot

XMME GUI design is based on two panes. Left pane provides a hierarchical tree-view widget where

all the XMML nodes are represented. The right hand pane allows the user to edit available nodes in

detail.

A screenshot is provided below on Table 5.1

Chapter 6

Compiling Agents with GXparser

Once a model composed of several agent types and markets is designed, it has to be compiled by the so

called XParser component of the FLAME. The GXparser module of EURACE Toolkit is essentially a

graphical user interface wrapper of XParser. It eases the manual process of economic design and report

possible compilation errors back to the designer. See Figure 6.1.

Figure 6.1: GUI for XParser

12

Chapter 7

Population Design with PopGUI

PopGUI is written for creating agent populations for EURACE Project simulations using FLAME multi-

agent framework. The program reads already designed agent models described in FLAME XMML format,

and provides facilities to specify composition of population and specifications for initializing each agent’s

memory variables. Populations created by the program is then exported as an XML file (so called 0.xml

file in FLAME), which can be fed into a simulation engine which uses these initial conditions and agent

behavior described in models to carry out the simulations.

When reading through this guide it is important to distinguish the terms ‘population’ and ‘popu-

lation instance’. PopGUI’s central concern is to maintain specifications for creating initial populations.

‘Population’ refers to these specifications and the program stores them in its own format in ’.pop’ files.

Many ‘population instance’s(0.xml files) can be created from the same population specification. Although

PopGUI is designed to create valid population instances, the program does not read them back or allow

their manipulation.

Population specification involves two main phases. First is population composition. In the FLAME

framework an agent population can be divided into any number of sub-populations. For example, the

EURACE model contains geographical regions, such as countries, and one can distribute the agents

among these regions using the PopGUI. One most straightforward example is countries of the world.

Although each country’s social life is composed of same types of agents such as workers/consumers,

firms, banks, etc., their compositions and demographic features are different since each country have

a different population (number of people), number and average size of firms, etc. To account for such

realistic populations, PopGUI allows its user to create several regions and specify numbers of each type

of agent separately for each region; therefore allowing each region to have a different composition.

The second phase of specifying a population involves assigning values to agents’ memory variables.

Each type of agent is described by a different set of variables. For example employees can be described

with their skill set, income and employment status, whereas a firm is described by number of workers,

production capacity, etc. For a realistic population one usually needs standard or empirical random

distributions. For instance in our economic world example, sizes of firms in a country usually shows a

13

Chapter 7. Population Design with PopGUI 14

normal distribution, although its mean is different for each country/region. PopGUI provides a rich set

of expressions to specify memory variables.

Another feature of a realistic population is that the agents in it are not isolated but relate to one

another. For example workers are employed by firms in their region, or firms borrow money from banks

in their country. Therefore these relations must also be initialized in order to create a population, and

they must be stored in agent memory variables. In the case of employment relation example, firms will

have employees whose skillset is suitable for what firm produces, and furthermore the relation is exclusive

(i.e. if a person is employed in a firm, he/she cannot be employed by another). In the firm-bank relation

example firms usually borrow money from banks in their own region, and the relation is not exclusive

(i.e. other firms also borrow money from the same bank). PopGUI provides a rich set of features for

creating relations between agents, both exclusive and otherwise.

In additional to those substantial features mentioned above, some rather practical features were also

implemented to address needs of agent modelers. For example agent models change through time. New

agent types may be added, or agent memory variables are changed. It would be quite impractical to start

over with the population design when such changes occur. For this reason PopGUI allows importing

population specifications from populations that were worked out for older versions of models. With

the help of this feature populations can be re-used with only incremental changes. Such features are

introduced in the relevant sections below.

7.1 Using PopGUI

In order to create populations with PopGUI, you need a model describing your agents (their memory

and behavior). Since PopGUI was written as a part of EURACE project, it currently can use only

models given in XMML format, which is the format of the FLAME framework, the official simulation

environment of EURACE. Similarly the population instances created by the program are exported only

in the XML format adhering to FLAME specifications.

Although agent models contain behavior in addition to memory of agents, only the agent memory is

of interest when creating populations. Agent behavior is used later by the simulation engine, along with

the population created by PopGUI.

Working out a population with PopGUI consists of several stages:

1. Create a population by choosing a model, choosing the number of regions in simulation, and

optionally importing previous work from an existing population.

2. Specify population composition by entering how many agents of each type will exist in each region.

3. Specify how agent memory variables will be initialized. This also means specification of relations

between agents since relations are expressed as an agent’s identification number appearing as a

value in some other agent’s memory.

Chapter 7. Population Design with PopGUI 15

Figure 7.1: Population properties dialog

4. Enter values of global environment constants.

5. Create one or more instances of population.

Each of stages are described in the sections below.

7.2 STEP 1: Creating a population

First create a new population, from file menu. When creating a population you’ll be asked for the model

xml file which must be in FLAME XMML format. Then you can give a name to the population and

set the number of regions in the window that pops up, as shown in Figure 7.1. The default number

o regions is 1. You can increase this number depending on your needs. When you are finished you

must save your changes using “Update and close” button in the properties dialog. You can later view or

change these properties using the “Properties” button in the toolbar. The update operation only updates

the population in your session, and does not save the changes in the file system. To save your changes

permanently at any point, you must use “Save population” or “Save population as” menu items from

the “File” menu group. The population information is saved in a file with ‘.pop’ extension in your file

system. If you want to use a previously created population, click the “Open population” menu in the

“File” menu group, then choose a population. Alternatively the name of a ‘.pop’ file can be given as

a command line argument to PopGUI when invoking the program (see section 7.7 about command line

Chapter 7. Population Design with PopGUI 16

options below).

Once you have a population loaded to PopGUI, pressing “Model summary” button will display a

rudimentary structure of the model you have chosen, for inspection purposes.

Note that there’s also an “import...” button on the properties dialog. The import feature is provided

for a practical concern in modeling work. Once a population is created, PopGUI forgets about the

original model and only remembers agents and their memory variables. However the agent models may

change while work on population continues. It would be quite impractical to start over entering population

specifications every time the model changes, and when the changes are minor (e.g. a few memory variables

are added or updated in the model). In such cases what you need to do is to create a new population using

the newest model, and then import your previous work into the new population using this “import...”

button on the properties menu. However special care must be paid since import operation will import

agent memory variable specifications for only those that exists in your latest model. Therefore if there

are newly added memory variables or agents, it is up to you to complete the specifications for such new

variables and agents.

A restriction of import operation is that number of regions in the current population must match

that of the population you are importing from. Therefore even if you plan to change number of regions,

you must do so only after importing.

NOTE: As new features are added to PoPGUI it may not stay backwards compatible. For ensuring

stability data structures used by PopGUI are given a version number. If you try to open an old population

with newer versions of the PopGUI there is a chance that it will fail with a warning about the versions.

The recommended way to handle such situations is to create a population from scratch and import

memory variables as described above.

7.3 STEP 2: Specifying population composition

Next step is to set number of each type of agent in each region. When you click “Edit Regions” button

in the toolbar, you will be presented a table whose columns are regions and whose rows are agents (see

Figure 7.2). You can enter the number of agents in this grid and then press “update and close” button

if you want to save these changes. Your entries must be either positive integers or zero.

7.4 STEP 3: Specifying agent memory variables

This is the most elaborate step of specifying populations in PopGUI. When you press “Edit memory

variables” toolbar button, you will be presented with a detailed display of agents and their variables with

several buttons at the bottom part of screen, as shown in Figure 7.3. Agents, their memory variables,

and sub-components of these memory variables are presented in the form of a tree, parts of which can

Chapter 7. Population Design with PopGUI 17

Figure 7.2: Editing population composition

Chapter 7. Population Design with PopGUI 18

Figure 7.3: Editing memory variables

be collapsed or expanded by clicking on the branches. Alternatively all branches can be expanded or

collapsed using the “Expand all”/”Collapse All” buttons at the bottom of the screen.

This display also have a grid structure since one must provide specification for memory variables

separately for each of the regions. However in most cases the specifications for different regions of the

same variable are same or very similar. For this reason a “Region copy” button is provided in this screen.

Using this feature you can copy specifications for one region to other regions, and then make incremental

changes, to speed up your work.

As described above, specifications of memory variables are elaborate and has two basis: values and

relations. Although both are addressed in the language used for memory variable initialization (or

’initform’ as we refer to them in EURACE), different features are required and thus we will present them

in separate sections below. The ’syntax help’ button on the memory variables screen displays up-to-date

reference on the initform language for your convenience. As a note to users, the initform language is

based on dynamic interpretation capability of Python, and hence it has a Pythonic syntax. However. it

is not necessary at all for users to have any experience in Python language (although a little bit can help

if one wants to use lambda expressions for extending the initform language as will be shown below).

Chapter 7. Population Design with PopGUI 19

7.4.1 Distinguishing simple and composite variables

Next to each variable’s name in the memory variable editing screen, you will see a variable type. Following

are the varieties of these types:

• A few variables are special. Currently these are the ones named ‘id’ and ‘region id’. Users cannot

enter anything for these variables. The ‘id’ is a unique identifier of each agent in the population

(for referencing purposes) and it will be assigned sequentially during population instantiation. This

variable must exist for FLAME simulations to work. ‘region id’, when used, will contain an integer

which is the number of the region in which the agent is placed.

• Some variables are STATIC or CONSTANT. These appear in cases where their value is fixed in

the model or taken from a constant. The names of constants are defined in agent model, but their

values are entered in PopGUI using “Edit constants” toolbar button.

• Simple variables has a type which is one of ‘int’ or ‘double’.

• Composite variables are actually C structs. The names and structure of these come from agent

model which is used when creating a new population. When a variable is of a composite type, its

sub-fields can be expanded and will be entered in separate boxes.

• Finally, a variable can be an array of a simple of composite type. For such variables users will enter

a specification for the length of array in addition to the variable (which is used for each element of

the array). Special features are provided when one wishes to address all elements of an array, such

as when they will be selected from a set without replacement.

Most common use of STATIC or CONSTANT variables occur in array sizes, in cases when array

size is fixed in the model either hard coding or by tying to a constant.

7.4.2 Specification syntax for variables and basic random distributions

The entries for memory variables are arithmetic expression which produce a single numeric value (except

the special case of array initialization). Therefore the expressions entered into the boxes in this screen

can be as simple as a constant number, or a simple arithmetic expression: e.g. “2” or “2*2-(3.14/4)”.

Whenever necessary, PopGUI will convert integer values to real numbers, or vice verse.

In most cases the values will not be constants. Use of random or deterministic initializations are very

common. Following functions are provided for use in such cases in initforms:

rand(int,int) : a random integer from the inclusive range.

rand(real,real) : a random real number from the range.

choice([v1,v2,...)]: Pick a value from the list randomly.

normal(mu, sigma) : Normal distribution. mu is the mean, and sigma is the standard deviation.

Chapter 7. Population Design with PopGUI 20

discrete((probability,value), (probability,value),...) : Choose value given discrete probabilities.

Probabilities must add up to 1.0.

Also you can combine any of the above in arithmetic expressions: e.g. “2+rand(0,5)” or “rand(2,6)+choice([1,3,6])”,

etc. Discrete versions of random distributions are automatically chosen by PopGUI. In other words even

if you use “random(1.0,2.0)” for a variable whose type is integer, it will be automatically treated as

“random(1,2)” by PopGUI.

The expressions you enter are essentially Python expressions which must produce a single value (with

the exception of array initialization, see Section 7.4.5). If you have some knowledge of Python, you can

enter any valid expression combining the special functions provided by PopGUI.

While entering specifications, the “Syntax help” button on the bottom of this screen can provide you

a quick reference help, as an alternative to this user manual. Once you are finished entering specifications

you can use the “Validate” button on this screen to ensure that your expressions are correct. This

validation is mostly a syntactic one and does not guarantee that you will be able to generate a population

instance at the end. That depends on various things including setting up of relations, and its success

cannot be determined before you actually proceed to create an instance.

7.4.3 Deterministic initialization

“deterministic(min,max, lambda function)” will assign values by taking one value at a time from

inclusive range and applying function to selected value. Min and Max must be integer, and Max must

be greater than Min. e.g. “deterministic(0,10,lambda x:x*10)” will initialize the memory variable

of a sequence of agents as:

agent[0]=0

agent[1]=10

...

agent[10]=100

agent[11]=0

...

7.4.4 Using other memory variables of agent in expressions

It is possible to use value of a memory variable of agent itself in specification of another. The “getSelfVar()”

function is provided for this purpose. For example if agent has two memory variables of simple types

named ‘numberofchildren’ and ‘monthlyexpenses’, one can depend on the other by entering “getSelfVar("numberofchildren")*1250+2000”

in the box for ‘monthlyexpenses’.

Chapter 7. Population Design with PopGUI 21

However you must be careful about dependencies of variables. PopGUI will analyse which other

memory variables a variable depends on and sets their values in proper order. But if there are cyclic

dependencies which cannot be satisfied, you will face an error at some point.

In the example above “getSelfVar()” returned simply a numeric value since the named variable was

a simple variable. However, if the memory variable referred to is an array or a composite type, rather

than a simple variable, one usually needs to further refer to its elements. For example if the returned

value is an array “getSelfVar("somearray")[0]” will return first (zero indexed) element of it. If the

returned value is a composite variable “getSelfVar("somecomposite")["x"]” will return its sub-field

named ‘x’, and so on.

The “getSelfVar()” cannot be used to refer to the variable itself, for example to access sibling

variables in a data structure, etc. For this purpose another function is provided: “getSibling("sibling

var name")”. When used in an array of data structure, this function will retreive the data field of

the current array element. In cases where a data structure contains other data structures or elements,

getSibling() can instead access higher levels in the data structure hierarchy using ’level’ parameter to

climb up the hierarchy. For example “getSibling("uncle X",level=1)” and “getSibling("grand

uncle Y",level=2)” will seek entities at the level of parent and grandparent in the data structure

hierarchy, respectively.

7.4.5 Initializing arrays

The only case where the result of your expression is allowed not to be a single numeric value is when

you want elements of an array specified at once. In this case your expressions must yield a list whose

length is the same with the array length. For example if you have an array of length four, you can use

something like “[1,2,3,4]” to initialize the array elements sequentially from this list. A few functions

whose return values are lists are provided for possible use in such cases:

sample([1,2,3,... ,k)] : Return a k length list of unique elements chosen from the sequence. Used for

random sampling without replacement.

permutation([x,y,z,...)]: Return the same list with elements randomly re-ordered.

sequence(start,end,increment), realsequence(start,end,increment) : generate a sequence of in-

tegers with given increment within the inclusive interval: [start, start+increment, start+2*increment,

..., END] where END≤end. rsequence is the version which works for real numbers

7.4.6 Using model constants or population size for scalability purposes

You can access model constants or number of agents in the population using the following:

getConstant(constantname) : Returns the value of model constant. e.g. “getConstant("alpha")”

to retrieve the value of constant named ”alpha”. (These constant values are what you set in the

Chapter 7. Population Design with PopGUI 22

“Edit constants” tab of the program).

getAgentCountGlobal(agentname) : Get global count of agents with given name, i.e. sum of number

of agents in all regions. e.g. “getAgentCount("Firm")”

getNumRegions() : Returns the number of regions in the population.

getAgentCountRegional(agentname) : Get regional count of agents with given name.

getAgentIDListRegional(agentname, agentname, ...) : Get a list of agent IDs. You may specify

name of one or more agents. Please note that agent names are case sensitive. i.e. if you named an

agent as “Firm” you must specify the exact name. The function is deterministic, ie. when called

several times the list of agent IDs will be in the same order.

getAgentIDListGlobal(agentname, agentname, ...) : Get a list of agent IDs. You may specify

name of one or more agents. Please note that agent names are case sensitive. i.e. if you named an

agent as “Firm” you must specify the exact name. The function is deterministic, ie. when called

several times the list of agent IDs will be in the same order.

Since the last two functions return a list, rather than a value, they are usually intended for array initial-

ization.

7.4.7 Accessing other agents and initializing agent relations

Agents are not isolated. For example employees and firms in an economics simulation are related to one

another through employment relations. To address this aspect of populations PopGUI provides a means

to select other agents in the population using some criteria, and use their memory variables in specifying

another agent’s memory.

In order to pick an agent one can use:

getAgentRegional(agentname, conditions=[(”varname”,condition), (..), ...)]

getAgentGlobal(agentname, conditions=[...)]

The first one selects an agent from the same region with the referring agent, and the second selects one

from the whole population. The selectios are random. Both functions can be provided with zero or more

conditions on the agent to be selected using the following format:

“getAgentRegional("Bank", conditions = [("givescredit",equals(1)), ("badreputation",equals(0),

...]) ”

Please note that conditions is a list of tuples (variable name, condition function). Variable name

must be a variable of the selected agent, and condition is one of the special functions defined. These

functions can be one of the following:

equals(what) : checks whether the value of selected variable equals to the value

Chapter 7. Population Design with PopGUI 23

between(a,b) : checks whether the value of selected variable within the range

contains(x) is the value of selected variable (which must be a list) contains the value

MooreNeighbour(numcolumns,no) : checks whether the variable (an integer) is in the Moore neigh-

bourhood of ”no” in a geography where regions are laid out in rows with a width of ’numcomulmns’.

For example if there are 9 regions laid out as follows: 1 2 3 4 5 6 7 8 9 then neighbours of region 1

are 2,5,4, whereas neighbours of region 5 are1,2,3,4,6,7,8,9, etc.

your own functions : Other conditions can be defined using so called lambda functions in Python lan-

guage, such as “lambda x: x<100 and x>=5”. For example “getAgentRegional("Employee",

conditions = [("skill",lambda skill : skill<100 and skill>50)]) ”

subequals(index,what) : checks whether x[index]==what

subsubequals(index1,index2,what) : checks whether x[index1][index2]==what

Once an agent is selected, its variables can be accessed using a function called “getAgentVar(variablename)”.

For example: “getAgentGlobal("Bank", conditions = [("region id", MooreNeighbour(10,getSelfVar("region id")

)]).getAgentVar("id")”. If the selected variable is a struct or a list, its elements can be accessed using

a syntax similar to the examples given for “getSelfVar()”, e.g. “getAgent("Bank").getAgentVar("interestrates")["shortterm"]”.

The agents are selected randomly by the current implementation of the above functions in PopGUI

to prevent procedural bias in selection.

Exclusive selection If one wishes to prevent others from selecting the same agent, it is possible to do

so by setting the ’exclusive’ flag to 1 in getAgent variants, i.e. “getAgentRegional("Employee",exclusive=1)”.

Once you do this, the selected employee will never be selected again. However one must be careful since

it is possible, depending on the composition of the population, that such conditions may not be satisfied

once all agents are taken.

Selecting multiple agents at once Two similar functions allow one to select all agents that match

the criteria, instead of only one:

getAllAgentsRegional(agentname,conditions=[])

getAllAgentsGlobal(agentname,conditions=[])

The variants accept same arguments as “getAgentRegional()” and “getAgentGlobal()”. However

what is returned is a list of agents. These functions has an optional argument which can be used to turn

of random shuffling of the returned agent list. For example getAllAgentsRegional(”Firm”,randomize=0)

will always return the same list in the same order.

If one needs to process specific variables of the agents selected, you will need Pythonic expressions as

in the following example:

Chapter 7. Population Design with PopGUI 24

sum([agent.getAgentVar("somevar")

for agent in getAllAgentsRegional("Bank",

conditions=[("givescredit",equals(1)),("badreputation",equals(0))])])

The above expression is based on a Python construct which computes a list from elements of a given list,

e.g. “[i*i for i in [1,2,3]]”

7.4.8 A note about managing dependencies

The group of functions getAgentGlobal/Regional() and getAllAgentsGlobalRegional() create a depen-

dency between agents. In some cases this creates cyclic dependencies which cannot be resolved by the

PopGUI. If desired you can solve such situations by using one of the two functions. First is signaling a

delayed execution of memory variable initialization:

delayedExecution("some expression"): the expression is executed after all agents and their variables are executed.

to evoid syntax errors due to quotes in your own expressions, use long string syntax in Python by putting

your expression in triple quotes. e.g.:

delayedExecution(\"""getAgentGlobal("Bank").getAgentVar("id")\""")

Another function is available to fine tune dependencies at the level of variables instead of agents:

dependencyFineTune(type,toagent,tomemvar,expression)

e.g.:

dependencyFineTune("Global","Government","gov_id",

\"""getAgentGlobal("Government",conditions=

[("regions",MooreNeighbour(3,getSelfVar("region_id")))]).getAgentVar("gov_id")""")

7.4.9 Some useful Python constructs

Python has a simple syntax and some simple constructs can prove useful in expressing your memory

variables. We present some constructs here that are observed to be of common use based on feedback

from our users. For further information you are advised to consult Python tutorial at its website http:

//www.python.org.

Constructing lists : range(start,end[,step]) constructs a list which includes start but not end. If given

the list is incremented with the given step value.

Lambda functions : An anonymous function can be constructed using lambda function syntax. For

example a function to return true if a number is even would be ‘lambda x: x

http://www.python.org
http://www.python.org

Chapter 7. Population Design with PopGUI 25

List processing : A new list can be produced by processing numbers in a given list. For example to

return squares of a range of numbers ‘map(lambda x:x*x, range(1, 11))’.

If what you want is to select only items from a list that match a criteria, use filter. For example

to select even numbers from a list: ‘filter(lambda x: x

7.4.10 FINISHING UP: Validating and saving memory variable specifica-

tions

Before saving memory variables you can use the ’Validate’ button on the window, which provides ele-

mentary syntax checking of expressions you enter. After validation use “Save and close” button on the

memory variables screen to save your entries.

The validation operation only validates expression syntax and does not attempt a full initialization

and checking of expressions and references for fitness. Thus you may still catch some problems when you

attempt to instantiate population later.

7.5 STEP 4: Editing constants

The constants defined in your model will be assigned a value of zero initially. You can change these values

using the “Edit Constant” toolbar button. The constants screen also have a “Validate” button to ensure

the expressions you have entered are valid, before you save them.

Instead of numbers, you can also use getAgentCount(”agent name”) as a value for constants.

Unless you set sensible values to constants, it is likely that you will get errors like “division by zero”

when you validate memory variable specifivations that use these constants.

7.6 STEP 5: Instantiating population and finishing up

Once you finish entering memory variables and update your changes using the ’save and close’ button,

you can create an instance of the population (i.e. the 0.xml file in EURACE parlance) using ’Instantiate

population’ button. You will be asked for the name of the file to export the population.

Depending on the number of agents in your population this process can take a long time, and the

progress will be displayed on the main screen. You can cancel this operation using the “Cancel” button

at any time.

Once you are finished working with your population remember to save it before you quit the program.

Later you can re-open them from the file menu, and create new population instances for the same

population. Different instances will not be the same but will have same statistical distributions adhering

to your specifications.

Chapter 7. Population Design with PopGUI 26

7.7 Command line options, utilities, and debugging

PopGUI accepts a few command line options when run from command line instead of from within

ConGUI. Use:

python popgui.py -h

to display help on these options. Option “-v” will display program version, and “-d” will turn on

debugging so that program will dump a lot of messages in the terminal it is being run, which can be

helpful in reporting bugs.

Also you can give a population file as command line argument for the program to open the population

during start up. For example:

python popgui.py -d test.pop

will open the population saved in “test.pop” and will turn on debugging while you work.

PopGUI uses versioning for the saved populations to identify the data structure changes that are

not backwards compatible, and denies to open populations that were created using past versions of the

program and are not compatible with the current version. You can disable version checking using “-i”

parameter at the command line, however it is strongly recommended that such usage should be avoided.

Distributed with the PopGUI is a small program named popdoc.py, which is for producing LATEXtables

for constants, population composition, and memory variables in the population specification. When the

program is run without any parameters, it will ask a few questions to produce desired output. When

given a tex file as command line argument, output is written to that file instead od screen.

7.8 NOTES

1. Avoiding dependencies whenever possible: The group of functions getAgentGlobal/Regional

getAllAgentsGlobal/Regional create dependency between agents. We have seen modelers using

these functions just to retrieve id’s of other agents. However the correct way to do that is to use

getAgentIDListGlobal/Regional. This is because all agents are created and given id’s before any

of them are populated with memory variables. Therefore retrieving agent id’s does not generate

any dependency, and is a faster operation.

2. Resolving dependencies: If you end up with a cyclic dependency, the first thing you can try is

to use delayedExecution()

3. Be careful with Lambda functions: When describing conditions in agent selection, you may

resort to using Python Lambda functions. However you must beware that lambda functions

are evaluated when they are called, not when they are created. For example if you want to

choose agents whose regionid is same with the choosing agent, you’d try a function like “lambda

Chapter 7. Population Design with PopGUI 27

x:x["regionid"]==getSelfVar("regionid")”. However the function is executed within the con-

text of agent being evaluated for selection, because of the inherent way how Python lambda func-

tions are evaluated. (This was the reason that functions such as subequals() subsubequals() were

created.)

4. Using external replicators to create hude populations: If you start PopGUI with ‘-r’ option,

the created xml files will have all agent ID numbers preceeded with the string ‘REPLACE ID ’.

Chapter 8

Running Simulations through

ExpGUI

The experiment manager module is highly coupled with policy analysis module. Policy experiments

require comparison of outcomes of alternative simulations, where the compared cases correspond to co-

variation of several parameters among their corresponding ranges. ExpGUI facilitates creation of a series

of simulation tasks via a GUI, thus reducing errors in creation of policy experiments.

Figure 8.1: Experiment Manager

ExpGUI inherits an initial population file from PopGUI. It principally facilitates designer to run the

designed model for desired number of iterations within a policy experimentation. Policy maker is able to

test the designed model on following conditions:

28

Chapter 8. Running Simulations through ExpGUI 29

• sensitivity to policy parameters

• sensitivity to initial population

• sensitivity to stochastic process through out iterations.

Figure 8.1 is a snapshot of the experimet manager under Windows.

Chapter 9

Analysis of results using VisGUI

9.1 Overview

The VisGUI design takes an advanced GUI workspace approach where designers or policy makers can

import, visualize, analyze, edit and export simulation results.

The VisGUI architecture is designed aiming an overall modular implementation. It employs a Model

View Controller(MVC) scheme, which enables its modularity and extendability. Although the package is

a sub-module within EURACE Software Toolkit, it can be installed and run independently. This design

decision is taken for several reasons. First, this flexibility is targeted to allow it to be integrated for other

multi-agent computational tools as an analyses and visualization tool. For that reason, importation and

exportation of standard data formats are adopted for better interoperability. Second, it allows designers

or policy makers easily install and run VisGUI to perform analyses and visualizations of simulations data

which are generated elsewhere. Third, this decoupling feature allowed us to develop the application upon

existing GPL1 licensed tools and software. In return, after a maturation stage of the application, the

package will be made available publicly on public repositories2 as a GPL package. This will enable a con-

tribution back to the open source community and contribution from the developers from the community

to extend and maintain it in the future.

9.2 Features

A set of features are developed and made available to designers. The features are briefly listed below and

some snapshots of their use are given accordingly to ease presentation:

• Importing Simulation Results: The user is made able to import either result of a single

simulation or a set of it. If this option is opted, the application reads in a sample iteration and

1GNU Public License, see urlhttp://www.gnu.org/
2Such as urlhttp://sourceforge.net/

30

Chapter 9. Analysis of results using VisGUI 31

Figure 9.1: Parallel Database Creation

retrieves information on the set of agents and their available memory variables. This automatically

detected set of memory variables are used automatically to populate variable menus.

• Database Creation: The creation of a database is necessary when there is a very long and large

simulation. It is also necessary when there are a set of policy experiment results. Created database

speeds up time to visualize and analyze the results. It also allows portability of experiment results

in a standard and light format to other platforms and visualization applications. We have taken

a novel approach to integrate database creation into the application. It exploits multi-threading

and parallelisation paradigms both to decrease the time of database creation and to keep doing

analysis at the main workspace during any lengthy process of database creation. See Figure 9.1

and Figure 9.2.

• Visualization of Time Series of Memory Variables: The nature of simulation necessitates a

quick trace of some variables over iterations before further examination or more advanced policy

experiments. User can directly check raw simulation data to examine time series of a memory

variable. See Figure 9.3.

• Visualization of Distribution of Memory Variables: In the same manner as a quick time

series visualization of raw data, users are also allowed to examine distribution of a variable at a

Chapter 9. Analysis of results using VisGUI 32

Figure 9.2: Parallel Database Creation

desired iteration.See Figure 9.4.

• Advanced Visualization of Policy Experiments: The application also allows designer to

examine impact of a policy parameter on macro results, sensitivity of the computational model

to an initialization and effects of random interactions in between agents across different runs by

advanced visualization tool of the application. The feature allows to examine multiple variables at

the same time very quickly. See Figure 9.5.

• Automatic Report Generation of Data Points: This feature allows designers to view sum-

mary statistics and exact data points of visualization of a variable.

• Exporting Raw Data of Plots: The feature allows to export data points of a plot in standard

data format, presumably to be tested or re-visualized by a different application. See Figure 9.6.

• Managing Generated Reports and Plots: Analyses and visualizations of an experiment results

in many reports and plots. This set of feature allows user either visualize or close them easily or

automatically store them on a secondary memory space.

• Automatic Storage and Re-storage of State of Application: This feature allows both the

main application and all interactive GUI dialogs to store its latest state for subsequent uses.

Chapter 9. Analysis of results using VisGUI 33

Figure 9.3: Visualization of Time Series a Variable

• GUI Interaction and Validity Checks: All of GUI dialogs are interactive to user preferences

and automatically checks validity of user actions.

• Writing and Editing Reports: VisGUI Workspace provides a text editor with basic functions

to enable user to write reports or edit automatically generated reports for convenience.

• Logging Status and Actions in the Workspace: All major user actions are logged and

displayed. The user can scroll and examine his/her previous actions.

• File Operations: All basic file operations including printing options are provided. See Figure 9.7.

• Configuring Workspace: The application provides configuration options for the workspace, its

state, and automatic management of produced plots and reports. See Figure 9.8.

• Help Menu: VisGUI provides an HTML based navigable help interface.

9.3 Using VisGUI

In this section, we will very briefly demonstrate how VisGUI can be used.

Chapter 9. Analysis of results using VisGUI 34

Figure 9.4: Visualization of Distribution of a Variable

9.3.1 Platforms

VisGUI is developed and tested both in Linux and Windows environments. The application will also be

adopted for MAC platforms.

9.3.2 External Packages

The application is being implemented using Python2.5 and Qt4. All distributional statistics, and time

series analysis and inference analysis are being performed by employing and integrating RPy2. RPy has

provided an efficient and practical Python interface to the R Programming Language. More specifically,

the software is implemented using Python 2.5 with the help of following packages:

• GUI: PyQt4.QtGui

• XML: PyQt4.QtXml

• Statistics: RPy 2

• DB: SqlLite

Chapter 9. Analysis of results using VisGUI 35

Figure 9.5: Visualization of Advanced Time Series Plots of an Experiment

9.3.3 Standalone Installation

The modular design approach of VisGUI allows it to be installed and used as a standalone application.

This flexibility will allow the package to be later developed as an platform and economic model indepen-

dent workspace which can be used to analyse and and visualize results of other computational economics

platforms.

9.4 Summary

The section has presented a brief overview of VisGUI. The modular approach of the its implementation

and its major design principles will provide us to further develop it and share it with computational

economics community in the future.

Chapter 9. Analysis of results using VisGUI 36

Figure 9.6: Exporting Raw Data of Plots

Chapter 9. Analysis of results using VisGUI 37

Figure 9.7: File Operations

Chapter 9. Analysis of results using VisGUI 38

Figure 9.8: Configuring Workspace

Appendix A

Manual installation from sources

A.1 Installing PopGUI

PopGUI is written in Python language for faster development and portability reasons. It uses GTK+ for

its graphical user interface, Therefore PopGUI will run on any platform for which Python (version 2.5 or

higher) and GTK+(version 2.0 or higher) is available, including GNU/linux, Microsoft Windows, most

Unixes, and others.

The program itself consists of two files only: poplib.py which contains the library functions, and

popgui.py which provides the GUI. Follow the instructions below for your operating system to start using

PopGUI.

A.1.1 Installation on GNU/Linux

Install python-gtk2 package. Then place poplib.py and popgui.py into some directory, and run popgui.py.

If you want to do these from a command line, do as follows (example for Debian or Ubuntu Linux):

$ sudo aptitude install python-gtk2

$ python popgui.py

A.1.2 Installation on Windows

Install the following in order (See http://www.pygtk.org/downloads.html for detailed instructions and

links for setting up Python with GTK support):

1. Python 2.5 or newer

2. GTK+ win32 runtime

3. PyCairo

4. PyGObject

A-1

http://www.pygtk.org/downloads.html

Appendix A. Manual installation from sources A-2

5. PyGTK

After that copy poplib.py and popgui.py into a directory, and run popgui.py.

	List of Figures
	Executive Summary
	Introduction
	Requirements and Installation
	Installing required software
	Installing EURACE-GUI from binary distribution
	Installing EURACE-GUI from sources

	Overview of Agent and Population Design Process
	Agent Design with XMML-Editor
	Compiling Agents with GXparser
	Population Design with PopGUI
	Using PopGUI
	STEP 1: Creating a population
	STEP 2: Specifying population composition
	STEP 3: Specifying agent memory variables
	Distinguishing simple and composite variables
	Specification syntax for variables and basic random distributions
	Deterministic initialization
	Using other memory variables of agent in expressions
	Initializing arrays
	Using model constants or population size for scalability purposes
	Accessing other agents and initializing agent relations
	A note about managing dependencies
	Some useful Python constructs
	FINISHING UP: Validating and saving memory variable specifications

	STEP 4: Editing constants
	STEP 5: Instantiating population and finishing up
	Command line options, utilities, and debugging
	NOTES

	Running Simulations through ExpGUI
	Analysis of results using VisGUI
	Overview
	Features
	Using VisGUI
	Platforms
	External Packages
	Standalone Installation

	Summary

	Manual installation from sources
	Installing PopGUI
	Installation on GNU/Linux
	Installation on Windows

